456 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Building Knowledge
through Families of Experiments

Victor R. Basili, Fellow, IEEE, Forrest Shull, and
Filippo Lanubile, Member, IEEE Computer Society

Abstract—Experimentation in software engineering is necessary but difficult. One reason is that there are a large number of context
variables and, so, creating a cohesive understanding of experimental results requires a mechanism for motivating studies and
integrating results. It requires a community of researchers that can replicate studies, vary context variables, and build models that
represent the common observations about the discipline. This paper discusses the experience of the authors, based upon a collection
of experiments, in terms of a framework for organizing sets of related studies. With such a framework, experiments can be viewed as
part of common families of studies, rather than being isolated events. Common families of studies can contribute to important and
relevant hypotheses that may not be suggested by individual experiments. A framework also facilitates building knowledge in an
incremental manner through the replication of experiments within families of studies. To support the framework, this paper discusses
the experiences of the authors in carrying out empirical studies, with specific emphasis on persistent problems encountered in
experimental design, threats to validity, criteria for evaluation, and execution of experiments in the domain of software engineering.

Index Terms—Empirical software engineering, experimental design, software process, software measurement, software reading

techniques.

1 INTRODUCTION

XPERIMENTATION in software engineering is necessary.

Common wisdom, intuition, speculation, and proofs of
concepts are not reliable sources of credible knowledge. On
the contrary, progress in any discipline involves building
models that can be tested, through empirical study, to check
whether the current understanding of the field is correct.'
Progress comes when what is actually true can be separated
from what is only believed to be true. To accomplish this,

1. For the purpose of this paper, we use the definitions of some key terms
from [25] and [2]. An empirical study, in a broad sense, is an act or operation
for the purpose of discovering something unknown or of testing a
hypothesis, involving an investigator gathering data and performing
analysis to determine what the data mean.This covers various forms of
research strategies, including all forms of experiments, qualitative studies,
surveys, and archival analyses. An experiment is a form of empirical study
where the researcher has control over some of the conditions in which the
study takes place and control over the independent variables being studied;
an operation carried out under controlled conditions in order to test a
hypothesis against observation. This term thus includes quasiexperiments
and pre-experimental designs. A theory is a possible explanation of some
phenomenon. Any theory is made up of a set of hypotheses. A hypothesis is
an educated guess that there exists a causal relation among constructs of
theoretical interest; the variables used to measure the casual construct are
called independent variables while the variables used to measure the affected
constructs are called dependent variables. A model is a simplified representa-
tion of a system or phenomenon; it may or may not be mathematical or even
formal; it can be a theory.

e V.R. Basili and F. Shull are with the Computer Science Department,
University of Maryland, College Park, MD 20742. V.R. Basili is also with
the Fraunhofer Center, Maryland, 3115 AgLife Sciences/Surge Bldg.,
University of Maryland, College Park, MD 20742.

E-mail: {fshull, basili}@cs.umd.edu.

e F. Lanubile is with the Dipartimento di Informatica, University of Bari,

Via Orabona 4, 70126 Bari, Italy. E-mail: lanubile@di.uniba.it.

Manuscript received 30 July 1998; revised 2 Mar. 1999.

Recommended for acceptance by D. Ross Jeffery.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 109544.

the scientific method supports the building of knowledge
through an iterative process of model building, prediction,
observation, and analysis. It requires that confidence not be
placed in a theory unless it has stood up to rigorous
deductive testing [34]. That is, any scientific theory must be:
1) falsifiable, 2) logically consistent, 3) at least as predictive
as other competing theories, and 4) its predictions have
been confirmed by observations during tests for falsifica-
tion. According to Popper, a theory can only be shown to be
false or not yet false; researchers only become confident in a
theory when it has survived numerous attempts made at its
falsification. This paradigm is a necessary step for ensuring
that opinion or desire does not influence knowledge.

The scientific method has contributed to the progress of
fields such as physics, medicine, and manufacturing.
However, the method does not belong to any subset of
intellectual endeavor: Case studies of management infor-
mation systems (MIS) can be as rigorous as experiments
which are practiced in the natural sciences [29]. Unfortu-
nately, in computer science and, more specifically, in
software engineering, the balance between evaluation of
results and development of new models is still skewed in
favor of unverified proposals [45], [47]. The modeling
research on software products, specifically models of
program functions, has been mainly rooted in mathematics
and there exists a large body of knowledge that can be used
by developers. For other components, such as nonfunctional
product characteristics, software processes, and resources,
there are also a fair number of models. But, a body of
evidence has not yet been built that enables a project
manager to know with great confidence what software
processes produce what product characteristics and under
what conditions. Partly this is because of some features
intrinsic to empirical work in these areas.

0098-5589/99$10.00/99/$10.00 © 1999 IEEE

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS 457

Experimentation in software engineering is difficult. Carrying
out empirical work is complex and time consuming; this is
especially true for software engineering. Unlike manufac-
turing, software developers do not build the same product,
over and over, to meet a particular set of specifications.
Software is developed and each product is different from
the last. So, software artifacts do not provide us with a large
set of data points permitting sufficient statistical power for
confirming or rejecting a hypothesis. Unlike physics, most
of the technologies and theories in software engineering are
human based and, so, variation in human ability tends to
obscure experimental effects. Human factors tend to
increase the costs of experimentation while making it more
difficult to achieve statistical significance.

The degree of credibility of any study depends on the
validity of how conclusions are drawn. Campbell and
Stanley have defined two classes of evaluation criteria:
internal validity and external validity [15]. Internal validity
defines the degree of confidence in a cause-effect relation-
ship between factors of interest and the observed results,
while external validity defines the extent to which the
conclusions from the experimental context can be general-
ized to the context specified in the research hypothesis.
Judd et al. add another class of evaluation criteria, construct
validity [25], which defines the extent to which the variables
successfully measure the theoretical constructs in the
hypotheses. Finally, Cook and Campbell add one more
class, conclusion validity [18], which defines the extent to
which conclusions are statistically valid.

The difficulties intrinsic to software engineering (lack of
data points, human factors) make it less likely that the
validity types can all be satisfied at the same time: e.g.,
making a study more realistic to achieve a high external
validity is in tension with the ability to manipulate the
context to get a high internal validity. Still, investigators are
challenged to design the best study that the circumstances
make possible, trying to rule out all the alternative
explanations of the results and to generalize those results
to the setting of interest. Although the investigators may not
get the “perfect” study (assuming there is a perfect one),
they have to report the study in such a way that others can
verify the conclusions. Other researchers should be aware
of potential flaws or biases and their effects on the
conclusions of a study. The opportunities for such flaws
in empirical software engineering research are numerous:
The measurements are not always appropriate to the goals
of the experiment, the design does not always avoid
alternative explanations of the experimental findings, and
the findings are sometimes generalized to a population that
is different from the experimental sample [19].

Drawing general conclusions from empirical studies in
software engineering research is difficult. An important reason
why experimentation in software engineering is so hard is
that the results of almost any process depend to a large
degree on a potentially large number of relevant context
variables. Because of this, we cannot a priori assume that
the results of any study apply outside the specific
environment in which it was run. For isolated studies, even
if they are themselves well-run, it is difficult to understand

how widely applicable the results are and, thus, to assess
the true contribution to the field.
As an example, consider the following study:

e Basili/Reiter. This study was undertaken in 1976 in
order to characterize and evaluate the development
processes of development teams using a disciplined
methodology. The effects of the team methodology
were contrasted with control groups made up of
development teams using an ad hoc development
strategy and with individual developers (also ad hoc).
Hypotheses were proposed: That (BR1), a disciplined
approach should reduce the average cost and com-
plexity (faults and rework) of the process and, (BR2),
the disciplined team should behave more like an
individual than a team in terms of the resulting
product. The study addressed these hypotheses by
evaluating particular methods (such as chief pro-
grammer teams, top down design, and reviews) as
they were applied in a classroom setting [7].

This study, like any other, required the experimenters to
construct models of the processes studied, models of
effectiveness, and models of the context in which the study
was run. Replications that alter key attributes of these models
are then necessary to build up knowledge about whether the
results hold under other conditions. Unfortunately, in soft-
ware engineering, too many studies tend to be isolated and
arenotreplicated, either by the same researchers or by others.
Basili/Reiter was a rigorous study, but unfortunately never
led to a larger body of work on this subject. The specific
experiment was not replicated and the applicability of the
hypotheses in other contexts was not studied. Thus, it was
never investigated whether the results hold, for example:

e for software developers at different levels of experi-
ence (the original experiment used university stu-
dents);

e if development teams are composed differently (the
original experiment used only three-person chief
programming teams [1]);

e if another disciplined methodology had been used
(i.e., were the benefits observed due to the particular
methodology used in the experiment or would they
be observed for any disciplined methodology?).

Yet, even when replications are run, it’s hard to know how
to abstract important knowledge without a framework for
relating the studies.

To build a body of software engineering knowledge
requires families of experiments and a set of unifying
principles that allows results to be combined and general-
ized. This requires a framework that makes explicit the
different models used in the family of experiments and
documents the key choices made during experimental
design along with their rationales. The framework could
be used to choose a focus for future studies, i.e., to help
determine the important attributes of the models used in an
experiment and which should be held constant and which
varied in future studies. The ultimate objective is to build
up a unifying theory by creating a list of the specific
hypotheses investigated in an area.

458 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Using an organizational framework also allows other
experimenters to understand where different choices could
have been made in defining models and hypotheses and
raises questions as to the likely effects of these changes.
Because an organizational framework provides a mechanism
by which different studies can be compared, it helps to
organize related studies and to tease out the true effects of
both the process being studied and the environmental
variables.

In this paper, we discuss a set of experiments performed by
the authors and suggest an organizational framework for this
set. We retroactively fit the experiments to this framework
and discuss our experiences with software engineering
experiments in the context of this framework. We show
examples of the difficulty involved in running such experi-
ments, but show how the framework can be used to better
define experiments and combine them to overcome validity
problems. We show how results might be unified and
laboratory manuals generated to support the framework.

2 A SET OF EXPERIMENTS: SOFTWARE READING
TECHNIQUES

Throughout this paper, we illustrate our framework and
share our experiences with regard to a particular set of
experiments on software reading techniques. Reading
techniques are procedural techniques, each aimed at a
specific development task, which software developers can
follow in order to obtain the information they need to
accomplish that task effectively [3], [4]. We were interested
in studying reading techniques in order to determine if
beneficial experience and work practices could be distilled
into procedural form and used effectively on real projects.
We felt that reading techniques were of relevance and value
to the software engineering community since reading
software documents (such as requirements, design, code,
etc.) is a key technical activity. Developers are often called
upon to read software documents in order to extract specific
information for important software tasks, e.g., to read a
requirements document in order to find defects during an
inspection or an object-oriented design in order to identify
reusable components. However, while developers are
usually taught how to write software documents, the skills
required for effective reading are rarely taught and must be
built up through experience. In fact, we felt that research
into reading could provide a model for how to effectively
write documents as well: By understanding how readers
perform more effectively it may be possible to write
documents in a way that facilitates the task.

However, the concept of reading techniques cannot be
studied in isolation. Like any other software process,
reading techniques must be tailored to the environment in
which they are run. Our aim in this research was to generate
sets of reading techniques that were procedurally defined,
tailorable to the environment, aimed at accomplishing a
particular task, and specific to the particular document and
notation on which they would be applied. This has led to a
series of studies in which the following types of reading
techniques were evaluated:

o Defect-Based Reading (DBR) focused on defect
detection in requirements, where the requirements
were expressed using a state machine notation called
SCR [21], [36].

e DPerspective-Based Reading (PBR) also focused on
defect detection in requirements, but for require-
ments expressed in natural language [5].

e Use-Based Reading (UBR) focused on anomaly
detection in user interfaces [48].

e Second Version of PBR (PBR2) consisted of new
techniques that were more procedurally-oriented
versions of the earlier set of PBR techniques. In
particular, the techniques were more specific in all of
their steps [40].

e Scope-Based Reading (SBR) consisted of two read-
ing techniques that were developed for learning
about an object-oriented framework in order to reuse
it [11], [43].

3 THE GQM GoAL TEMPLATE AS A TOOL FOR
EXPERIMENTATION

Several examples of organizational frameworks appear in
the literature.

Basili et al. [10] proposed an organizational framework
that consisted of four categories corresponding to phases of
experimentation: 1) definition, 2) planning, 3) operation,
and 4) interpretation. For each phase, categories of choices
were identified which had to be explicitly answered. This
framework is most concerned with allowing researchers to
define the purpose of the experiment and the object of
study. For example, under experimental definition, the
researcher was asked to identify the purpose for the study
(characterization, evaluation, prediction, motivation), clas-
sify the object of study (product, process, model, metric, or
theory), and determine the scope of the study (whether
single project, multiproject, replicated project, or blocked
subject-project). Lanubile [26] proposed a similar frame-
work but provided different values for the dimensions of
the classification, reflecting common concerns for experi-
menters. For example, the researcher was asked to specify
whether the concrete object of study in the experiment was
a product technology or a process technology, whether the
purpose of the experiment was to evaluate the outcome of a
process vs. the process itself, and whether the study was
focused on a single, specific object of study or on multiple
objects.

Lott and Rombach [30] presented a framework that
placed additional emphasis on experimental variables. For
example, under the topic of “subjects,” researchers were
asked to explicitly report the selection criteria used; the
experience, training, and background of the subjects, how
ethical issues (such as the right to withdraw from the study)
were handled, and how many subjects are required based
on the power of the statistical analysis procedure.

Fenton et al. [19] presented a list of questions by which
empirical studies should be evaluated. These questions in
turn suggest a framework for researchers to use in
specifying their experiments, since suitable information
should be reported to answer each of the questions. The
questions concern: whether the research is based on

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS 459

empirical evaluation and data, whether the experiment was
designed correctly, whether the study is based on a toy or
real situation, whether appropriate measures were used,
and whether the study was run for a long enough time.

Although any of these organizational frameworks would be
helpful in this regard, for the purpose of this paper we find
the goal/question/metric (GQM) goal template [8] useful
because it emphasizes the variables across which we are
attempting to unify. The GQM method was defined as a
mechanism for defining and interpreting a set of opera-
tional goals using measurement. It represents a top-down
systematic approach for tailoring and integrating goals with
models of software processes, products, and quality
perspectives, based upon the specific needs of a project
and organization.

The GQM goal template is a tool that can be used to
articulate the purpose of any study. It ties together the
important models and provides a basis against which the
appropriateness of a study’s specific hypotheses, and
dependent and independent variables, may be evaluated.
There are five parameters in a GQM goal template:

1. Object of study: a process, product or any other
experience model.

2. Purpose: to characterize (what is it?), evaluate (is it
good?), predict (can I estimate something in the
future?), control (can I manipulate events?), improve
(can I improve events?).

3. Focus: model aimed at viewing the aspect of the
object of study that is of interest, e.g., reliability of
the product, defect detection/prevention capability
of the process, accuracy of the cost model.

4. Point of view: e.g., the perspective of the person
needing the information, e.g., in theory testing the
point of view is usually the researcher trying to gain
some knowledge.

5. Context: models aimed at describing environment in
which the measurement is taken.

For example, the goal of the Basili/Reiter study, previously
described, could be instantiated as: analyze the development
processes of a: 1) disciplined-methodology team approach, 2)
ad hoc team approach, and 3) ad hoc individual approach
to characterize and evaluate with respect to cost and complexity
(faults and rework) from the point-of-view of the developer
and project manager in the context of an advanced university
classroom.

Due to the nature of software engineering research,
instantiated goals tend to show certain similarities. The
purpose of studies is often evaluation; that is, researchers
tend to study software technologies in order to assess their
effect on development. For our purposes, the point of view
can be considered to be that of the researcher or knowledge-
builder. While studies can be run from the point of view of
the project manager, i.e., requiring some immediate feed-
back as to effects on effort and schedule, published studies
have usually undergone additional, post-hoc analysis.

The remaining fields in the template require the
construction of more complicated models, but still show
some similarities. The object of study is often (but not always)
a process; researchers are often concerned with evaluating
whether or not a particular development process represents

an improvement to the way software is built. (Such as, Does
Object-Oriented Analysis lead to more meaningful models?
Does an investment in reviews lead to less buggy, more
reliable systems? Does reuse allow quality systems to be
built more cheaply?) When the object of study is a process,
the focus of the evaluation is the process’ effect. The
experimenter may measure its effect on a product, that is,
whether the process leads to some desired attribute in a
software work product. Or, the experimenter may attempt
to capture its effect on people, e.g., whether practitioners
were comfortable executing the process or found it tedious
and infeasible. Finally, the context field should include a
large number of environmental variables and, therefore,
tends to exhibit the most variability. Studies may be run on
students or experts; under time constraints or not; in well-
understood application domains or in cutting-edge areas.
There are numerous such variables that may influence the
results of applying a technique.

For the remainder of this paper, we will illustrate our
conclusions by concentrating on studies that investigate
process characteristics with respect to their effects on
products. A GQM template for this class of studies is:
Analyze processes to evaluate effectiveness on a product from
the point-of-view of the knowledge builder in the context of (a
particular variable set of context variables).

For particular studies in this class, constructing a
complete GQM template requires making explicit the
models of process (object of study), effectiveness and
product (focus), and context. Making these models
explicit is necessary in order to understand what the
study is testing as well as the conditions under which the
empirical results hold.

For example, consider the GQM templates for the list of
reading technique experiments described in the previous
section. There are many ways of classifying processes, but
processes might be classified first by scope as:

1. Techniques (processes that require technical skill to
accomplish some specific task),

2. Methods® (processes that support techniques and are
augmented with management issues such when and
how a technique should be applied),

3. Life Cycle Models (processes which describe the entire
software development process).

Each of these categories could be subdivided in turn. The
set of techniques, for example, could be classified based on
the specific task as: reading, testing, designing, and so on.
We have found it helpful to think of the range of values as
organized in a hierarchical fashion in which more general
values are found at the top of the tree, and each level of the
tree represents a new level of detail (Fig. 1).

Selecting a particular type of process for study, our GOM
template then becomes: Analyze reading techniques to
evaluate their effectiveness on a product from the point of
view of the knowledge builder in the context of a particular
variable set.

The reading technique experiments were concerned with
studying the effect of the reading techniques on a product.
So, the model of focus needs to specify both how

2. The definitions of “technique” and “method” are adapted from [5].

460

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Process
Life Cycle Model Method Technique
Walk-
Waterfall gpiral Inspection Through Reading Testing

Fig. 1. A portion of the hierarchy of possible values for describing software processes.

effectiveness is to be measured and the product on which
the evaluation is performed. We find it useful to divide the
set of effectiveness measures into analysis and construction
measures, based on whether the goal of the process is to
analyze intrinsic properties of a document or to use it in
building a new system. Each of these categories can be
further broken down into more specific types of process
goals for which different effectiveness measures may apply
(Fig. 2). For example, the effectiveness of a process for
performing maintenance can be evaluated by how that
process effects the cost of making a change to the system.
The effectiveness of a process for detecting defects in a
document can be measured by the number of faults it helps
find. Of course, many more measures exist than will fit into
Fig. 2. For instance, rather than measure the number of
faults a defect detection process yields, it might be more
appropriate to measure the number of errors® or the amount
of effort required, among other things.

Similarly, a software document can be classified accord-
ing to the model of a software system it contains (a
relatively well-defined set) and further subdivided into the
specific notations that may be used (Fig. 3). The main
purpose of organizing the possible values hierarchically is
to organize a conception of the problem space that can be
used by others for classifying their own experiments. The
actual criteria used are somewhat subjective; naturally,
there are multiple criteria for classifying processes, effec-
tiveness measures, and software documents, but we have
selected just those that have contributed to our conception
of reading techniques.

Thus, using the terminology in Fig. 1, Fig. 2, and Fig. 3
the reading technique experiments can be described as
follows:

e DBR. Analyze reading techniques to evaluate their
ability to detect defects on SCR-notation requirements
documents.

3. We use the following terms in a very specific way in this paper, based
on the IEEE standard terminology [24]. An error is a defect in the human
thought process made while trying to understand given information, to
solve problems, or to use methods and tools. In the context of software
requirements specifications, an error is a basic misconception of the actual
needs of a user or customer. A fault is a concrete manifestation of an error
within the software. One error may cause several faults and various errors
may cause identical faults. A failure is a departure of the operational
software system behavior from user expected requirements. A particular
failure may be caused by several faults and some faults may never cause a
failure. We will use the term defect as a generic term to refer to an error,
fault, or failure.

e PBR. Analyze reading techniques to evaluate their
ability to detect defects on natural-language requirements
documents.

e UBR. Analyze reading techniques to evaluate their
ability to detect anomalies on screen shots of user
interfaces.

e PBR2. Analyze reading techniques to evaluate their
ability to detect defects on natural-language requirements
documents. (Note that this GQM template does not
capture the essential difference from the PBR
experiment.)

e SBR. Analyze reading techniques to evaluate their
ability to support reuse of object-oriented design and code.

In linking goal templates to hypotheses, the process

model (object of study) can be thought of as the
independent variable, the effect on product (focus) as the
dependent variable, and the context variables as the
variables that exist in the environment of the experiment.
The differences or similarities between experimental hy-
potheses can then be described in terms of the hierarchies of
values for the model attributes. For example, consider the
studies of DBR and PBR. In both cases, the process model
was focused on the same task (defect detection); although
the notation differed, both were also focused on the same
document (requirements). If all other attributes for process,
product, and context models were held constant, hypoth-
eses could be formulated at a higher level of abstraction.
That is, instead of the hypothesis:

Subjects using a reading technique tailored to defect
detection in natural language requirements are more
effective than subjects using ad hoc techniques for
this task

The following hypothesis might be more useful:

Subjects using reading techniques tailored to defect
detection in requirements are more effective than
subjects using ad hoc techniques for this task.

The difference between these hypotheses is that the focus of
the study is described at a higher level of abstraction for the
second hypothesis (requirements) than for the first (natural
language requirements).

This difference in abstraction makes the second hypoth-
esis more difficult to test. In fact, probably no single study
could ever give us overwhelming evidence as to its validity,
or lack thereof. Testing the second hypothesis would
require some idea of what types of requirements notation

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS

461

Effectiveness
Analysis Construction
i ft/‘\ ’\
eree Usability Reuse Maintenance
Detection \

of # of # of Cost of Cost of Cost of
faults errors anomalies finding integrating making a
detected detected detected components components change

Fig. 2. A portion of the hierarchy of possible values for describing the effectiveness of software processes.

Document
Requirements Design
Natm/\
Language Diagrams

Oriented

Code

Data /m\\

Structured

Fig. 3. A portion of the hierarchy of possible values for describing software documents.

are of interest to practitioners. Building up a convincing
body of evidence requires the combined analysis of multi-
ple studies of specific reading techniques for defect
detection in requirements. But, the effort required to
formulate the hypothesis and begin building a body of
evidence helps advance the field of software engineering.
At best, the evidence can lead to the growth of a body of
knowledge containing basic and important theories under-
lying some aspect of the field. At worst, the effort spent in
specifying the models forces us to think more deeply about
the relevant ways of characterizing software engineering
models that researchers and knowledge-builders are im-
plicitly constructing anyway.

Instantiating these models is, by necessity, an iterative
process. The value of an attribute for one model (e.g.,
process) may constrain the attributes of a second model
(e.g., the product it is evaluated on), which may in turn
constrain other attributes of the original model. However, in
order to organize this paper, we have dealt with each of the
models in turn in the following sections. In each section, we
use examples from our own experience to suggest concerns
that must be taken into account when constructing the
models. In particular, we will concentrate on identifying
important attributes of each of the models and the hidden
dependencies that exist between the attributes. These
attributes need to be measured, to the extent possible, by
experimenters in order to fully describe the models of
interest.

4 MODELING PROCESS

Any process that is worthy of study should be of interest
and value to the software engineering community. As such
it should be definable as a set of steps or, better yet, bound
by a set of attributes or properties. This means that
experimenters have to articulate the steps of the process
and choose the attributes and their scope of values. In all of
the reading technique studies, the techniques were meant to
satisfy a certain set of properties, i.e., they were meant to be
procedural, focused, document and notation specific, and
goal-oriented. Several of these properties are interrelated. In
what follows, we discuss the difficulty and importance of
dealing with the definition and scope of these attributes,
based upon our experiences.

4.1 Procedural

The problem of how one defines a procedure to be
followed and the level of detail to which it is specified is
one of the most critical issues in the study of any
process. If a process is specified procedurally, so that a
user is guided through the steps of the process, then the
process should be parameterized based on the level of
specificity of the procedure. The level of specificity can
be thought of as a spectrum of possible values, running
from very detailed procedures in which every step is
specified, to very high-level procedures in which only
brief descriptions are given and the user selects activities
based on his or her preferences and experiences. The
appropriate level of specificity should vary from instance
to instance and depends on what tradeoffs are most
appropriate to the given environment. Should it be high-

462

level, running the risk of providing too little support to
the user? Should it be low-level, running the risk of
overspecifying the process in a way that makes it tedious
or impractical to follow? Should it vary with the
experience of the user of the process? Besides a
description of what the user should do, should there be
a description of what should not be done?

In our experience, these questions do matter. We have
observed that there are differences in results for the same
process, followed at different levels of specificity:

In the SBR study, subjects were given a process for reusing
functionality from example applications. There were characteristic
differences between subjects who followed the low-level and
detailed process step-by-step and those who used a higher-level
form of the process. Both advantages and disadvantages were
noted. For example, subjects who followed the low-level process
seemed less likely to augment the process when necessary (they
were less likely to implement functionality when they could not
use the process to find it in an example application, whereas other
subjects were able to implement the functionality on their own).
Followers of the low-level process, however, also seemed less likely
to waste time on unnecessary activities not called for by the
process (they were less likely to get involved in “gold plating” the
new system).

Moreover, our experiments have also provided some
evidence that this process attribute needs to be tied to the
context model (discussed in Section 6)—in particular to the
set of subjects who will be executing the process. In our
experiment, we noticed a significant interaction between
specificity and subject experience:

A hypothesis of the PBR2 study was that a more specific
procedure would provide benefits to less experienced reviewers
by providing more guidance. However, this was not found to
be the case. Less experienced readers were less likely to have
been exposed to the relevant concepts and, thus, tended to find
the very specific procedure confusing. Subjects with very high
levels of previous experience in this area were also adversely
affected by the greater level of detail, perhaps because it
allowed them less opportunity to use their usual procedures.
Only subjects in the middle range of experience (i.e., those who
had been previously exposed to the concepts but had not
applied them on many industrial projects) saw some benefit
from the more specific procedures.

4.2 Focused

The reading techniques were meant to be focused, i.e., each
specific technique should focus on just some aspect of the
document rather than require the reader to be responsible
for the entire document.

In PBR, specific techniques were focused on reviewing a
document from the point of view of a particular user of the
document, so that readers were restricted in their focus and not
responsible for all conceivable defects. The aim was for the full
set of techniques to provide coverage of the document. That is,
although any one PBR technique represents only a particular
way of viewing the document, the set of all PBR techniques
should represent all of the important customers of the
document and, therefore, together uncover all defects of
importance.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Focusing may or may not be done in a way that aims to
achieve coverage of the entire document. For example, our
experiences in the study of SBR were different:

In SBR, specific techniques were focused on different ways of
learning enough about the system to support reuse. The goal of
neither technique was to achieve coverage; the aim was not to
learn about the entire system, but to save effort by learning just
the portions that seemed promising for reuse.

This attribute is related to another attribute, the level of
specificity in the procedure; more procedural techniques
can be focused on aspects of a document with greater
accuracy.

4.3 Document/Notation Specific

All of the reading techniques discussed in this paper were
tailored to both the document and notation. On the other
hand, it is possible to imagine that some processes are not
meant to be tailored so explicitly; e.g., a review process
might be designed for use on a number of different
documents or for a particular document regardless of
notation. Thus, deciding whether a process is meant to
address a very specific class of document or should be
applicable to a larger set is probably the first attribute that
must be decided in tailoring a process for a particular use.

Once a process model is made document-specific, the
experimenters must evaluate the process on a document
that matches the tailoring. Thus, the value of this process
attribute must match the product model, discussed in
Section 3.

This attribute is highly related to the specificity with
which the procedure is described; the level of specificity
that can be achieved in a procedure is somewhat dependent
on the amount to which the procedure can be tailored to a
particular document and notation.

4.4 Goal-Oriented

Closer study of the process models for the reading
techniques presented in Section 2 would reveal that each
technique is tailored to a specific task (e.g., defect detection,
reuse of design) and to a specific document. This is what
characterizes the reading techniques and distinguishes
them from one another. Thus, the process goals used to
classify measures of effectiveness in Fig. 2 can be easily
adapted to describe the processes themselves (Fig. 4). We
hypothesize that the distinction between analysis and
construction process goals can apply directly to processes.
That is, we hypothesize that analysis tasks differ sufficiently
from construction tasks that, along with differences in the
way they may be evaluated for effectiveness, there may also
be different guidelines used in their construction. Thus,
Fig. 2 can also be a mechanism for identifying process
model attributes.

This process attribute is related to the focus of the
procedure. That is, whether or not the process goal can be
achieved depends partly on the portion of the document on
which the procedure is focused; if the procedure is focused
on only a portion of the document, it must be ascertained
whether that portion contains the information necessary to
accomplish the task.

The advantage of identifying the above set of attributes is
that it helps us further specialize the model of the object of

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS

Process Goal

Analysis

Defect
Detection

Usability

463

Construction

Reuse Maintenance

Fig. 4. A portion of the hierarchy of possible values for describing values for describing the goal of a software engineering process.

study (the process) and capture the essential differences
and similarities of related models. For example, the
following process descriptions summarize the objects of
study in the reading technique experiments. To emphasize
differences within the set of reading techniques, only some
of the process model attributes are given:

e DBR. Analyzed three focused reading techniques
tailored to detect defects in SCR-notation requirements
documents, each using partial coverage of the document
but whose union was meant to provide close to full
coverage.

e PBR. Analyzed three focused reading techniques,
defined at a low level of specificity, tailored to detect
defects in natural-language requirements documents,
each using partial coverage of the document but whose
union was meant to provide close to full coverage.

e UBR. Analyzed three focused reading techniques
tailored to detect anomalies of screen shots of user
interfaces, each using partial coverage of the document
but whose union was meant to provide close to full
coverage.

e PBR2. Analyzed three focused reading techniques,
defined at a high level of specificity, tailored to detect
defects in mnatural-language requirements documents,
each using partial coverage of the document but whose
union was meant to provide close to full coverage.

e SBR. Analyzed two focused reading techniques tailored
to reuse parts of an object oriented framework in the
building of a new system, using partial coverage of
object-oriented design and code.

Fully specifying the process models in such a way
illustrates basic hypotheses for which evidence has been
accumulated, e.g., does the level of specificity at which a
procedure is described make a difference in its effects?
Similarly, it also helps identify areas where hypotheses
cannot be formulated as formally, which is usually an
indication that more studies are needed:

In the set of reading studies to date, we have noticed that
analysis tasks (DBR, PBR, UBR, PBR2) seem to lend themselves
particularly well to the union of partial coverage techniques, while
construction tasks (SBR) require only partial coverage. Our
current hypothesis is that analysis tasks typically require an
entire document to be checked for multiple quality attributes,
while construction tasks should aim to focus a reader’s attention
on only those aspects of a document suitable for the given task.
More studies into construction tasks are needed before we can say

whether this hypothesis can serve as a general guideline, or is
merely a coincidence.

5 MODELING EFFECTIVENESS ON A PRODUCT

In this section, we discuss how a process is evaluated for
effectiveness. As a necessary precondition, however, we
first discuss process conformance: It is necessary that
conclusions about a process are not drawn without
knowing whether or not the process is actually being
followed.

5.1 Process Conformance

Our studies have emphasized that it should not be assumed
that subjects are applying the expected process in the
expected way. Subjects are not malicious, but will some-
times concentrate on successfully accomplishing what they
see as the goal, even if it means straying from the process
assigned. In other cases, the behavior of subjects will be
affected by their typical work habits or by techniques with
which they have more familiarity, which are not accounted
for in the process assigned. Thus experimenters need to
worry about process conformance by placing some bounds
on the expected behavior of the subjects applying the
process. There are two basic strategies for this: monitoring
the execution of the process in order to understand the
amount of process conformance and reason about its effects
(discussed in the following section), or attempting to specify
the process in such a way that users must conform to the
process. The latter strategy has been successfully used in
several experiments in which it was desired to evaluate
particular processes. One way of achieving this is to restrict
the subjects’ access to artifacts that are necessary for
executing the process:

In an earlier experiment [9], processes were defined for use,
e.g., reading by stepwise abstraction, equivalence partitioning
boundary wvalue testing, structured testing. Although the
procedures may not have been followed directly, the fact that
each subject for each technique was given only the particular
items needed for the activity, e.g., specification and source code for
reading, specification and executables for functional testing, did
restrict the subject’s ability to perform one process when they were
supposed to be performing another.

A second alternative is to make the process include
activities that are able to be checked and that would require
extra effort from the user if executed outside the process:

464

In the PBR2 study, we built the evaluation of process
conformance into the process. In this experiment, we were more
confident in the techniques based on previous experiments. One of
our motivations for increasing the level of detail in the techniques
was that we could then better assess process conformance. The
subjects were required to create intermediate artifacts while
following the techniques, which we later collected and studied for
insight into how the process was executed. We also asked subjects
to cross-reference the defects they found with the specific steps of
the technique that had been most useful in their discovery.

Of course, it is important to keep in mind that the process
under study and the experiment themselves affect process
conformance. For instance, it might be interesting to give
subjects a very specific process and ask them to record
many intermediate results so that process conformance can
be assessed at a very detailed level. However, this strategy
suffers from the problem that it may make the process
tedious to use and unpleasant for the subjects. The practical
usefulness of such a technique should be questioned.

Yet another mechanism for helping the user to follow the
process as defined is to get them to verbalize the process
while performing it. One way of doing this might be to have
the process performed in pairs, i.e., one person can guide
the other.

In a follow-up to the original UBR study, it was noticed that
giving the process to two people to perform as a team (i.e., one
reading the rules and recording results and the other performing
the process) may have been more effective in finding anomalies
because the process was more rigorously performed.

Enforcing process conformance is not always the best
strategy, as it may not reflect natural work practices. In [23],
the experimenters undertook a study of how people follow
processes and determined that users rarely follow even
detailed processes step-by-step. Instead, they may “inter-
nalize” or follow their own interpretation of the process,
and augment the process with information from other
sources in order to tailor the process to a given situation.
When the object of the study is to gather information on
process execution under more realistic conditions, it may be
more appropriate to monitor, rather than enforce, process
conformance:

In the SBR study, we built the evaluation of process
conformance into the experiment. Because there was not much
previous work in the domain of reuse in object-oriented frame-
works, we taught the reading techniques to our subjects but did
not require their use. Instead, we spent a lot of time and effort
monitoring what the subjects did. In this way, we gathered a lot of
information about when the techniques were and were not useful,
what difficulties were experienced in their use, and what other
processes subjects found useful for augmenting the techniques.

5.2 Validity of the Measures

The goal of most studies on process has to do with whether
or not the process has a positive effect (the intended effect)
on the product. But, how to define the intended effect and
how to measure it? Is the intended effect reduction in cost,
improvement in quality? Can it be defined directly or by
some metric that is easy to measure? A common problem is
that the intended effect might not be fully understood or
cannot be defined sufficiently well to be measured. There-
fore, experimenters must measure indirectly using some

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

metric that is felt to capture what is meant by effectiveness
[20]. A common mistake is to choose a metric that is, in
reality, not as well correlated with our intended effect as
assumed. It is necessary, therefore, to assess the construct
validity of the experiment, i.e., to rigorously analyze
whether experimental metrics really capture the attributes
of interest. An example of this concern occurred in our
initial study of PBR:

Our initial PBR experiment measured the effectiveness of the
defect detection processes by means of the number of faults that
reviewers discovered. However, is this the correct metric? The
ultimate aim of defect detection is to repair the requirements
document so as to eliminate misunderstandings of the problem or
potential defects in the system. Faults may be too detailed, too
specific, too dependent on the reviewer’s point of view, and not
provide sufficient insight to be well-suited as a basis for repairing
requirements. Dealing with a higher level of abstraction (errors)
might allow reviewers to identify the really fundamental
misconceptions in a document for repair. In the initial analysis
of the PBR2 study, subjects reported that errors seemed to convey
better information for correcting the document, helped focus
reviewers on important areas of the document, and gave a better
understanding of the real problems in the requirements [28].

6 MODELING CONTEXT
The final model suggested by the GOM goal template is a

model of the environment, i.e., any factors in the context in
which the procedure is applied that may affect the results.
This model is necessary to address the external validity of
an experiment, i.e,, how widely its conclusions can be
extrapolated. Identifying important attributes of the context
model is one of the largest challenges of empirical software
engineering research; in this section, we present just a few
examples of context factors and their effects on the manner
in which experimental hypotheses can be explored.

6.1 Subject Experience
A particularly challenging aspect of software engineering
research is obtaining subjects for experimentation. Unlike
some other fields that study human behavior, empirical
software engineering is constrained by the fact that only a
relatively small percentage of the human population has the
requisite skills to usefully perform software development
processes for study and is available for experimentation.
For the most representative results, experimental subjects
need to be taken from that small percentage. Thus, one of
the important dimensions describing subjects is that of
experience. The experience of subjects in skills that are
relevant to the object of study must match that of the
population to which the results will be generalized. The
ideal case of experienced software professionals as experi-
mental subjects is difficult to achieve. Subjects have to be
borrowed from a development organization. Because of cost
and company constraints, experimenters often cannot find
enough subjects to achieve sufficient statistical power for
testing group differences (see [12], [31] for a discussion on
statistical power in software engineering experiments).

In the PBR study, in which subjects were software developers
from the NASA SEL environment, we estimated the cost per
individual would be at least $500 per day and the maximum

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS

number of people who might be able to participate in the
experiment was 18 subjects. Given these constraints, we
minimized the effect of limited experimental subjects by designing
a within-subject experiment (subjects were observed multiple
times across all the treatments) so that the number of available
data points was a multiple of the number of available subjects.

To address the difficulty of obtaining professional
subjects, we often use students from software engineering
courses. Experiments on students are well-suited to
investigating certain issues that do not require high levels
of industrial experience, e.g., the learning curve associated
with training in a new technology. Also, at many
universities even undergraduates have relevant industrial
experience. Even when the experience level is limited, we
can use student experiments to debug experimental proto-
cols before applying the treatment to more expensive
experimental subjects.

However, it is not easy to identify the relevant skills or to
measure experience in a way that is meaningful.

While performing PBR, subjects are asked to adopt the point of
view of a user of the requirements: either a designer, tester, or user
for the system being constructed. Therefore, we expected that the
subjects’ previous experience in these roles would be an important
factor affecting their effectiveness when using PBR. We measured
subject experience by asking how many years the reviewer had
spent in each of the PBR roles (designer, tester, user). Data
analysis revealed that there was no significant relationship
between experience and number of defects found, that is, reviewers
with more years of experience did not tend to find more defects
than reviewers with less or no experience.

A better way of approaching the issue of subject
experience is to employ a mix of qualitative* and
quantitative methods. Qualitative methods in particular
are useful for identifying what the subjects themselves feel
may be important experiences or skills that affected their
success using the process. The use of methods that elicit
subject perspectives are especially important since the
experimenters do not always have the correct intuition
about what is going on within the subject when a process is
applied. The subjects themselves do not always have correct
knowledge in this regard, but their intuition and concerns
can be a tremendous help in identifying real issues.

Once potential measures of subject experience have been
collected (perhaps via questionnaires or interviews) then
quantitative methods can be used to test whether a
correlation does exist between any of the experience
measures and the effectiveness with which the process is
applied. For example:

In the PBR study, quantitative analysis showed that it was not
role experience, but simply the amount of experience with
requirements documents, that provided the most important
characterization of our subjects. Subjects who had been applying
their usual review technique for the longest amount of time found
it hard to switch to the new technique, especially for a familiar
type of document.

4. Qualitative data is information represented as words and pictures, not
numbers [22]. Qualitative analysis methods are those designed to analyze
qualitative data. Quantitative data, on the other hand, are represented
numerically or on some other discrete finite scale (i.e., yes/no or true/false)
[38].

465

While important, characterizing subjects is also a difficult
task, thanks largely to the large variations seen in human
performance [13], [39]. Experienced programmers, even
with similar backgrounds, greatly vary with respect to their
abilities. (It is expected that this is also true for students, if
not more so.) Past studies have measured differences in
programming performance with high ability subjects who
outperform low ability subjects by 4 to 25 times [13].
Considering that, in software engineering, there are no
treatments that produce such dramatic effects, high subject
differences can easily hide treatment effects with the result
of failing to obtain statistically significant effects.

This context attribute is related to many aspects of the
process. As discussed in Section 4, the appropriate level of
specificity may be related to the experience of the users. The
focus of a process may also depend on user experience, i.e.,
novices may be more effective when concentrating on
different areas of a document than experienced users. This
was the case in the focusing of the SBR techniques, also
discussed in Section 4.

6.2 Experimental Context

Another important dimension is the experimental context,
especially as it affects subject motivation. Software engi-
neering process studies try to assess the impact of a
technique on real work practices and it is necessary for
subjects to perform at a level that is representative of their
professional work. Ideally, an experimental setting would
either reflect their organizational setting or would allow
them to see some professional benefit from the activities.
This would motivate them to put more effort and thought
into activities.

Motivation is a problem when subjects are asked to work
on “toy” problems, are given unrealistic processes, or see
some other disconnection between the experiment and their
professional experience. (Thus, this context attribute is very
related to the product model; as the product model becomes
more artificial, the context model differs increasingly from
that which can be found in a realistic development
environment.) For our purposes, we group all of these
factors under the broad heading of “experimental context.”
These problems often occur when studies are performed in
a “graded classroom context,”® where the motivation is
course grade, rather than professional need or professional
development. The ideal situation would be a training
session for a project where the subjects need to learn and
build skills in the process for the project they are about to
undertake.

Under normal circumstances in a classroom context, less
process conformance is expected on the part of subjects,
making the results less representative of real development
environments. This is especially problematic in cases in
which new technologies involve a steep learning curve,
since subjects in classroom experiments are typically
unlikely to have the motivation to persevere and overcome
the learning curve; thus the experiment is unable to
measure the benefits of the new technology.

5. The terminology “classroom context” is troublesome in that it implies
that graded classroom experiments and studies on inexperienced student
subjects are synonymous. This is not actually the case, as professionals are
often students in university courses.

466 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING,

VOL. 25, NO. 4, JULY/AUGUST 1999

TABLE 1
Status of Replications of DBR Studies

Site No. of Runs Subjects Results Reference:
University of Maryland 2 Graduate students Positive evidence [36]
Lucent Technologies 1 Practitioners Positive evidence [35]
University of Bari 1 Undergraduate No evidence of [21]

students increased
effectiveness
University of 2 Undergraduate No evidence of [32]
Strathclyde students increased
effectiveness
University of 1 Undergraduate No evidence of [37]
Linkoeping students increased
effectiveness

One strategy for improving classroom experiments is to
grade the subjects on process conformance rather than
results. Although this introduces many problems of its own,
we feel that these problems can be identified and overcome
in order to yield more representative results. Unfortunately
we have not yet found a reliable way to measure process
conformance without taking results into account. We have
found that subjects, in a graded situation, more likely
disregard the experimental protocols if they think it will
hinder their chances of being evaluated highly.

In the PBR2 study, we had anticipated investigating whether
the type of technique used when reviewing requirements (PBR or
ad hoc) affected the number of false positives (i.e., items reported
by the reviewer that were not actually defects) that reviewers
reported. This was an important question for study since, in a
professional context, false positives have to be investigated and are
then either rejected, or an attempt is made to fix something that
wasn’t incorrect to begin with. Thus, large numbers of false
positives imply large amounts of wasted effort. However, it was
determined from post-hoc interviews with our subjects that many
of them had anticipated that their grade for the assignment would
be based on the number of correct defects they found. In order to
maximize this number, they reported many questionable defects
that ordinarily would not have been included. More than
anything else this practice increased the number of false positives,
and, therefore, we cannot assume that the count of false positives
in this experiment is representative of normal patterns or, indeed,
has anything to do with the particular review techniques used.

The advantage of identifying the above set of attributes is
that it helps us further specialize the context model and
understand the limits of the experimental results. For
example, Table 1 summarizes pertinent information about
the context models for a number of different experiments
that evaluated DBR. Information about the context models
helps suggest new hypotheses about important environ-
mental factors:

The DBR studies have been independently replicated, so
far, in five different contexts. Table 1 summarizes the
environmental variables and reports whether the study
findings supported the research hypothesis that DBR is

more effective than ad hoc reading techniques. Some
replications used software practitioners, while others used
undergraduates or graduate students, and obtained differ-
ent results. These studies, when put together, allow us to
hypothesize that user experience plays a role. Indications
are that DBR is too sophisticated to be successfully applied
by undergraduate students (DBR requires the ability to
model some aspects of the system being reviewed). The one
replication using practitioners allows us to hypothesize that
practitioners, as previously discussed in Section 4, may
revert back to the techniques with which they are more
familiar. These conditions appear not to hold with graduate
students because they satisfy the skill prerequisites for the
reading technique and are not biased by daily working
practices.

7 CONSEQUENCES FOR EXPERIMENTAL DESIGNS
AND THREATS TO VALIDITY

In previous sections we have looked at models of an
empirical study’s important components. In this section, we
discuss briefly the experimental designs in which these
models fit. This paper is not meant to be a primer for how to
run experimental studies. Interested readers can find
helpful guidelines for this task in [15], [25], [33] and, more
specifically, for the software engineering domain in [20],
[46]. However, in this section, we discuss the impact of
process, product, and context models on the kinds of
designs that are feasible and useful for software engineering
experimentation.

7.1 Experimental Design

As discussed in Section 3, experiments in software
engineering are often concerned with assessing effective-
ness: how useful some process, notation, or tool will be to
software development. Because of a lack of analytical
models that describe how people use software processes,
assessing an object of study in absolute terms is almost never
feasible. The field simply lacks objective knowledge as to
what are the best metrics to measure, what range of values

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS 467

Group 1 Group 2 Group 3
Code Reading Pgm1/Dayl | Pgm2/Day2 | Pgm3/Day3
Functional Testing | Pgm3/Day3 | Pgm1/Day1l | Pgm2/Day?2
Structural Testing | Pgm2/Day2 | Pgm3/Day3 | Pgm1/Day1

Fig. 5. Basili/Selby experimental design.

for these metrics should be considered “good,” and what
kind of tradeoffs are necessary to maximize a particular
metric, possibly at the expense of others.

The alternative, which is adopted in many software
engineering experiments, is to assess effectiveness of a
software development technique in comparison to a
similar one. In these cases, the comparison technique
needs to be representative of currently accepted practices,
so that the basis of comparison is well understood. This
approach, while useful, typically suffers from a lack of a
control group. This is because experiments usually rely
on volunteers, and have to provide some benefit to the
subjects and the organization that supports their partici-
pation. In cases in which subjects are students in a class,
the experimenters have a responsibility to provide some
educational benefit to the students as part of their
participation. Usually this benefit is provided in terms
of training in a new approach. The new approach is the
experimental treatment that is being compared to a usual
approach, corresponding to the absence of the treatment.
Since all subjects must get something out of the
participation in the experiment, it is hard to justify
having a group that learns nothing new and is asked just
to perform as usual.

In the PBR experiment, professional software engineers were
expecting to learn a new way to review their requirements
documents. Therefore it would have been unrealistic to expect to
have a control group of subjects who learned nothing new and
were used only for comparison purposes.

In an ideal situation, an experimental design can be used
similar to that seen in the Basili/Selby experiment [9],
illustrated in Fig. 5. All values of the controlled indepen-
dent variable (i.e., the experimental treatments correspond-
ing to the three processes being compared: code reading,
functional testing, and structural testing) are experienced by
each of the subjects. Such a within-subjects design mitigates
the lack of a control group, because each subject effectively
serves as his or her own control (i.e., any improvement for a
subject can be measured against the baseline of his or her
own previous performance). For the same reason, the
variability among subjects’ skills (discussed in Section 6)
is less likely to affect the results. Also, because each subject
provides multiple data points the best use is made of the
subjects. The order in which subjects encounter the
treatments can also be varied so that if there is a learning
curve (i.e., subjects get more savvy at applying processes in
the experiment regardless of the type of process applied)

then later processes do not look more effective than they
actually are.

Unfortunately, such a clean design is not always
possible. The above design could be used in the Basili/
Selby experiment because each process examined re-
quired different supporting artifacts, without which it
could not be executed. Thus the experimenters could
control when procedures were applied by the availability
of the supporting documents. In other cases, certain
attributes of the process model may prevent this
approach from being used. Due to the level of specificity
in the procedure (Section 4) there are cases in which the
learning of one process could actually impact the later
execution of other processes, and this interaction cannot
be explicitly controlled by the experimenters:

In the PBR study, we wanted to evaluate a procedurally
defined technique (PBR) against a nonprocedural one. However,
we were afraid that teaching the subjects a new and detailed
procedure would bias later performance on the less procedural
comparison technique. That is, we did not feel it possible to give
subjects guidance and then ask them to forget it and not use it
later, when they were given some freedom to use their own
techniques. Especially since the comparison technique was less
procedural, we considered it likely that some ideas from the new
technique might find their way into the application of the
comparison technique.

A more specific procedure such as PBR, which
provides instructions for what actions have to be carried
out, might distort the later use of less procedural
techniques in which reviewers are free to find their
own way to accomplish the required task. Since it cannot
be ruled out that subjects would have continued to use
some of the earlier directions even though a different
technique was later assigned, the inspection order should
conform to an increasing scale of specificity in the
procedure. That is, teams should not be given the chance
to apply less procedural techniques of their own after
learning a more procedural technique, such as PBR. This
prevents the less procedural techniques from incorporat-
ing guidance from the more procedural ones (Fig. 6).

One potential problem with the PBR design is that it
assumes that subjects do not share knowledge about the
documents. For example, every team in Group 1 reviews
document 2 on the second day; if team members receive
information about the document from a team who reviewed
it on day one, they would presumably perform more
effectively with the technique used on day two than they
would have normally. This threat should be assessed in

468 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

Group 1 Group 2
Nonsystematic Doc 1 Doc 2 Day 1
technique
PBR technique Doc 2 Doc 1 Day 2

Fig. 6. The experimental design of the PBR experiment.

reference to subject experience (Section 6) and is primarily a
concern in classroom experiments; as discussed in Section 6,
the motivation of subjects in this case is somewhat different
than that of software professionals, especially when they
are being graded on their participation. We address this
problem by using unique documents for each treatment in
the experiment (see Fig. 7 which shows the design of the
PBR2 study). In this way, subjects cannot learn any
information about a document from each other before
encountering it in the experiment, and results are not biased
in this way. However, to avoid carryover effects from less to
more procedural techniques, we had all subjects review the
document with the ad hoc technique on the first day and
with the PBR technique on the second day.

7.2 Resulting Threats to Internal Validity

In previous sections of this paper we have discussed what
we see as the very real constraints imposed by the nature of
the software engineering discipline and empirical work. In
Section 7.1, we discussed what we have found to be the
most useful and feasible responses on the part of the
experimental design to those constraints. We take the view
that, at least for the foreseeable future, these are constraints
which experimentalists will have to live with. Of course, the
changes these constraints cause to our experimental designs
are not without price. Each of the designs in Section 7.1 has
some associated threats to internal validity (i.e., alternative
explanations for any differences observed in the process
under study). We submit that these threats are not the result
of sloppy experimental design, but of constraints unique to
the study of human performance in general and software
engineering in particular. We have found that our best
strategy is to plan related sets of studies which, taken as a
whole, can increase confidence that the object of study and
not the threats to validity are responsible for any changes
observed.

The Basili/Selby design (Fig. 5) is one of the few designs
with no serious threats to internal validity but unfortu-
nately is hard to achieve in practice. As we introduce
variations on this design we tend to obtain more realisti-
cally useful designs at the cost of introducing additional
threats. For example, the PBR design (Fig. 6) solves the
practical problem of combining the execution of processes
at varying levels of specificity in one experiment. However,
it introduces a threat since any effect due to time is
completely confounded with the effect due to the technique
used. There could be a learning effect, especially of concern
when subject experience is low, in which reviewers get
more adept at finding defects in requirements, no matter

All subjects

Ad Hoc Doc 1 Day 1
technique

PBR Doc 2 Day 2
technique

Fig. 7. The experimental design of the PBR2 experiment.

what technique is used, and thus do better than normal on
the second day, resulting in overestimating the effect due to
PBR. Alternately there could be a boredom or tiredness effect,
where reviewers become bored or tired with the experiment
over time, and expend less effort on the second day,
resulting in underestimating the effect. The point is that
these hypotheses, and any number of analogous ones,
cannot be dismissed, and exist as potential explanations for
any effect seen. (Many of these threats could be avoided, or
at least better measured, simply by including a control
group that uses PBR both days. However, given the
constraints on our subject pool—namely that volunteer or
student subjects expect to gain something of benefit from
the experiment in a relatively limited time—we do not
accept this as a feasible alternative.)

We argue, however, that the existence of these explana-
tions can be mitigated by taking steps that make them less
likely. The existence of a learning curve that increases
reviewer effectiveness over time can be mitigated by
providing training sessions before the actual treatments of
the experiment. In this way, subjects are given the chance to
overcome their learning curve during the training sessions
rather than the actual experiment. Other aspects of the
experiment can be manipulated to attempt to minimize the
learning effect:

In the PBR study, the subjects received no feedback regarding
their actual defect detection success during the experiment, so that
it would presumably be difficult for them to discover whether
aspects of their performance were in fact improving their detection
rate or not. Furthermore, the documents were dissimilar enough
that there was little to be learned from the first document that
could be transferred to the second.

Similarly, some of the other potential effects of time, such
as boredom, can be mitigated by scheduling the experiment
to give subjects a day off between the two days of the
experiment. This helps prevent subjects from feeling over-
whelmed because they must go through the treatments
consecutively, and helps avoid the pressures of missing two
consecutive days of work.

The design shown in Fig. 7 might be viewed as a more
difficult case. In this design, not only effects due to time but
also effects due to the particular document are confounded
with the effect due to the review technique, which is the
effect of primary interest. Here, however, there is not so
much that can be done to mitigate the damage caused by
these effects. The primary concern is that documents must
be used for which some historical baseline exists so that
there is some objective basis for measuring the relative
performance of both techniques on the specific document.

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS 469

Day 1 Day 2
Nonsystematic Doc 1/ Doc 2/
technique Groups 1 & 3 Group 1
DBR Doc 1/ Doc 2/
technique Group 2 Groups 2 & 3

Fig. 8. Experimental design of DBR with reading technique varying
between subjects.

A between-subject design that deals with these issues is
shown in Fig. 8. It represents the design in the DBR study. It
has the advantage that it allows us to isolate the potential
learning effects using a control group but has the problems
that one entire group does not get any training in the new
process, it requires a larger pool of subjects, and still does
not measure the effects of using the more procedural
process before the less procedural one.

8 REPLICATING EXPERIMENTS

In this paper, we have raised several reasons why families
of replicated experiments are necessary. This section
discusses replications in more detail and look at the
practical considerations that result. Our primary strategy
for supporting replications in practice has been the creation
of lab packages, which collect information on an experiment
such as the experimental design, the artifacts and processes
used in the experiment, the methods used during the
experimental analysis, and the motivation behind the key
design decisions. Our hope has been that the existence of
such packages would simplify the process of replicating an
experiment and hence encourage more replications in the
discipline. Several replications have been carried out in this
manner and have provided us with a growing body of
knowledge on reading techniques. We discuss some of
these replications in more detail below.

8.1 Types of Replications

Since we consider that replications may be undertaken for
various reasons, we have found it useful to enumerate the
various reasons, each of which has its own requirements
for the lab package. In our view the types of replications
that need to be supported can be grouped into three
major categories:

8.1.1 Replications That Do Not Vary Any Research
Hypothesis

Replications of this type vary none of the dependent or
independent variables of the original experiment.

Strict replications (i.e.,, replications that duplicate as
accurately as possible the original experiment). These
replications are necessary to increase confidence in the
conclusion validity of the experiment. They demonstrate
that the results from the original experiment are repeatable,
and have been reported accurately by the original experi-
menters.

Replications that vary the manner in which the
experiment is run. These studies seek to increase our

confidence in experimental results by testing the same
hypotheses as previous experiments have done, but altering
the details of the experiment so that certain internal threats
to validity are addressed.

Due to the relatively small number of subjects and time
constraints involved, the PBR study simulated the number of
defects that would be found by teams composed of one member
using each of the different PBR techniques. A replication was
undertaken [16] that wvaried the experimental design by
assigning team members to specific teams and requiring that
they meet to agree on a common list of defects. The
"simulated” and "real” teams in each of the experiments were
used to measure the same thing, but the replication allowed
comparison of results between the two methods to provide some
confidence in the statistical simulation.

The attempt to compensate for threats to internal validity
may also lead to other types of changes. For example, a
process may be modified so that the researchers can assess
the amount of process conformance of subjects. Although
the aim of the change may have been to address internal
validity, the new process should be evaluated in order to
understand whether unanticipated effects on process
effectiveness have resulted. Thus such a replication would
fall into the second major category, discussed below.

8.1.2 Replications That Vary The Research Hypotheses

Replications of this type vary attributes of the process,
product, and context models but remain at the same level of
specificity as the original experiment.

Replications that vary variables intrinsic to the object
of study (i.e., independent variables). These replications
investigate what aspects of the process are important by
systematically varying intrinsic properties of the process
and examining the results.

The version of the requirements review techniques used in
the PBR2 study attempted to be as close as possible to the
version used in the original experiment, with the exception of
the level of detail used. The PBR2 techniques were much more
specific, and attempted to constrain the subjects to proven
techniques for creating models of the system rather than
allowing them to rely on their own techniques. Comparison of
the PBR2 results to those from the original experiment (both in
terms of defect detection effectiveness and reviewer satisfaction
with the technique) allows us to understand the importance of
the level of detail in reading techniques.

This type of experiment requires the process to be
supplied in sufficient detail that changes can be made. This
implies that the original experimenters must provide the
rationales for the design decisions made as well as the
finished product.

Replications that vary variables intrinsic to the focus of
the evaluation (i.e., dependent variables). Replications of
this type may vary the ways in which effectiveness is
measured, in order to understand for what dimensions of a
task a process results in the most gain. For example, a
replication might choose another effectiveness measure
from those listed in Fig. 2, investigating whether a defect
detection process is more beneficial for finding errors than
faults, as discussed in Section 5.

Replications that vary context variables in the environ-
ment in which the solution is evaluated. These studies can

470

identify potentially important environmental factors that
affect the results of the process under investigation and thus
help understand its external validity. For example, replica-
tions may be run using the same process and product
models as the original experiment but on professionals
instead of students (see Table 1 and its discussion in Section
6) to see if the same results are obtained.

8.1.3 Replications that Extend the Theory

These replications help determine the limits to the
effectiveness of a process, by making large changes to the
process, product, and/or context models to see if basic
principles still hold. We discussed replications in the
previous category as replacing the value of some variable
(e.g., document on which the process was applied, Fig. 3)
with another, equally specific value (e.g., SCR requirements
instead of English-language requirements). Replications in
this category, however, can be thought of as replacing an
attribute of a process, product, or context model with a
value at a higher level of abstraction (i.e., from a higher
level in the hierarchy).

The PBR and DBR studies both found somewhat similar
results, in that in both cases a family of prescriptive analysis
techniques, each based on a particular focus, was found to be more
effective than less prescriptive techniques at finding defects in
requirements. The similarity in results gave us more confidence as
to the effectiveness of focused reading techniques for finding
defects in requirements, and showed that the positive effects of
such reading techniques were not limited to requirements in a
formal notation (DBR) but could be applied to natural language
documents (PBR) as well.

8.2 Implications for Lab Package Design

In software engineering research, there has been a move-
ment toward the reuse of physical artifacts and processes
between experiments. This is indeed a useful beginning.
The cost of an experiment is greatly increased if the
preparation of multiple artifacts is necessary. Creating
artifacts which are representative of those used in real
development projects is difficult and time consuming.
Reusing artifacts can thus reduce the time and cost needed
for experimentation. A more significant benefit is that reuse
allows the opportunity to build up knowledge about the
actual use of particular, nontrivial artifacts in practice, and
to fine-tune those artifacts as more is learned. Thus
replications (and experimentation in general) could be
facilitated if there were repositories of reusable artifacts of
different types (e.g., requirements) which have a history of
reuse and which, therefore, are well understood. (A model
for such repositories could be the repository of system
architectures [17], where the relevant attributes of each
design in the repository are known and described.)

A first step towards this goal is the construction of web-
based laboratory packages. At the most basic level, these
packages allow an independent experimenter® to download

6. Brooks et al. [14] distinguishes between internal replications (i.e.,
experiments repeated by the same researchers) and external replications
(i.e., experiments repeated by researchers who are independent of the
original experimenters). Lab packages are specifically designed to support
and encourage external replications, but they are valuable for internal
replications too.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

experimental materials, either for reuse or for better
understanding. In this way, these packages support replica-
tions of type “strict replications,” as defined in Section
8.1.1), which require that the processes and artifacts used in
the original experiment be made available to independent
researchers.

However, web-based lab packages should be designed to
support more sophisticated types of replications as well. For
example, packages should assist other experimenters in
understanding and addressing the threats to validity in
order to support replications of type “replications that vary
the manner in which the experiment is run,” as defined in
Section 8.1.1, which vary some aspects of the experimental
setup. As discussed in Section 7, the constraints imposed by
the setting in which software engineering research is
conducted mean that it is almost never possible to rule
out every single threat to validity. Choosing the “least bad”
set of threats given the goal of the experiment is necessary.
Lab packages need to acknowledge this fact and make the
analysis of the constraints and the threats to validity
explicit, so that other studies may use different experi-
mental designs (that may have other threats to validity of
their own) to rule out these threats.

Replications that vary the research hypotheses, as
defined in Section 8.1.2, which seek to vary the detailed
hypotheses, have additional requirements if the lab package
is to support them as well. For example, in order for other
experimenters to effectively vary attributes of the object of
study, the original process model must be explained in
sufficient detail that other researchers can draw their own
conclusions about key attributes. Since it is unreasonable to
expect the original experimenters to determine all of the key
attributes a priori, lab packages must provide rationales for
key experimental context decisions so that other experi-
mentalists can determine feasible points of variation of
interest to themselves. Similarly, lab packages must specify
product, effectiveness, and context models in sufficient
detail that feasible changes can be identified and hypoth-
eses made about their effects on the results. Sections 4
through 6 have given an overview of attributes that we have
found to be of importance, but undoubtedly many others
exist.

Finally, in order to address replications that extend the
theory as defined in Section 8.1.3, and to build up a body of
knowledge about software engineering theories, researchers
should know which experiments have been run that offer
related results. Therefore, lab packages for related experi-
ments should be linked, in order to collect different
experiments that address different areas of the problem
space, and contribute evidence relevant to basic theories.
The web is an ideal medium for such packages since web
pages can be updated continually, pointing to new, related
lab packages as they become available. Thus it is to be
hoped that lab packages are “living documents” that are
changed and updated to reflect our current understanding
of the experiments they describe.

Lab packages have been our preferred method for
facilitating the abstraction of results and experiences from
series of well-designed studies. Interested readers are
referred to existing examples of lab packages: [41], [42].

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS 471

By collecting detailed information and results on specific
experiments, they summarize our knowledge about specific
processes. They record the design and analysis methods
used and may suggest new ones. Additionally, by linking
related studies they can help experimenters understand
what factors do or do not impact effectiveness.

8.3 The Experimental Community

A group of researchers, from both industry and academia,
has been organized since 1993 for the purpose of facilitating
the replication of experiments. The group is called ISERN,
the International Software Engineering Research Network,
and includes members in North America, Europe, Asia, and
Australia. ISERN members publish common technical
reports, exchange visitors, and organize annual meetings
to share experiences on software engineering experimenta-
tion.” They have begun replicating experiments to better
understand the success factors of inspection and reading.

The Empirical Software Engineering journal has also
helped build an experimental community by providing a
forum for publishing descriptions of empirical studies and
their replications. An especially noteworthy aspect of the
journal is that it is open to publishing replicated studies
that, while rigorously planned and analyzed, yield un-
expected results that did not confirm the original study.
Although it has traditionally been difficult to publish such
“unsuccessful” studies in the software engineering litera-
ture, this knowledge must be made available if the
community is to build a complete and unbiased body of
knowledge concerning software technologies.

Finally it should be noted that this community has
undertaken families of replications which have been very
successful at this kind of knowledge-building. One example
is the family of DBR studies summarized in Table 1, which
have investigated the DBR techniques in a variety of
contexts and with a variety of types of subjects. A second
example is the series of empirical studies into PBR.

The original study at the University of Maryland has been
replicated at the University of Kaiserslautern, Germany, in a
study that used a different design to directly study the effects of
PBR on reviewer teams [16]. A second replication was performed
at the University of Trondheim, Norway, which used a very
similar design but altered the PBR techniques in order to study
process conformance issues [44]. Although this experiment did
not see the expected effects, the ideas raised were very influential
in a redesign of the PBR techniques, again at Maryland, in order
to address process conformance. This version of the techniques
was the basis for the PBR2 experiment, which has been, or is
being, replicated at the University of Bari, Italy; Drexel
University, USA; Universidade de Sao Paulo, Brazil; and Lund
University, Sweden.

9 CONCLUSIONS

It is our contention that interesting and relevant hypotheses
can be identified and investigated effectively if empirical
work is organized in the form of families of related

7. More information is available at the URL http://wwwagse.informa-
tik.uni-kl.de/ISERN /isern.html.

experiments. In this paper, we have raised several reasons
why such families are necessary:

e to investigate the effects of alternative values for
important attributes of the experimental models
(Sections 4, 5, and 6);

e to vary the strategy with which detailed hypotheses
are investigated (Section 7.1);

e to make up for certain threats to validity that often
arise in realistically designed experiments (Section
7.2).

This discussion leads us to propose that the following are

necessary before comprehensive bodies of knowledge can
be built up in areas of software engineering:

1. hypotheses that are of interest to the software
engineering community and are written in a context
that allow for a well defined experiment;

2. well-specified models of process, effectiveness, and
context, in which key attributes can be changed in
future studies to build up knowledge about im-
portant factors;

3. a sufficient amount of information so that the
experiment can be replicated and built upon,
varying the experimental design as necessary to
address threats to validity; and

4. a community of researchers that understand experi-
mentation and the need for replication, and are
willing to collaborate and replicate.

With respect to the Basili/Reiter study introduced in
Section 1, we can note that while it satisfied criteria 1 and 3,
it failed with respect to criteria 2 and 4. It was not suggested
by the authors that other researchers might vary the design
or manipulate the processes or criteria used for evaluation
(although the analysis of the data was varied in a later study
[6]). Nor was there a community of researchers willing to
analyze the hypotheses even if suggestions for replication
had been made.

In contrast, the set of experiments on reading, discussed
in a working group at the 1997 annual meeting of ISERN
[27], is an example that a body of knowledge has been built
up by independent researchers working on different parts
of the problem and exposing their conclusions to different
plausible rival hypotheses. This set of experiments demon-
strates that:

e The results of several experiments can be combined
to build up knowledge about software processes.

e Techniques that are procedurally defined, document
and notation specific, and goal driven, can be
effectively designed and empirically validated for
use.

e A procedural approach to a software engineering
task can be more effective than a less procedural one
under certain conditions (e.g., depending on experi-
ence, as discussed in Section 4).

e A procedural approach to reading based upon
specific goals will find defects related to those goals,
so reading can be tailored to the environment.

We have shown in this paper that experimental con-
straints in software engineering research make it very

472 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 25, NO. 4, JULY/AUGUST 1999

difficult, even impossible, to design a perfect single study.
In order to rule out the threats to validity, it is more realistic
to rely on the “parsimony” concept rather than being
frustrated because of trying to completely remove all
threats. This appeal to parsimony is based on the assump-
tion that the evidence for an experimental effect is more
credible if that effect can be observed in numerous and
independent experiments each with different threats to
validity [15].

A second conclusion is that empirical research must be a
collaborative activity because of the huge number of
problems, variables, and issues to consider. This complexity
can be faced with extensive brainstorming, carefully
designing complementary studies that alter the values of
key attributes of important models, and reciprocal verifica-
tion.

Discussion within the experimental community is also
needed to address other issues, such as what constitutes an
“acceptable” level of confidence in the hypotheses that are
addressed as a community. By running carefully designed
replications, threats to validity in specific experiments can
be addressed and evidence can be accumulated about
hypotheses. However, we are unaware of any useful and
specific guidelines that concern the amount of evidence that
must be accumulated before conclusions can confidently be
drawn from a set of related experiments, in spite of the
existence of specific threats. More discussion within the
empirical software engineering community as to what
constitutes a sufficient body of credible knowledge would
be of benefit.

Building up a body of knowledge from families of
experiments has the following benefits for the software
engineering researcher:

e It allows the results of several experiments to be
combined in order to build up knowledge about
software processes.

e It increases the effectiveness of individual experi-
ments, which can now contribute to answering more
general and abstract hypotheses.

e It offers a framework for building relevant practical
software engineering knowledge, organized around
the GQM goal template or another framework from
the literature.

e It provides a way to develop and integrate labora-
tory manuals, which can facilitate and encourage the
types of replications that are necessary to expand
our knowledge of basic principles.

e It helps generate a community of experimenters,
who understand the value of, and can carry out, the
needed replications.

The ability to carry out families of replications has the
following benefits for the software engineering practitioner:

e It offers some relevant practical software engineer-
ing knowledge; fully specifying process, product,
and context models allows a better understanding of
the environment in which the experimental results
hold.

e It provides a better basis for making judgments
about selecting process since practitioners can match

their development context to the ones under which
the processes are evaluated.

e It shows the importance of and ability to tailor “best
practices,” that is, it shows how software processes
can be altered by meaningful manipulation of key
attributes.

e It provides support for defining and documenting
processes, since running related experiments assists
in determining the important process attributes.

e [t allows organizations to integrate their experiences
by making explicit the ways in which experiences
differ (i.e., what the relevant process, product, and
context models are) or are similar, and allowing the
abstraction of basic principles from this information.

ACKNOWLEDGMENTS

This work was supported by the U.S. National Science
Foundation under Grant No. CCR9706151; NASA under
Grant No. NCC5170; and UMIACS. The authors would like
to thank Michael Fredericks, Shari Lawrence Pfleeger, and
the anonymous referees for their valuable comments on
earlier drafts of this paper.

REFERENCES

[1] E.T. Baker, “Chief Programmer Team Management of Production
Programming,” IBM Systems ., vol. 11, no. 1, 1972.

[2] V.R. Basili, “The Experimental Paradigm in Software Engineer-
ing,” Proc. Int'l Workshop, Experimental Software Eng. Issues: Critical
Assessment and Future Directions, Dagstuhl, Germany, 1992.
appeared in Lecture Notes in Computer Science 706, Springer-
Verlag, 1993.

[3] V.R. Basili, “Evolving and Packaging Reading Technologies,” J.
Systems and Software, vol. 38, no. 1, pp. 3-12, July 1997.

[4] V. Basili, G. Caldiera, F. Lanubile, and F. Shull, “Studies on
Reading Techniques,” Proc. 21st Ann. Software Eng. Workshop, pp.
59-65, SEL-96-002, Goddard Space Flight Center, Greenbelt, Md.,
Dec. 1996.

[5] V.R. Basili, S. Green, O. Laitenberger, F. Lanubile, F. Shull, S.
Soerumgaard, and M. Zelkowitz, “The Empirical Investigation of
Perspective-Based Reading,” Empirical Software Eng. ., vol. 1, no.
2, 1996.

[6] V.R.Basiliand D.H. Hutchens, “An Empirical Study of a Syntactic
Metric Family,” IEEE Trans. Software Eng., vol. 9, no. 6, pp. 664—
672, Nov. 1983.

[71 V.R. Basili and R.W. Reiter, “A Controlled Experiment Quantita-
tively Comparing Software Development Approaches,” IEEE
Trans. Software Eng., vol. 7, no. 3, pp. 299-320, May 1981.

[8] V.R. Basili and H.D. Rombach, “The TAME Project: Towards
Improvement-Oriented Software Environments,” IEEE Trans.
Software Eng., vol. 14, no. 6, June 1988.

[9] V.R. Basili and R. Selby, “Comparing The Effectiveness of
Software Testing Strategies,” IEEE Trans. Software Eng, vol. 13,
no. 12, pp. 1,278-1,296, Dec. 1987.

[10] V.R. Basili, R.W. Selby , and D.H. Hutchens, “Experimentation in
Software Engineering,” IEEE Trans. Software Eng., vol. 12, no. 7,
pp. 733743, July 1986.

[11] V.R. Basili, F. Lanubile, and F. Shull, “Investigating Maintenance
Processes in a Framework-Based Environment,” Proc. Int’l Conf.
Software Maintenance, pp. 256264, Bethesda, Md., 1998.

[12] L.C. Briand, K. El Emam, and S. Morasca, “On the Application of
Measurement Theory in Software Engineering,” Empirical Software
Eng. J., vol. 1, no. 1, pp. 61-88, 1996.

[13] R. Brooks, “Studying Programmer Behavior Experimentally: The
Problems of Proper Methodology,” Comm. ACM, vol. 23, no. 4, pp.
207-213, 1980.

[14] A. Brooks, J. Daly, J. Miller, M. Roper, and M. Wood, “Replication
of Experimental Results in Software Engineering,” Technical
Report, EFoCS-17-95 [RR/95/193], Dept. of Computer Science,
Univ. of Strathclyde, 1995.

BASILI ET AL.: BUILDING KNOWLEDGE THROUGH FAMILIES OF EXPERIMENTS

(15]

[10]

(171

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[20]

(27]

(28]

(29]

(30]

(31]

(32]

(33]
(34]

(33]

[30]

[37]

(38]

(39]

[40]

[41]

D.T. Campbell and J.C. Stanley, Experimental and Quasi-Experi-
mental Designs for Research. Boston: Houghton Mifflin Co., 1963.
M. Ciolkowski, C. Differding, O. Laitenberger, and J. Munch,
“Empirical Investigation of Perspective-Based Reading: A Repli-
cated Experiment,” Technical Report ISERN-97-13, Int’l Software
Eng. Research Network, 1997.

Composable Systems Group, “Model Problems,”
www.cs.cmu.edu/~Compose/html/ModProb/
T.D. Cook and D.T. Campbell, Quasi-Experimentation: Design and
Analysis Issues for Field Settings. Boston: Houghton Mifflin Co.,
1979.

N. Fenton, S. Lawrence Pfleeger, and R. Glass, “Science and
Substance: A Challenge to Software Engineers,” IEEE Software, pp.
86-95, July 1994.

N. Fenton and S. Lawrence Pfleeger, Software Metrics; A Rigorous
and Practical Approach, second ed., London: Int’l Thomson
Computer Press, 1997.

P. Fusaro, F. Lanubile, and G. Visaggio, “A Replicated Experiment
to Assess Requirements Inspections Techniques,” Empirical Soft-
ware Eng. ., vol. 2, no. 1, pp. 39-57, 1997.

J. Gilgun, “Definitions, Methodologies, and Methods in Qualita-
tive Family Research,” Qualitative Methods in Family Research, J.
Gilgun, K. Daly, and G. Handel, eds., Sage Publications, 1992.
G. Hidding, “Reinventing Methodology,” Comm. ACM, vol. 40, no.
11, pp. 102-109, 1997.

IEEE Software Engineering Standards, IEEE CS Press, 1987.

C.M. Judd, E.R. Smith, and L.H. Kidder, Research Methods in Social
Relations, sixth ed., Orlando: Harcourt Brace Jovanovich, 1991.

F. Lanubile, “Empirical Evaluation of Software Maintenance
Technologies,” Empirical Software Eng. J., vol. 2, no. 2, pp. 95—
106, 1997.

F. Lanubile, “Report on The Results of The Parallel Project
Meeting Reading Techniques,” Oct. 1997. http://seldi2.uni-
ba.it:1025/isern97 /readwg/index.htm

F. Lanubile, F. Shull, and V.R. Basili, “Experimenting with Error
Abstraction in Requirements Documents,” Proc. Fifth Int’l Symp.
Software Metrics, pp. 114-121, Bethesda, Md., 1998.

AS. Lee, “A Scientific Methodology for MIS Case Studies,” MIS
Quarterly, pp. 33-50, Mar. 1989.

C.M. Lott and H.D. Rombach, “Repeatable Software Engineering
Experiments for Comparing Defect-Detection Techniques,” Em-
pirical Software Eng.]., vol. 1, no. 3, pp. 241-277, 1996.

J. Miller,]J. Daly, M. Wood, M. Roper, and A. Brooks, “Statistical
Power and Its Subcomponents—Missing and Misunderstood
Concepts in Software Engineering Empirical Research,” . In-
formation and Software Technology, vol. 39, pp. 285295, 1997.

J. Miller, M. Wood, and M. Roper, “Further Experiences with
Scenarios and Checklists,” Empirical Software Eng.]., vol. 3, no. 1,
pp- 37-64, 1998.

D.C. Montgomery, Design and Analysis of Experiments. fourth ed.,
John Wiley and Sons, 1997.

K. Popper, The Logic of Scientific Discovery. New York: Harper
Torchbooks, 1968.

A. Porter and L. Votta, “Comparing Detection Methods for
Software Requirements Inspections: A Replicated Experiment
Using Professional Subjects,” Empirical Software Eng. |., vol. 3, no.
4, pp. 355-379, 1998.

A. Porter, L. Votta, and V.R. Basili, “Comparing Detection
Methods for Software Requirements Inspections: A Replicated
Experiment,” IEEE Trans. Software Eng., vol. 21, no. 6, pp. 563-575,
June 1995.

K. Sandahl, O. Blomkvist J. Karlsson, K. Krysander, M. Lindvall,
and N. Ohlsson, “An Extended Replication of an Experiment for
Assessing Methods for Software Requirements Inspections,”
Empirical Software Engineering J. vol. 3, no. 4, pp. 327-354, 1998.
C.B. Seaman and V.R. Basili, “Communication and Organization:
An Empirical Study of Discussion in Inspection Meetings,” IEEE
Trans. Software Eng., vol. 24, no. 6, June 1998.

B.A. Sheil, “The Psychological Study of Programming,”
Computing Surveys, vol. 13, no. 1, pp. 101-120, 1981.

F. Shull., “Developing Techniques for Using Software Documents:
A Series of Empirical Studies,” PhD thesis, Univ. of Maryland,
College Park, Dec. 1998.

F. Shull, “Reading Techniques for Object-Oriented Frameworks,”
http://www.cs.umd.edu/projects/SoftEng/ESEG/manual/
sbr_package/manual html

1995. http://

ACM

(42]

(43]

[44]

(43]

[40]

(47]

(48]

473

F. Shull, “Lab Package for the Empirical Investigation of
Perspective-Based Reading,” http://www.cs.umd.edu/pro-
jects/SoftEng /ESEG/manual/ pbr_package/manual html.

F. Shull, F. Lanubile, and V.R. Basili, “Investigating Reading
Techniques for Framework Learning,” Technical Report CS-TR-
3896, UMCP Dept. of Computer Science, UMIACS-TR-98-26,
UMCP Inst. for Advanced Computer Studies, ISERN-98-16 Int’l
Software Eng. Research Network, May 1998.

S. Serumgard, “An Empirical Study of Process Conformance,”
Proc. 21st Ann. Software Eng. Workshop, pp. 115-124, SEL-96-002,
Goddard Space Flight Center, Greenbelt, Md., Dec. 1996.

W.E. Tichy, P. Lukowicz L. Prechelt, and E.A. Heinz, “Experi-
mental Evaluation in Computer Science: A Quantitative Study,”
The]. Systems and Software, vol. 28, pp. 9-18, 1995.

C. Wohlin and P. Runeson eds., Introduction to Experimentation in
Software Engineering, Technical Report, LUTEDX (TETS-7167),
Dept. of Comm. Systems, Lund Inst. of Technology, Lund Univ.,
1997.

M.V. Zelkowitz and D.R. Wallace, “Experimental Models for
Validating Technology,” Computer, pp. 23-31, May 1998.

Z. Zhang, V.R. Basili, and B. Shneiderman, “An Empirical Study
of Perspective-Based Usability Inspection,” Human Factors and
Ergonomics Soc. Ann. Meeting, Chicago, Oct. 1998.

Victor R. Basili is a professor of computer
science at the University of Maryland, College
Park; the executive director of the Fraunhofer
Center—Maryland; and one of the founders and
principals in the Software Engineering Labora-
tory (SEL) at NASA/GSFC. He works on
measuring, evaluating, and improving the soft-
ware development process and product. He is a
recipient of a NASA Group Achievement Award
and a NASA/GSFC Productivity Improvement

and Quality Enhancement Award. He received the 1997 Award for
Outstanding Achievement in Mathematics and Computer Science from
the Washington Academy of Sciences. Dr. Basili has authored more
than 150 journal and refereed conference papers, has served as editor-
in-chief of the IEEE Transactions on Software Engineering, and as
program chair and general chair of ICSE’8 and ICSE’15, respectively.
He is co-editor-in-chief of the International Journal of Empirical Software
Engineering, (Kluwer Academic). He is a fellow of the IEEE and ACM.

Forrest Shull received his PhD degree from the
University of Maryland, College Park, in 1998.
Dr. Shull is currently a research associate in the
Experimental Software Engineering Group at the
University of Maryland. He has conducted
empirical research into software engineering
issues such as requirements reviews and ob-
ject-oriented reuse. He has also worked in
industry, developing software tools for compa-
nies performing research in biology, chemistry,

and materials science. His current research interests include empirical
software engineering, software reading techniques, software inspec-
tions, and process improvement.

Filippo Lanubile received the Laurea degree in
computer science from the University of Bari,
Italy, where he is presently an assistant profes-
sor of computer science. Previously, he worked
in the Experimental Software Engineering Group
at the University of Maryland as a research
associate. His research interests include experi-
mental software engineering, software measure-
ment, software inspection, framework-based
development, and software evolution. He is a

member of the IEEE Computer Society and the ACM.

