
0018-9162/99/$10.00 © 1999 IEEE October 1999 79

Re
se

ar
ch

 F
ea

tu
re

Research Feature

Evaluating the
Effectiveness of
Independent
Verification and
Validation

T
he complexity of today’s software systems
mandates not only a structured approach to
development but a verification and valida-
tion process that will ensure both that the
right product is built and that it is built

right.1 A V&V process is especially critical for high-
consequence systems in which a software failure can
result in the loss of life2 and for systems—like mis-
siles—where live testing isn’t feasible.

The two terms—verification and validation—are
often used in conjunction to describe a single set of
activities. The terms themselves, however, imply dis-
tinctly different sets:

• Verification refers to the process of examining
each development phase to ensure that the out-
put of a particular phase satisfies all the pertinent
requirements of the previous phase, is internally
acceptable, and can support the development
effort in the next phase.

• Validation, on the other hand, is an activity pri-
marily concerned with software testing. During
validation you execute the system and compare
the test results to the requirements.

Independent V&V has many things in common with
V&V—like these terms—but while V&V is generally
performed by a group closely aligned with the devel-
opment team, IV&V is conducted by a group that is
completely independent. But whether IV&V differs
from V&V in more than just the independence of its
practitioners is still open to debate.3,4 We believe, how-
ever, that it is the independence that promotes objec-
tivity and encourages you to consider a wider range of
solutions, which in turn can improve error detection.

To better understand and evaluate the impact of ver-
ification and validation on the development process,
NASA Langley Research Center funded a study to
examine the effectiveness of the Army’s Software
Engineering Evaluation System (SEES).5 A joint inves-
tigative effort that included both Virginia Tech and
NASA LaRC, the project led to a study designed to
examine the benefits of using SEES as an independent
V&V methodology. In particular, the study focused
on assessing to what extent, if any, IV&V activities
help detect faults earlier in the software development
life cycle, reduce the time to remove those faults, and
produce a more robust product.

The study consisted of two independent develop-
ment groups—see the sidebar “The Experimental
Groups”—each of which was given an identical set of
requirements that outlined a solution to a particular
problem. We asked both groups to design, code, and
test their software. The results, particularly the dif-
ference in fault detection capabilities between the two
methods, indicate that IV&V provided a significant
value-added component to the software development
process.

THE EXPERIMENT’S ARCHITECTURE
For testing the value of IV&V, we used a modified

version of SEES, which is a comprehensive V&V
methodology developed by the US Army Missile
Command’s Software Engineering Directorate. SEES
is based on a five-step implementation process:

1. assessing the V&V needs for a planned software
development project;

2. tailoring SEES V&V procedures to fit schedule and
budget constraints;

The authors are among the first to test whether independent verification
and validation have a measurable beneficial effect on the development
process.

James D.
Arthur
Markus K.
Gröner
Virginia Tech

Kelly J. 
Hayhurst
C. Michael
Holloway
NASA Langley
Research Center



80 Computer

The Experimental Groups
The experiment described in this article

employed two distinct, noninteracting
groups. Group 1 was composed of two
individual teams: a three-person develop-
ment team and a four-person IV&V team.
The IV&V team assessed the quality of the
development artifacts produced by the
development team. Group 2 had no IV&V
contingent and was only composed of a
two-person development team.

In assigning team members, common
practice generally dictates the use of ran-
dom assignments to minimize the poten-
tial for bias. Because of the small number
of available participants (and the conse-

quent belief that random subject assign-
ment would not lead to development teams
with equivalent levels of software engi-
neering expertise), we elected instead to use
matching assignments based on work
experience histories and education levels
to produce teams having similar skill levels.

While random assignment could not be
used, we did apply several controls to the
experiment to help minimize bias and
improve rigor. We

• used a matching assignment to achieve
parity in development skill levels,

• developed the requirements specification
prior to the experiment and distributed

it to both groups at the same time,
• used a single DEC Alpha running

Unix as the development platform for
both groups,

• instructed members of each group not
to discuss its development effort, and

• controlled interaction between Group
1 and the IV&V team.

Finally, to minimize errors in measure-
ment and data collection, we assigned an
individual who was not a member of either
treatment group the responsibility of gath-
ering, reviewing, organizing, and con-
firming the validity of the data recorded
by both groups.

3. executing selected Technical Assessment Proce-
dures (TAPs), which focus on technical V&V tasks
and programmatic evaluation tasks that address
development process and configuration manage-
ment issues;

4. measuring and analyzing the results of the V&V
activities to identify software risks and deficien-
cies; and

5. providing analytical feedback to improve the qual-
ity and reliability of the current system.

SEES TAPs are the heart of the evaluation system—
see the sidebar “The Software Engineering Evaluation
System”—and provide the technical guidance for
V&V activities.

Due to limited resources and time constraints
imposed on our experiment, and because of the need
for an IV&V procedure instead of the V&V proce-
dure that SEES defines, we changed SEES in three
ways. More specifically, to produce SEES′, the modi-
fied version of SEES, we

• adapted SEES to include an independent V&V
component,

• selected only five of the original 10 TAPs—those
that stressed fundamental V&V activities, and

• modified the reporting forms required by each
TAP in order to maintain a coherent picture of
development and IV&V activities.

We developed the requirements specification prior
to the start of the experiment and gave it to both devel-
opment groups at the same time. We instructed each
group to review the requirements for understanding
and to request clarification where needed. The IV&V
team examined the requirements, developed a soft-
ware requirements list in accordance with SEES′
guidelines, and prepared defect trouble reports for all
faults detected. The IV&V team then reported its find-
ings to the Group 1 development team, which
reviewed the reports and made appropriate correc-
tions. In this way, the IV&V team worked on each of

the development stages with Group 1 and had no con-
tact whatsoever with Group 2. 

DETECTING FAULTS EARLIER
After the experiment, we gathered the data and

asked this question: Do the IV&V activities prescribed
by the SEES′ IV&V approach add value to the exist-
ing software development process? More specifically,
do the IV&V activities defined in SEES′ support early
fault detection and reduce the effort required to
remove those faults?

Figure 1 provides a side-by-side comparison of the
number of critical errors detected by Group 1 and
Group 2 (the non-IV&V group). The figure illustrates
that the number of faults detected by Group 1 peak
during low-level design (LLD) and then fall off sub-
stantially through integration and testing (I&T). This
trend indicates that testers detected the majority of
the faults during the design phases, with detected
defects decreasing steadily in the later two phases.
Figure 1 also illustrates that the number of faults
detected by Group 2 grows exponentially as devel-
opment proceeds from requirements specification
through code and unit testing, with a significant num-
ber still being found during I&T.  Experience suggests
that this trend is more the norm for software devel-
opment efforts lacking a formal V&V process. 

When we compare the fault detection trend for
Group 2 to that for Group 1, we observe that Group 2

• begins finding faults a phase later,
• detects fewer faults in the earlier phases, and
• peaks a phase later.

Hence, given the assumption that we have equally pro-
ficient development teams, we must conclude that
employing the IV&V activities prescribed by SEES′ does
promote the earlier detection of faults. For readers inter-
ested in our statistics: A chi-square test comparing the
two groups yields a P value of .002, indicating that these
results are extremely statistically significant.

One additional observation that should be noted is



October 1999 81

the marked difference between the number of faults
reported by Group 1 and the number reported by
Group 2.  Why such a substantial difference?  Two of
the more obvious possibilities are that either

• the development team from Group 1 introduced
more faults than Group 2, or

• both groups introduced basically the same num-
ber of faults, but Group 2 simply failed to detect
them.

We tend to discount both of these explanations
because the process by which the personnel were
assigned to groups focused on maintaining equal
development capabilities between them, and prelimi-
nary results from acceptance testing6 indicate that the
software produced by both groups met the basic set of
stated requirements.

A detailed examination of the data reported by
Group 1, however, reveals the most plausible expla-
nation: The IV&V team from Group 1 identified an
additional class of critical faults not found by Group
2. More specifically, a substantial number of the crit-
ical faults reported by Group 1 stem from the detec-
tion and recording of ambiguous or unclear
statements in the requirement specifications and
design documents.  Those statements, if left uncor-
rected, could have easily been misinterpreted or mis-

understood, which, in turn, could have resulted in the
introduction of critical faults downstream in the
development process. Group 1 reported 40 such faults:
14 in the requirements, 18 in the high-level design,
and eight in the low-level design phases. Group 2
reported only one such fault.

REDUCING TIME AND EFFORT
Figure 2 provides a side-by-side comparison of the

mean effort required (MER) to remove those faults
detected during the development process. The MER
being reported is based on observed times recorded in

N
um

be
r 

o
f 

cr
it

ic
al

 f
au

lt
s

R
eq

ui
re

m
en

ts

H
LD LL

D

C
od

e/
U

T

I&
T

To
ta

l

100

80

60

40

20

0

16

0

20

2

31

8

24
34

6
14

97

58

IV&V group
Non-IV&V group

Figure 1. This figure illustrates both teams’ fault counts by phase, beginning with the
requirements phase and continuing through integration and testing.

The Software Engineering 
Evaluation System

We adapted the following information
about SEES from the SEES Executive
Summary.1

The Software Engineering Directorate
within the US Army Missile Command’s
Research, Development, and Engi-
neering Center developed SEES to define
the verification and validation (V&V)
tasks that can be performed to evaluate
software-intensive systems. It defines a
software engineering approach that
ensures effective use of the available
V&V resources focused on the mitiga-
tion of risks inherent to the software
development process.

These analytical methods and practices
are documented in Technical Assessment
Procedures (TAPs) to ensure consistent
and repeatable execution by the V&V
practitioner. Each TAP focuses on a par-
ticular aspect of the software development
process and identifies those activities and
measures that best support an evaluation

of the objectives of that focus. Here is a
brief description of each TAP:

• The Requirements Review and
Assessment TAP examines input con-
ditions, processing activities, and pro-
cessing results.

• The Requirements Trace/Complete-
ness Matrix TAP analyzes the com-
pleteness of the system requirements
allocation to the software require-
ments.

• The Design Review and Assessment
TAP establishes completeness and
correctness of the design.

• The Code Review and Assessment
TAP assesses the adequacy of the Ada
code.

• The Test Plan Assessment TAP deter-
mines the adequacy of the software
test plan. 

• The Test Description Assessment TAP
determines the adequacy of the for-
mal qualification  test (FQT) descrip-
tion and procedures in accomplishing

the tests defined in the STPs.
• The Test Witness and Assessment

TAP assists in determining the ade-
quacy of the FQT execution and data
results.

• The Independent Test and Evaluation
TAP determines the software adher-
ence to requirements and the relia-
bility inherent in the software.

• The Functional Configuration Audit
TAP determines whether the testing
and test results have been accurately
validated. 

• The Physical Configuration Audit
TAP verifies the adequacy and accu-
racy of the documentation that estab-
lishes the product baseline for con-
figuration management.

Reference
1. US Army Missile Command, SEES Exec-

utive Summary, SED-SES-IES-001, Soft-
ware Engineering Directorate, Redstone
Arsenal, Ala., 1993.



82 Computer

minutes. We assume that IV&V enables faults to be
detected earlier in the development process and also
reduces the average time to fix faults, so you would
expect that over similar periods of time the MER
observed for Group 1 would be less than that for
Group 2. In each case depicted in Figure 2 this is
exactly what happens. In particular, the MER for
Group 2 is more than double that of Group 1.

Barry Boehm reports an estimated effort value for
correcting a fault.7 He derives that estimate from
empirical studies relating effort values to when the fault
is introduced in the software development process and
when it is subsequently found. The use of Boehm’s esti-
mated effort values (in lieu of observed values) tends
to negate the adverse impact that observed errant or
disproportionate values can have in computing a mean.
Figure 3 shows the results of using Boehm’s estimated
effort-to-remove values as an alternate computation
for the mean effort to remove faults.

For both groups the estimated effort value for each
recorded fault is determined by noting during which
phase the fault was introduced and subsequently
detected, and then using those phases to select an esti-
mated effort value from an augmented version of
Boehm’s effort values. For the figure, we computed an
estimation of MER by summing the estimated effort
values for each reported fault and then dividing the
sum by the total number of faults. In effect, Figure 3
reflects an attempt to remove analytical perturbation

introduced by the sensitivity of MER computations to
the fluctuations of observed effort-to-remove values.

When using estimated effort values instead of
observed values, the MER computations still reflect
the same trends depicted in Figure 2 and therefore
provide a substantiation of the validity of those trends.
That is, through the I&T phase, the average relative
effort to remove a fault found by Group 1 is 2.03
units. The average relative effort for Group 2 during
the same time frame is 4.11 units, more than double
that of Group 1. Hence, we can conclude that SEES′
(and its attendant IV&V activities) did have a benefi-
cial effect in reducing the effort to fix faults.

Readers interested in our statistics should note the
following. By using an alpha value of .05, we applied
the Wilcoxon rank sum test to the recorded fault
removal times; the resulting Z value (–4.25) indicates
that the difference in the time to repair faults between
the two groups is statistically significant.

GAINING OPERATIONAL CONTROL
In addition to stressing verification of the higher-

profile development artifacts like requirements spec-
ifications and design documents, IV&V activities also
stress verification of the software test plan and soft-
ware test description, and a rigorous validation of the
final software product. Consequently, IV&V also
enhances operational correctness.

Acceptance testing is the time when a product is
judged relative to its operational correctness. During
the I&T phase (and prior to acceptance testing), both
systems were subjected to standard validation activities.
Each group judged its software system as meeting the
original set of requirement specifications. During accep-
tance testing, however, the application of our indepen-
dently developed test suite—made up of 36 tests and
focused on key aspects of the software system—showed
that there was a significant difference between devel-
oping with and without IV&V. Table 1 summarizes the
results of applying the tests to the software systems.

The software system produced by Group 1 passed
33 of the tests and failed three. The system produced
by Group 2 passed only 11 of the tests and failed 25.
We attribute this difference to IV&V.

The other claimed benefits of using IV&V include
better development documentation and a more con-
trolled development process. One approach to assess-
ing process control is based on measuring the
variability of the process itself. In general, we would
expect less variance in the time to repair faults for a
controlled development process than for one in which
control is ineffective or lacking.

Descriptive statistics indicated that the variance in
time to fix faults for Group 1 was one eighth that of
Group 2 (the non-IV&V group).  Furthermore, for
those interested in our statistics, an application of the

Ef
fo

rt
 in

 m
in

ut
es

25

20

15

40

5

0

4
7

11

21

7

20
IV&V group
Non-IV&V group

Noncritical Critical Combined

Fault category

Figure 2. Side-by-side
comparison of the
mean effort required
(MER) to remove
faults detected during
the development
process. We com-
puted average values
by dividing the sum of
observed values by
the number of obser-
vations.

R
el

at
iv

e 
ef

fo
rt

5.0

4.0

3.0

2.0

1.0

0.0

1.4

4.8

2.8

4.1

2.0

4.1

IV&V group
Non-IV&V group

Noncritical Critical Combined

Fault category

Figure 3. The mean
estimated effort
required to remove 
a single fault.



October 1999 83

F-test (with an alpha of .01 and resulting P value of less
than .0001) indicated that the difference in variances
between the two groups was statistically significant.

Because the development effort having an IV&V
process showed less variability in the time it takes to
fix faults, and because that reduction is statistically
significant, we offer the conjecture that an IV&V
development effort can exhibit better control over the
development process than a development effort hav-
ing no IV&V contingent.

O ur experiment illustrates the beneficial impact
that IV&V activities can have on a development
process. We believe that any process stressing

the systematic overlay of well-designed IV&V activ-
ities onto a structured software development process
will bring benefits similar to those outlined here. Data
supporting the conclusions stated in this article can 
be found in an Excel spreadsheet accessible through
anonymous ftp to arthur.cs.vt.edu. ❖

Acknowledgments
This work was funded by NASA Langley Research

Center under contract NAS1-19610, Task 17.

References
1. B.W. Boehm, “Verifying and Validating Software

Requirements and Design Specifications,” IEEE Soft-
ware, Jan./Feb. 1984, pp. 75-88.

2. L. Yen, R. Pail, and K. Mori, “Toward Integrated Meth-
ods for High-Assurance Systems,” Computer, Apr. 1998,
pp. 32-34.

3. D.R. Wallace and L.M. Ippolito, A Framework for the
Development and Assurance of High Integrity Software,
NIST Special Publication 500-223, Computer Systems
Laboratory, NIST, Gaithersburg, Md., 1994.

4. J.B. Dabney and J.D. Arthur, “Anticipating and Miti-
gating the Professional Challenge to Independent Veri-
fication and Validation,” Proc. 16th Ann. Pacific
Northwest Software Quality Conf., IEEE CS Press, Los
Alamitos, Calif., 1998, pp. 84-92.

5. US Army Missile Command, SEES Executive Summary,

SED-SES-IES-001, Software Engineering Directorate,
Redstone Arsenal, Ala., 1993.

6. J.D. Arthur et al., Report on Quasi-Experiment for Eval-
uating SEES, Tech. Report TR-95-24, Dept. Computer
Science, Virginia Tech, Blacksburg, Va., 1995.

7. B.W. Boehm, Software Engineering Economics, Prentice
Hall, Englewood Cliffs, N.J., 1981.

James D. Arthur is an associate professor of computer
science at Virginia Tech. His research interests include
software engineering, parallel computation, and user
support environments. He received a BS and an MA in
mathematics from the University of North Carolina at
Greensboro and an MS and a PhD in computer science
from Purdue University. Contact him at arthur@vt.edu.

Markus K. Gröner is currently pursuing a PhD at Vir-
ginia Tech. His research interests include establishing
an error-resistant communication framework between
clients and software engineers and improving software
requirement specifications through better IV&V
methods. He received a BS and an MS in computer
and information sciences from the University of South
Alabama. Contact him at groener@vt.edu.

Kelly J. Hayhurst is a research scientist in the formal
methods group at the NASA Langley Research Cen-
ter, Hampton, Va. Her research interests include reli-
ability analysis, software engineering, and software
standards for avionics systems. She received a BS in
mathematics from Virginia Tech and an MS in math-
ematics from the College of William and Mary. Con-
tact her at k.j.hayhurst@larc.nasa.gov.

C. Michael Holloway is a research engineer at the
NASA Langley Research Center, Hampton, Va. His
research interests include accident analysis, program-
ming language theory, and high-integrity software
development techniques. He received a BS in computer
science from the University of Virginia, and he did grad-
uate work at the University of Illinois at Champaign-
Urbana. Contact him at c.m.holloway@larc.nasa.gov.

Table 1. The results of 36 tests applied to Groups 1 and 2.

Group 1 (IV&V) Group 2
Test class Number of tests Passed / Failed Passed / Failed

Duplicate IV&V tests 5 5 / 0 3 / 2
Exceeding weigh limit 4 4 / 0 0 / 4
Exceeding maximum number 2 2 / 0 1 / 1
of interactions 

Boundary condition tests 5 5 / 0 2 / 3
Input missing or wrong format 5 3 / 2 3 / 2
Input out of bounds 5 5 / 0 0 / 5
Group 1 code particulars 5 5 / 0 0 / 5
Group 2 code particulars 5 4 / 1 2 / 3

Total 36 33 / 3 11 / 25


