1462

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 10, OCTOBER 1988

Understanding and Controlling Software Costs

BARRY W. BOEHM, SENIOR MEMBER, IEEE, AND PHILIP N. PAPACCIO

Abstract—Understanding of software costs is important because of
the overall magnitude of these costs (in 1985, roughly $70 billion per
year in the U.S. and over $140 billion per year worldwide) and the
fundamental impaet software will have on our future quality of life.
Section I of this paper discusses these issues.

Section II, the main portion of the paper, discusses the two primary
ways of understanding software costs. The ‘‘black-box’’ or influence-
Junction approach provides useful experimental and observational in-
sights on the relative software productivity and quality leverage of var-
ious management, technical, envir tal, and per 1 options.
The “‘glass-box’’ or cost distribution approach helps identify strategies
for integrated software productivity and quality improvement pro-
grams, via such structures as the value chain and the software produc-
tivity opportunity tree.

The individual strategies for improving software productivity iden-
tified in Section II are:

* writing less code;

® getting the best from people;

* avoiding rework;

¢ developing and using integrated project support environments.

Section II provides overall surveys of early and recent progress along
these and other lines identified by the opportunity tree.

Better understanding of software costs leads to better methods of
controlling software project costs, and vice versa. Section ITI discusses
these issues. It points out that a good framework of techniques exists
for controlling software budgets, schedules, and work completed, but
that a great deal of further progress is needed to provide an overall set
of planning and control techniques covering software product qualities
and end-user system objectives.

Index Terms—Programming productivity, software costs, software
engineering e ics, software manag t, software metrics, soft-
ware productivity.

I. THE NEED TO UNDERSTAND AND CONTROL
SOFTWARE COSTS

In this section, we will explore three main reasons why
it is important to understand and control software costs:

1) Software costs are big and growing. Thus, any per-
centage cost savings will be big and growing, also.

2) Many useful software products are not getting de-
veloped. Helping good software people work more effi-
ciently will provide time for them to attack this backlog
of needed software.

3) Understanding and controlling software costs can
get us better software, not just more software. As our
lives and lifestyles continue to depend more and more on
software, this factor becomes the most important of all.

Manuscript received August 15, 1986; revised May 26, 1987.

The authors are with TRW Inc., One Space Park, Redondo Beach, CA
90278.

IEEE Log Number 8823076.

A. Software Cost Trends

A number of studies have indicated that software costs
are large and rapidly increasing. For the United States in
1980, using two separate approaches and relatively con-
servative assumptions, Reference [24] derived a total of
900 000-1 000 000 software personnel, with a resulting
annual cost of $40 billion, or roughly 2 percent of the
U.S. Gross National Product. Reference [69] derived a
comparable figure of 900 000 professional programmers
in the U.S., and a total world programmer population of
3 250 000 (another 900 000 in Western Europe, 500 000
in the Far East, and about 950 000 elsewhere).

Reference [69] estimated the rate of growth of program-
ming personnel at roughly 7 percent per year, which
would yield a U.S. professional programmer population
of roughly 3 000 000 people by the year 2000, and a world
programmer population in the year 2000 of roughly
10 000 000 people. Recent estimates of the dollar growth
in U.S. software costs have typically indicated around a
12 percent per year increase (indicating a 5 percent annual
increase in personnel cost plus the 7 percent increase in
number of personnel). This is consistent with the trends
in U.S. Defense Department costs, which went from
roughly $3.3 billion in 1974 [46] to roughly $10 billion
in 1984 [78]. The recent Electronic Industries Association
study of U.S. Defense Department mission critical soft-
ware costs also predicted a 12 percent annual growth rate
from $11.4 billion in 1985 to $36 billion in 1995 [42].

Using a 12 percent annual growth rate, the annual U.S.
software cost would be roughly $70 billion in 1985 and
$125 billion in 1990. Comparable world software costs
are difficult to calculate due to differing salary scales, but
they would be at least twice this high: over $140 billion
in 1985 and over $250 billion in 1990. Clearly, these costs
are sufficiently large to merit serious efforts to understand
and control them.

B. The Software Backlog

Several studies (e.g., [23], [82]) have indicated that the
demand for new software is increasing faster than our
ability to develop it. For example, the U.S. Air Force
Data Systems Design Office has identified a four-year
backlog of important business data processing software
functions which cannot be implemented because of a lim-
ited supply of personnel and funding, much of which must
currently be devoted to supporting the evolution of exist-
ing software (often misleadingly called *‘software main-

0098-5589/88/1000-1462$01.00 © 1988 IEEE

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

tenance’’). A number of other government and commer-
cial organizations have identified similar backlogs.

This software backlog exacerbates two serious prob-
lems. First, it acts as a brake on our ability to achieve
productivity gains in other sectors of the economy. It has
been estimated that roughly 20 percent of the productivity
gains in the U.S. are achieved via automation and data
processing. The software backlog means that many non-
software people’s jobs still have a great deal of tedious,
repetitive, and unsatisfying content, because the software
to eliminate those parts of the job cannot be developed.

Second, and more serious, the software backlog creates
a situation which yields a great deal of bad software, with
repercussions on our safety and quality of life. Specifi-
cally, the backlog creates a personnel market in which
just about anybody can get a job to work off this software
backlog, whether they are capable or not.

Several studies have shown that, as with productivity,
differences between people account for the largest source
of variation in software quality. For example, the com-
parative experiment in Reference [30] showed a 10: 1 dif-
ference in error rates between personnel. The numerous
instances of risks to the public summarized by Neumann
in ACM Software Engineering Notes provide graphic ex-
amples of how serious a problem we have created by un-
leashing unqualified software personnel onto projects pro-
ducing critical applications software. This leads us to two
primary conclusions:

e We need to understand and control software costs as
a way of reducing software backlog, and thus of reducing
the chances that bad programmers will continue to pro-
vide us with more and more bad software to live with.

e We need to understand and control software qualities
as well as software costs.

C. Understanding and Controlling Software Costs and
Qualities

The interactions between software cost and the various
software qualities (reliability, ease of use, ease of modi-
fication, portability, efficiency, etc.) are quite complex—
as are the interactions between the various qualities them-
selves. Overall, though, there are two primary situations
which create significant interactions between software
costs and qualities:

a) A project which tries to reduce software develop-
ment costs at the expense of quality can do so, but only
in ways which increase operational and life cycle costs.

b) A project which tries to simultaneously reduce soft-
ware costs and improve software quality can do so, by
intelligent and cost-effective use of modern software tech-
niques.

Going for Low-Cost, Low-Quality Sofiware: One ex-
ample of situation a) is provided by the Weinberg-Schul-
man [121] experiment, in which several teams were asked
to develop a program to perform the same function, but
each team was asked to optimize a different objective. Al-

1463

most uniformly, each team finished first on the objective
they were asked to optimize, and fell behind on the other
objectives. In particular, the team asked to minimize ef-
fort finished with the smallest effort to complete the pro-
gram, but also finished last in program clarity, second to
last on program size and required storage, and third to last
in output clarity.

Another example is provided by the COCOMO data
base of 63 development projects and 25 evolution or
maintenance projects [23]. This analysis showed that if
the effects of other factors such as personnel, use of tools,
and modern programming practices were held constant,
then the cost to develop reliability-critical software was
almost twice the cost of developing minimally reliable
software. However, the trend was reversed in the main-
tenance projects; low-reliability software required consid-
erably more budget to maintain than high-reliability soft-
ware. Thus, there is a ‘‘value of quality”” which makes it
generally undesirable to reduce development cost at the
expense of quality.

Achieving Low-Cost, High-Quality Software: Cer-
tainly, though, if we want better software quality at a rea-
sonable cost, we are not going to hold constant our use of
tools, modern programming practices, and better people.
This leads to situation b), in which many organizations
have been able to achieve simultaneous improvements in
both software quality and productivity. For example, the
extensive survey in Reference [50] of about 800 user in-
stallations found that the four most strongly experienced
effects of using modern programming practices were
“‘code quality,”’ ‘‘early error detection,’” ‘‘programmer
productivity,”” and ‘‘maintenance time or cost.”” Thus,
attempts to build quality into a software product will also
lead to gains in productivity as well.

However, getting the right mix of the various qualities
(reliability, efficiency, ease of use, ease of change) can
be a very complex job. Several studies have explored these
qualities and their interactions, e.g. [19] and [85]. Also,
some initial approaches have had some success in provid-
ing methods for reconciling and managing to multiple
quality objectives, such as Design by Objectives [51] and
the GOALS approach [23, ch. 3]. An excellent review of
the state of the art in software quality metrics is [49].

II. UNDERSTANDING SOFTWARE COSTS

We can consider two primary ways of understanding
software costs:

A) The “‘black-box’’ or influence-function approach,
which performs comparative analyses on the overall re-
sults of a number of entire software projects, and which
tries to characterize the overall effect on software costs of
such factors as team objectives, methodological ap-
proach, hardware constraints, turnaround time, or person-
nel experience and capability.

B) The ‘‘glass-box’’ or cost-distribution approach
which analyzes one or more software projects to charac-

1464

terize their internal distribution of costs among such
sources as labor versus capital costs, code versus docu-
mentation costs, development versus maintenance costs,
or other distributions of costs by phase or activity.

These two primary perspectives complement each other,
and certainly both are needed to achieve a thorough un-
derstanding of software costs. The two parts of this sec-
tion will explore each of these perspectives in greater de-
tail.

A. Software Cost Influence Functions

The study of software cost influence functions similarly
branches in two main directions: controlled experimen-
tation and observational analysis. We shall discuss the re-
sults of each approach in turn below.

1) Experimental Results: Some of the earliest experi-
mental results on software cost influence functions were
the studies in Reference [54] comparing the effects of
batch versus time-sharing computer operation on pro-
gramming productivity. The experiments typically indi-
cated a 20 percent productivity gain due to time shared
interactive operation, but a much more remarkable vari-
ation in productivity (up to 26:1) due to differences in
programming personnel.

Another set of significant insights resulted from the ex-
periments in Reference [121] discussed earlier, showing
the striking effect to team objectives on project productiv-
ity and product quality.

During the late 1970’s, a number of experiments helped
to illuminate the programming process, investigating the
effects of code structuring, programming language con-
structs, code formatting. commentary, and mnemonic
variable names on programming productivity, program
comprehensibility, and error rates. A good summary of
these experiments is given in [104].

Some initial experiments have explored the effects on
productivity of prototyping and fourth-generation lan-
guages. A seven-project experiment comparing a specifi-
cation-oriented versus a prototyping-oriented approach to
the development of small, user-intensive application soft-
ware products [28] found primarily that (see Fig. 1):

® Both approaches resulted in roughly equivalent
“‘productivity’’ in delivered source instructions per man-
hour (DSI/MH).

* The prototyping projects developed products with
roughly equivalent performance, but requiring roughly 40
percent fewer DSI and 40 percent fewer manhours than
the specifying projects (P versus S in Fig. 1).

® The specifying projects had less difficulty in debug-
ging and integration due to their development of good in-
terface specifications.

A six-project experiment comparing the use of a third-
generation programming language (COBOL) and a fourth-
generation language (FOCUS) on a mix of small busi-
ness-application projects involving both experts and be-
ginners developing both simple and complex applications
[59] found primarily that (see Fig. 2):

® On an overall average (F versus C in Fig. 2), the

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 10. OCTOBER 1988

6000 T T T T T 1 T T T
SPECIFYING 7 ~ 6 DSIMH
PROJECTS /o A
s3 ~
) \
] \,
4000 - \ \ .
\,
\\ \\
s
\\52 () \\
J
3000} -
PROTOTYPING ===\ /\ ®5; s }
PROJECTS 77 P2e So 40
8IZE ’] ~
/ 4
/ | ¢
00 - -
20! 'I A%
tP3 v
10 7’
-”
1000 |]
0 1 1 1 1 Il | | 1 1
0 200 400 600 800 1000

DEVELOPMENT EFFORYT, (MANHOURS)
Fig. 1. Prototyping versus specifying size and effort comparisons.

© COBOL

1000 A FOCUS 4GL

(c6

°
800 |
F5 C°3
a
SIZE
sy 8% cs
© c c2
H -]
400 - c1
° F6
IN
F
200 + F3 A
A ca
-3
Fa 2F2
1 1 i yl J
20 40 60 B8O 100

EFFORT (MANHOURS)
Fig. 2. Fourth-generation language size and effort comparisons.

fourth-generation approach produced equivalent products
to the third-generation approach, with about 60 percent
fewer DSI and 60 percent fewer manhours (again with
roughly equivalent ‘‘Productivity’” in DSI/MH).

¢ From project to project, there was a significant vari-
ation in the ratio of third generation : fourth generation DSI
(0.9:1 to 27:1), manhours (1.5:1 to 8:1) and DSI/
MH(0.5:1to 5:1).

Implications for Software Productivity Metrics: These
two experiments and the earlier Weinberg experiments
make it clear that we need better metrics for software pro-
ductivity than DSI/MH. A number of alternative metrics
have been suggested, such as:

® “‘Software science’’ or program information-content
metrics [58].

¢ Program control-flow complexity metrics [84].

¢ Design complexity metrics [36].

® Program-external metrics, such as number of inputs,
outputs, files, inquiries interfaces, or function points (a
linear combination of those five quantities) [2], [70].

* Work-transaction metrics [38], [114].

In comparing the relative effectiveness of these produc-

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

tivity metrics to a DSI/MH metric, the following conclu-
sions to date can be advanced:

¢ Each has advantages over DSI/MH in some situa-
tions.

® Each has more difficulties than DSI/MH in some sit-
uations.

® Each has equivalent difficulties to DSI/MH in relat-
ing software achievement units to measures of the soft-
ware’s value added to the user organization.

Thus, the area of software productivity metrics remains
in need of further research and experimentation in search
of more robust and broadly relevant metrics.

2) Observational Analyses: Having summarized the
major experimental investigation of software cost drivers,
let us look at the related observational studies.

A major early observational analysis of software pro-
ductivity factors was the study done by SDC for the U.S.
Air Force in the mid-1960’s [91]. This study collected
over 100 attributes of 169 software projects. Although the
study was not successful in establishing a definitive set of
software cost influence functions robust enough for ac-
curate cost estimation, it did identify some of the more
significant candidate influence functions for further inves-
tigation, such as requirements and design volatility and
concurrent hardware development.

Similar early studies which helped to identify signifi-
cant candidate software cost influence factors were those
of [7} and [124]. As an example, the analysis in [124]
yielded a set of quantitative software cost influence fac-
tors (number of object instructions, type of application,
novelty of application, and degree of difficulty) and rela-
tionships which were able to support practical software
cost estimates across a range of command-control type
applications. Some concurrent studies [123]}, [21] estab-
lished a reasonably definitive relationship showing the
asymptotic increase in software cost as hardware speed
and storage constraints approached 100 percent.

A landmark study in analyzing the effect of modern pro-
gramming practices on software costs was the IBM [115]
study of over 50 software projects. It provided conclusive
evidence that the use of such practices as structured code,
top-down design, structured walkthroughs, and chief pro-
grammer teams correlated with software productivity in-
creases on the order of 50 percent. The study also con-
firmed the significant impact of such factors as personnel
capability and hardware constraints on software produc-
tivity, as well as such additional factors as personnel ex-
perience and database size.

In the late 1970’s number of software cost models were
developed, representing a further level of predictive un-
derstanding of the factors influencing software costs. Be-
sides the IBM model based on the results in Reference
{115}, these included the Doty model [61], the Boeing
model [11], the SLIM model [96], the RCA PRICE S
model [48], and the COCOMO model [23]. More re-
cently, some further software cost estimation models have
been developed such as the Jensen model [68], the Esti-
macs model [103] and the SPQR model [70]. A compar-
ison of these models (except the two most recent models)

1465

in terms of their primary cost driver factors, has been pro-
vided in [25].

Software Productivity Ranges: In the context of un-
derstanding and controlling software costs, a significant
feature of some of these models is the productivity range
for a software cost driver: the relative multiplicative
amount by which that cost driver can influence the soft-

‘ware project cost estimated by the model. An example of

a set of recently updated productivity ranges for the CO-
COMO model is shown in Fig. 3.

Similar productivity ranges have been provided for
some other cost models, e.g., [68].

The primary conclusions that can be drawn from the
productivity ranges in Fig. 3 are as follows.

® The most significant influence on software costs is
the number of source instructions one chooses to pro-
gram. This leads to cost-reduction strategies involving the
use of fourth-generation languages or reusable compo-
nents to reduce the number of source instructions devel-
oped; the use of prototyping and other requirements anal-
ysis techniques to ensure that unnecessary functions are
not developed, and the use of already-developed software
products.

® The next most significant influence by far is that of
the selection, motivation, and management of the people
involved in the software process. In particular, employing
the best people possible is usually a bargain, because the
productivity range for people usually is much wider than
the range of people’s salaries. An overall discussion of
the concerns involved here is providéd in [23, ch. 33].
More extensive treatments of personnel and management
considerations are provided in [120], [33], [88], and [98].

¢ Some of the factors, such as product complexity, re-
quired reliability, and database size, are largely fixed fea-
tures of the software product and not management con-
trollables. Even here, though, appreciable savings can be
achieved by reducing unnecessary complexity, and by fo-
cusing on appropriate cost-quality tradeoffs as discussed
in Section I.

® Requirements volatility is an important and neglected
source of cost savings and control. A great deal can be
done in particular in using incremental development to
control requirements volatility. Frequently, users request
(or demand, or require) new features while a software
product is under development. In a single-shot full-prod-
uct development, it is very hard to refuse these requests;
as a result, the developers are continually thrashing as the
ripple effects of the changes are propagated through the
product (and through the project’s highly interlocked
schedules). With incremental development, on the other
hand, it is relatively easy to say, ‘‘Fine, that’s a good

' The differences between Fig. 3 and its counterpart in [23] are the in-
clusion of the Requirements Volatility factor, the extension of the Modern
Programming Practices range to cover lifecycle costs (using a 30:70 de-
velopment-maintenance lifecycle cost ratio, this ranges from 1.57 for 2
KDSI products to 1.92 for 512 KDSI products), a widening of the software
tools and turnaround time ranges to reflect recent experience with advanced
software support environments [20], [26], and the addition of the open-
ended range representing the number of software source instructions de-
veloped by the project.

1466 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 10, OCTOBER 1988

1.20 LANG EXPER

1.23 SCHED CONST

1.23 DATA BASE

1.34 VIRTUAL MACHINE EXPERIENCE
1.47 TURNARDUND TIME
1.49 VIRTUAL MACHINE VOLATILITY

1.56 STORAGE CONSTRAINT

1.87 APPLICATIONS EXPERIENCE
1.85 SOFTWARE TOOLS

1.86 TMING CONSTRAINT

1.78 REQUIREMENTS VOLATILITY
1.87 REQUIRED RELIABILITY

LARGE

SMALL { .92 MODERN PROGRAMMING PRACTICES
j 2.36 PRODUCT COMPLEXITY

PERSONNEL/TEAM CAPABILMTY I 418

NUMBER OF SOFTWARE SOURCE IN‘STRUCT'ONS DEVELOPED e s e @

1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 .00

Fig. 3. COCOMO software lifecycle productivity ranges, 1985.

feature. We will schedule it for Increment 4.”” This al-
lows each increment to operate to a stable plan, thus siz-
nificantly decreasing the requirements volatility cost es-
calation factor.

® The other cost driver variables in Fig. 3 are also quite
significant particularly if they are addressed in an inte-
grated manner. For more details, see [23, ch. 33] for a
discussion of potential productivity strategies for their
successful application to an integrated software produc-
tivity improvement program.

* The productivity ranges can also be used to assess
the impact of other proposed software strategy changes,
such as a transition to Ada (and its associated support-
environment and modern programming practices). Two
such studies have been done for Ada to date. Reference
[39], using the COCOMO framework and an expert-con-
sensus approach, estimated a typical 30 percent cost pen-
alty for using Ada in the near term and a cost reduction
of at least 40 percent for using Ada in the long-term. Ref-
erence [61], using the Jensen-model framework, esti-
mated a significantly larger cost penalty for using Ada in
the near term, and a typical 25 percent cost reduction for
using Ada in the long term.

B. Software Cost Distribution Insights

Having looked at the experimental and observational
‘‘black-box’’ approaches to understanding software costs,
let us now look within the software-production ‘‘glass
box’” for further insight.

There are several approaches to analyzing the distri-
bution of software costs which have provided valuable in-
sights on software cost control. In this section, we will
summarize some of the insights gained from analyzing the
distribution of:

1) development and rework costs;

2) code and documentation costs;

3) labor and capital costs;

4) software costs by phase and activity.

We will conclude by presenting a particular type of
phase and activity distribution called the value chain, and
show how it leads to a useful characterization of produc-
tivity improvement avenues called here the software pro-
ductivity opportunity tree.

1) Development Versus Rework Costs: One of the key
insights in improving software productivity is that a large
fraction of the effort on a software project is devoted to
rework. This rework effort is needed either to compensate
for inappropriately-defined requirements, or to fix errors
in the specifications, code or documentation. For exam-
ple, Reference [70] provides data indicating that the cost
of rework is typically over 50 percent on very large proj-
ects.

A significant related insight is that the cost of fixing or
reworking software is much smaller (by factors of 50 to
200) in the earlier phases of the software life cycle than
in the later phases [22], [44], [35]. This has put a high
premium on early error detection and correction tech-
niques for software requirements and design specification
and verification such as the Software Requirements En-
gineering Methodology, or SREM [3], [4] and the Prob-
lem Statement Language/Problem Statement Analyzer
[111]. More recently, it has focussed attention on such
techniques as rapid prototyping [126], [28], [118] and
rapid simulation [125], [109], which focuses on getting
the right user requirements early and ensuring that their
performance is supportable, thus eliminating a great deal
of expensive downstream rework.

Another important point is that rework instances tend
to follow a Pareto distribution: 80 percent of the rework
costs typically result from 20 percent of the problems.
Fig. 4 shows some typical distributions of this nature from
recent TRW software projects; similar trends have been
indicated in [102], [47], and [13]. The major implication
of this distribution is that software verification and vali-
dation activities should focus on identifying and elimi-
nating the specific high-risk problems to be encountered

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

TRW PROJECT B
- 11005 Siy

S

TRW PROJECT A
{373 SPR's)

20

0 1 [l 1 1 1 1 i} 1 e J

o 10 20 30 40 60 €0 70 80 90 100
% OF SPR's (SOFTWARE PROBLEM REPORTS)

Fig. 4. Rework costs are concentrated in a few high-risk items.

by a software project, rather than spreading their available
early-problem-elimination effort uniformly across trivial
and severe’ problems. Even more strongly, this implies
that a risk-driven approach to the software lifecycle such
"as the spiral model [27] is preferable to a more document-
driven model such as the traditional waterfall model.

The Spiral Model: The spiral model is illustrated in
Fig. 5. The radial dimension in Fig. 5 represents the cu-
mulative cost incurred in accomplishing the steps to date;
the angular dimension represents the progress made in
completing each cycle of the spiral. The model holds that
each cycle involves a progression through the same se-
quence of steps, for each portion of the products and for
each of its levels of elaboration, from an overall concept-
of-operation document down to the coding of each indi-
vidual program.

Each cycle of the spiral begins with the identification
of:

® The objectives of the portion of the product being
elaborated (performance, functionality, ability to accom-
modate change, etc.).

e The alternative means of implementing this portion
of the product (design A, design B, reuse, buy, etc.).

e The constraints imposed on the application of the al-
ternatives (cost, schedule, interface, etc.).

The next step is to evaluate the alternatives with respect
to the objectives and constraints. Frequently, this process
will identify areas of uncertainty which are significant
sources of project risk. If so, the next step should involve
the formulation of a cost-effective strategy for resolving
the sources of risk. This may involve prototyping, simu-
lation, administering user questionnaires, analytic mod-
eling, or combinations of these and other risk-resolution
techniques.

Once the risks are evaluated, the next step is deter-
mined by the relative risks remaining. If performance or
user-interface risks strongly dominate program develop-
ment or internal interface-control risks, the next step may
be an evolutionary development step: a minimal effort to
specify the overall nature of the product, a plan for the
next level of prototyping, and the development of a more
detailed prototype to continue to resolve the major risk
issues. On the other hand, if previous prototyping efforts

1467

have already resolved all of the performance or user-in-
terface risks, and program development or interface-con-
trol risks dominate, the next step follows the basic water-
fall approach, modified as appropriate to incorporate
incremental development.

The spiral model also accommodates any appropriate
mixture of specification oriented, prototype-oriented,
simulation-oriented, automatic transformation oriented,
or other approaches to software development, where the
appropriate mixed strategy is chosen by considering the
relative magnitude of the program risks, and the relative
effectiveness of the various techniques in resolving the
risks. (In a similar way, risk-management considerations
determine the amount of time and effort which should be
devoted to such other project activities as planning, con-
figuration management, quality assurance, formal verifi-
cation, or testing.)

An important feature of the spiral model is that each
cycle is completed by a review involving the primary peo-
ple or organizations concerned with the products. This re-
view covers all of the products developed during the pre-
vious cycle, including the plans for the next cycle and the
resources required to carry them out. The major objective
of the review is to ensure that all concerned parties are
mutually committed to the approach to be taken for the
next phase.

The plans for succeeding phases may also include a
partition of the product into increments for successive de-
velopment, or components to be developed by individual
organizations or persons. Thus, the review and commit-
ment step may range from an individual walkthrough of
the design of a single programmer component, to a major
requirements review involving developer, customer, user,
and maintenance organizations.

2) Code Versus Documentation Costs: Most of the ef-
forts to date in developing software support environments
have been focused on capabilities to improve people’s
productivity in developing code. However, recent anal-
yses have shown that most projects to develop production-
engineered software products spend more of the project’s
effort in activities leading to a document as their imme-

-diate end product, as compared to activities whose im-

mediate end product is code. These documents include
not only specifications and manuals, but aiso plans, stud-
ies, reports, memoranda, letters and a wide variety of
forms. The volume of documentation with respect to lines
of code tends to vary by application; Reference [70] re-
ports a typical 28 pages of documentation per thousand
instructions (pp/KDSI) for internal commercial pro-
grams and a typical 66 pp/KDSI for commercial software
products of the same size (50 KDSI).

The proportion of documentation-related to code-re-
lated effort averaged about 60 : 40 over the COCOMO data
base of projects [23] and about 67:33 for large TRW
projects [20]. These proportions have caused some recent
software development environments such as the Xerox
Cedar system [112] and the TRW Software Productivity
System [20] to focus on the provision of extensive docu-

1468

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.

14, NO. 10, OCTOBER 1988

CUMULANIVE

4 cosr
’”.—‘

DETERMINE
OBJECTIVES,
ALTERNATIVES,
CONSTRAINTS

RISK
ANALYSIS

PRUGRHESS
THROUGH
SI1EPS

EVALUATE ALTERNATIVES;
IDENTIFY, RESOLVE RISKS

RISK ANALYSIS

RISK ANALYSIS

OPERATIONAL

R PROTOTYPE
A LTROIONC Protorvee FROTOTYPEs
] 1YPE 2
peview -SomIvEN LT el -
m RQTS PLAN) CONCEPT Ol MULATIONS | MoODELS, BENCHMARKS
UFE CYCLE | OPERATION ———
PLAN SOFTWARE -

DEVELOP
MENT PLAN

INTEGRATION
AND TEST

I TATION

PLAN
NEXT PHASES

HEQUIREMENTS
VALIDATION

DESIGN VALIDATION
AND VERIFICATION

IMPIEMEN

RQTS.

DETAILED
DESIGN

SOF IWARE
PRODUCT
DESIGN

| nTEGRA |

TION anb |
ACCEPIANCE | VEST |
brest

DEVELOP, VERIFY
NEXT-LEVEL PRODUCT

Fig. 5. Spiral model of the software process (not to scale).

mentation and office-automation aids, and on the close in-
tegration of these functions with code-oriented functions.

3) Labor Versus Capital Costs: 1t is generally recog-
nized that software development and evolution are ex-
tremely labor-intensive activities, and that a great deal of
productivity leverage can be gained by making software
production a more capital-intensive activity. Typically,
capital investment per software worker has been little dif-
ferent from the $2000-3000 per person typical of office
workers in general. However, a number of organizations
such as Xerox, TRW, IBM, and Bell Laboratories have
indicated that significantly higher investments per person
have more than recaptured the investment via improved
software productivity. Similar results on the payoffs of
capital investments in better facilities and support capa-
bilities have been reported in [81] and [37]. An excellent
overall survey of software capitalization strategies is pro-
vided in [119].

4) Software Costs by Phase and Activity: A great deal
of insight into controlling software costs has come from
analyses of the distribution of costs by phase and activity.
Some of the earliest results, such as [16], indicated the

high proportion of project effort devoted to integration and
test, and the importance of good test planning, test sup-
port, and interface specification. (Another early paper [63]
stated that ‘‘a good software interface specification was
quite literally worth its weight in gold.””)

Subsequent analysis of software development effort dis-
tribution such as [124] indicated the significant fraction
of project effort devoted to nonprogramming activities
(configuration management, quality assurance, planning
and control, etc.), and the high potential leverage in-
volved in making these activities more productive.

Another major insight has been the recognition that
most of the cost of a software product is incurred after its
initial development is complete [43], [22], [35]. Subse-
quent analyses of the sources and distribution of these
software life-cycle evolution costs (often misleadingly
called maintenace costs) such as [14] and [79], provided
a number of insights on how to reduce software evolution
costs. Several recent sources such as [2], and [6] have
provided more specific detail on software evolution cost
reduction activities.

5) The Software Product Value Chain: The value

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

chain, developed by Porter and his associates at the Har-
vard Business School [94], [95], is a useful method of
understanding and controlling the costs involved in a wide
variety of organizational enterprises. It identifies a canon-
ical set of cost sources or value activities, representing
the basic activities an organization can choose from to
create added value for its products. Fig. 6 shows a value
chain for software development representative of experi-
ment at TRW. Definitions and explanations of the com-
ponent value activities are given below. These are divided
into what Reference [95] calls primary activities (inbound
logistics, outbound logistics, marketing and sales, ser-
vice, and operations) and support activities (infrastruc-
ture, human resource management, technology develop-
ment, and procurement).

Primary Activities: Inbound logistics covers activi-
ties associated with receiving, storing, and disseminating
inputs to the products. This can be quite large for a man-
ufacturer of, say, automobiles; for software it consumes
less than 1 percent of the development outlay. (For soft-
ware, the related support activity of procurement is also
included here.)

Outbound logistics covers activities concerned with
collecting, storing, and physically distributing the prod-
uct to buyers. Again, for software, this consumes less than
1 percent of the total.

Marketing and sales covers activities associated with
providing a means by which buyers can purchase the
product and inducing them to do so. A 5 percent figure is
typical of government contract software organizations.
Software product houses would typically have a higher
figure; internal applications-programming shops would
typically have a lower figure.

Service covers activities associated with providing ser-
vice to enhance or maintain the value of the product. For
software, this comprises the activities generally called
software maintenance or evolution.

Operations covers activities associated with trans-
forming inputs into the final product form. For software,
operations typically involves roughly four-fifths of the to-
tal development outlay.

In such a case, the value-chain analysis involves break-
ing up a large component into constituent activities. Fig.
6 shows such a breakup into management (7 percent),
quality assurance and configuration management (5 per-
cent), and the distribution of technical effort among the
various development phases. This phase breakdown also
covers the cost sources due to rework. Thus, for, exam-
ple, of the 20 percent overall cost of the technical effort
during the integration and test phase, 13 percent is de-
voted to activities required to rework deficiencies in or
reorientations of the requirements, design, code, or doc-
umentation; the other 7 percent represents the amount of
effort required to run tests, perform integration functions,
and complete documentation even if no problems were
detected in the process.

Support Activities: Infrastructure covers such activ-
ities as the organization’s general management planning,

1469
INFRASTRUCTURE o
HUMAN RESOURCE MANAGEMENT O\
TECHNOLOGY DEVELOPMENT 9\
[
e MANAGEMENT 0
M 1
a |N aa, cm 8]0
R |B '.','
x |0
£ lu . s
TN 4 REWORK o
D [| Y'lseavi
’,‘ ® N CE
5 |5 ° ®; o
.
& |6 ® ® 5
S Is (5] G
RQTS
f T PRELIM. @;
£ 1 DESIGN DETAILED [7) T
s g DESIGN CODE AND)
uNIT
TEST | inrecration |c
AND TEST s
GPERATIONS (80%)

Fig. 6. Software development value chain.

finance, accouting, legal, and government affairs of the
organization. The 8 percent figure is typical of most or-
ganizations.

Human resource management covers activities in-
volved in recruiting, hiring, training, development, and
compensation of all types of personnel. Given the labor-
intensive and technology-intensive nature of software de-
velopment, the 3 percent figure indicated here is a less-
than-optimal investment. .

Technology development covers activities devoted to
creating or tailoring new technology to improve the or-
ganizations products or processes. The 3 percent invest-
ment figure here is higher than many software organiza-
tions, but still less than optimal as an investment to
improve software productivity and quality.

Margin and Service: Margin in the value chain is the
difference between the value of the resulting product and
the collective costs of performing the value activities. As
this difference varies widely among software products, it
is not quantitatively defined in Fig. 6. Similarly, ‘‘ser-
vice’’ or ‘‘evolution’’ costs have not been assigned a value
in Fig. 6. Evolution costs are typically 70 percent of soft-
ware lifecycle costs, but since some initial analyses have
indicated that the detailed value chain distribution of soft-
ware costs is not markedly different from the distribution
of development costs in Fig. 6, we will use Fig. 6 to rep-
resent the distribution of lifecycle costs.

Software Development Value Chain Implications: The
primary implication of the software development value
chain is that the ‘‘Operations’” component is the key to
significant improvements. Not only is it the major source
of software costs, but also most of the remaining com-
ponents such as ‘‘Human Resources’” will scale down in
a manner proportional to the scaling down of Operations
costs.

Another major characteristic of the value chain is that
virtually all of the components are still highly labor-in-
tensive. Thus, as discussed in Section II-B-3, there are
significant opportunities in providing automated aids to
make these activities more efficient and capital-investive.

1470

Further, it implies that human-resource and management
activities have much higher leverage than their 3 percent
and 7 percent investment levels indicate.

The breakdown of the Operations component indicates
that the leading strategies for cost savings in software de-
velopment involve:

® Making individual steps more efficient, via such ca-
pabilities as automated aids to software requirements
analysis or testing.

® Eliminating steps, via such capabilities as automatic
programming or automatic quality assurance.

® Eliminating rework, via early error detection or via
such capabilities as rapid prototyping to avoid later re-
quirements rework.

In addition, further major cost savings can be achieved
by reducing the total number of elementary Operations
steps, by developing products requiring the creation of
fewer lines of code. This has the effect of reducing the
overall size of the Value Chain itself. This source of sav-
ings breaks down into two primary options:

® Building simpler products, via more insightful front-
end activities such as prototyping or risk management.

® Reusing software components, via such capabilities
as fourth-generation languages or component libraries.

6) The Software Productivity Improvement Opportu-
nity Tree: This breakdown of the major sources of soft-
ware cost savings leads to the Software Productivity Im-
provement Opportunity Tree shown in Fig. 7. This
hierarchical breakdown helps us to understand how to fit
the various attractive productivity options into an overall
integrated software productivity improvement strategy.

Most of the individual productivity options have been
discussed in earlier sections of this paper. Here, we will
provide a recap of the previous options, and further dis-
cussion of the additional options identified in the Oppor-
tunity Tree.

Making People More Effective: The major sources of
opportunity in dealing with people were covered in dis-
cussing the large productivity range due to personnel ca-
pability in Section II-A-2, and the labor versus capital
costs discussion in Section II-B-3. Additional facilities-
oriented gains were covered in the discussions of inter-
active software development in Section II-A-1, and of
avoiding hardware constraints in Section II-A-1. Provid-
ing software personnel with private offices is another cost-
effective facilities opportunity, leading to productivity
gains of roughly 11 percent at IBM-Santa Teresa [70] and
8 percent at TRW [20]. In addition, the productivity
leverage of creative incentive structures can be quite
striking. For example, a program to provide extra bonuses
for people who reuse rather than rebuild software has led
to significant increases in the amount of software reused
from previous appl.cations.

Making Steps More Efficient: The primary leverage
factor in making the existing software process steps more
efficient is the use of software tools to automate the cur-
rent repetitive and labor-intensive portions of each step.
Such tools have a long history of development; some good

[EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 10. OCTOBER 1988

surveys of various classes of tools are given in [74] and
[99].

More recently, it has become clear that such tools are
much more effective if they are part of an Integrated Proj-
ect Support Environment (IPSE). The primary features
which distinguish an IPSE from an ad hoc collection tools
are as follows:

* A set of common assumptions about the software pro-
cess model being supported by the tools (or, more
strongly, a particular software development method being
supported by the tools).

*® An integrated Project Master Database or Persistent
Object Base serving as a unified repository of the entities
created during the software process, along with their var-
ious versions, attributes, and relationships.

® Support of the entire range of users and activities
involved in the software project, not just of programmers
developing code.

® A unified user interface providing easy and natural
ways for various classes of project personnel (expert pro-
grammers, novice librarians, secretaries, managers, plan-
ning and control personnel, etc.) to draw on the tools in
the IPSE.

® A critical-mass ensemble of tools, covering signifi-
cant portions of software project activities.

* A computer-communication architecture facilitating
user access to data and resources in the IPSE.

Some good references describing the nature and func-
tions of IPSE’s are [32], [117], [64], [90], and [110].
Some good examples of IPSE’s with extensive usage ex-
perience include CADES [87], Interlisp [113], the AT&T
Unix environment [73], the U.S. Navy FASP system
[108], the TRW Software Productivity System [20], and
the Xerox Cedar System [112]. Some early examples of
advanced concepts and prototype environments are found
in [117]. Later examples are so abundant that it is vir-
tually impossible to summarize them concisely; a good
recent source is [12].

Eliminating Steps: A good many automated aids go
beyond simply making steps more efficient, to the point
of fully eliminating previous manual steps. If we compare
software development today with its counterpart in the
1950’s, we see that assemblers and compilers are excel-
lent examples of ways of vastly improving productivity
by eliminating steps. More recent examples of eliminat-
ing steps are process construction systems [122], [45],
software standards checkers and other quality assurance
functions [19], [106]; and requirements and design con-
sistency checkers [3], [15], [111)}.

More ambitious efforts to eliminate steps involve the
automation of the entire programming process, by provid-
ing capabilities-which operate directly on a set of software
specifications to automatically generate computer pro-
grams. There are two major branches to this approach:
domain-specific and domain-independen: automatic pro-
gramming.

The domain-specific approach gains advantages by cap-
italizing on domain knowledge in transforming specifi-

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

1471

WIAKE |— INCENTIVES, STAFFING, TRAINING
—1 peopLE MORE | — raciLmES
EFFECTIVE | — MANAGEMENT
WAKE S1EPS | —— SOFTWARE TOOLS, ENVIRONMENTS
—{ wmoRe | — WORKSTATIONS
EFFICIENT |— OFFICE AUTOMATION
| —— AUTOMATED DOCUMENTATION. QUALITY ASSURANCE
ELIMINATE
STEPS | — AUTOMATED PROGRAMMING
|— KNOWLEDGE-BASED SOFTWARE ASSISTANT
| — INFORMATION HIDING, MODERN PROGRAMMING PRACTICES
IMPROVE EUMNATE | corrwan P
pROVE REWORK FTWARE COMPUTER AIDED DESIGN
VITY |— FRONT-END LANGUAGES
|— INCREMENTAL DEVELOPMENT
sUnD]— RAPID PROTOTYPING
—{ smPLER |
PRODUCTS PROCESS MODELS
|— COMPONENT LIBRARIES
REUSE
COMPONENTS F APPLICATION GENERATORS
F FOURTH-GENERATION LANGUAGES

Fig. 7. Productivity improvement opportunity tree.

cations into programs, and in constraining the universe of
programming discourse to a relatively smaller domain. In
the limit, one reaches the boundary with fourth-genera-
tion languages such as Visicalc, which are excellent au-
tomatic programming systems within a very narrow do-
main, and relatively ineffective outside that domain. A
good example and survey of more general approaches to
domain-specific automatic programming is given in [11].

The domain-independent approach offers much broader
payoff in the long run, but has more difficulty in achieving
efficient implementations of larger-scale programs. Some
good progress is being made in this direction, such as the
USC-ISI work culminating in the FSD system [9], the
Kestrel Institute work on the PSI and and CHI systems
[56], [105], and the MIT Progammer’s Apprentice project
[101], [118]. An excellent summary of automatic pro-
gramming approaches can be obtained from the Novem-
ber 1985 issue of the IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING.

Eliminating Rework: One can also extend automatic
programming in a direction which provides expert assis-
tance to programmers (and more generally, to all software
project members) to aid them in making the right deci-
sions in algorithm selection, data structuring, choice of
reusable components, change control, test planning, and
overall software project planning and control. This con-
cept of a knowledge based software assistant (KBSA) has
been thoroughly described in [55]. The primary benefit of
a KBSA will be the elimination of much of the rework
currently experienced on software projects due to the be-
lated appreciation that a previous programming or project
decision was inappropriate, resulting in work that needs
to be redone. A number of prototype KBSA’s are cur-
rently under development.

If we specialize the KBSA concept of the area of soft-
ware design, we find the rich area of software computer
aided design (CAD). In the hardware area, CAD has been
a major source of improving productivity by eliminating
rework via automated design checking and simulation, and
also of promoting better designs via better visualization
of a design and its effects. Recent examples of software
CAD capabilities include interactive graphics support
systems such as the Xerox CEDAR system [112], the
Brown PECAN system [100], the Carleton CAEDE sys-
tem [31], and such commercial systems as Excelerator,
Teamwork, ProMod, Software Through Pictures, CASE,
Ada Graph, and PRISM; rapid simulation capabilities
such as RSA [109]; and executable specification capabil-
ities such as PAISLEY [125].

A short step from software CAD systems are the re-
quirements and design language-oriented systems, which
eliminate a great deal of rework through more formal and
unambiguous specifications, automated consistency and
completeness checking and automated traceability of re-
quirements to design. Probably the most extensive of these
systems is the Distributed Computing Design System [4],
which includes a system specification language (SSL), a
software requirements specification language (RSL), a
distributed-system design language (DDL), and a module
description language (MDL).

One of the main difficulties in developing good soft-
ware CAD systems is our incomplete understanding of the
software design process. Examples of recent progress in
this direction can be found in [34], [1], and [71].

A most powerful technique for eliminating rework is
the information-hiding approach developed by Parnas [92]
and applied in the U.S. Navy A-7 project [93]. This ap-
proach minimizes rework by hiding implementation de-

1472

cisions within modules; thus minimizing the ripple effects
usually encountered when software implementation deci-
sions need to be changed. The information hiding ap-
proach can be particularly effective in eliminating rework
during software evolution, by identifying the portions of
the software most likely to undergo change (characteris-
tics of workstations, input data formats, etc.) and hiding
these sources of evolutionary change within modules.
Some other sources for eliminating rework have been
discussed earlier, such as the use of modern programming
practices in Section I1I-C and II-A-2, the use of incremen-
tal development to reduce requirements volatility in Sec-
tion II-A-2, and the use of rapid prototyping and risk-
driven software process models in the discussion of de-
velopment versus rework costs in Section II-B-1.
Building Simpler Products: The last two approaches
associated with eliminating rework in the Opportunity
Tree in Fig. 7, rapid prototyping and improved software
process models can also be very effective in improving
bottom-line productivity by building simple products.
This is done largely by eliminating software gold-plating:
extra software which not only consumes extra effort, but
also reduces the conceptual integrity of the product. The
[28] prototyping versus specifying experiment discussed
in Section I1-A-1 indicated that prototyping resulted in an
average of 40 percent less code, 40 percent less effort,
and a set of products that were easier to use and learn.
One of the telling insights in this experiment was the com-
ment of one of the participants using the specification ap-
proach: “*“Words are cheap.’” During the specification
phase, it is all too easy to add gold-plating functions to
the product specification, without a good understanding
of their effect on the product’s conceptual integrity or the
project’s required effort. As expressed in the excellent
book, The Elements of Friendly Software Design [60]:

‘‘Most programmers . . . defined their use of a soft-
ware feature by saying, ‘You don’t have to use it if
you don’t want to, so what harm can it do?’ It can
do a great deal of harm. The user might spend time
trying to understand the feature, only to decide it
isn’t needed, or he may accidentally use the feature
and not know what has happened or how to get out
of the mistake. If a feature is inconsistent with the
rest of the user interface, the user might draw false
conclusions about the other commands. The feature
must be documented, which makes the user’s man-
ual thicker. The cumulative effect of such features
if to overwhelm the user and obscure communica-
tion with your program . . .”’

A further discussion of typical sources of software gold-
plating, and an approach for evaluating potential gold-
plating features, is provided in [23]. A related phenome-
non to avoid is the “‘second system syndrome’’ discussed
in [29]. A recent useful technique for product feature
prioritization called the request-success grid is provided
in [107]. Further useful principles of good user-interface
design are provided in [41] and [53].

Some of the newer software process models stimulate

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 10. OCTOBER 1988

the development of simpler products. One of the difficul-
ties of the traditional waterfall model is that its specifi-
cation-driven approach can frequently lead one along the
“‘words are cheap’’ road toward gold-plated products, as
discussed above. The evolutionary development model
[86] emphasizes the use of prototyping capabilities to
converge on the necessary or high-leverage software
product features essential to the user’s mission. The re-
lated transformational model [10] shortcuts the problem
by providing (where available) a direct transformation
from specification to executing code, thus supporting both
a specification-based and an evolutionary-development
approach. The spiral model [27] focuses on a continuing
determination of user’s mission objectives, and a continu-
ing cost-benefit analysis of candidate software product
features in terms of their contribution to mission objec-
tives. Further information on recent progress in software
process models can be found in [77] and [40].

Reusing Components: Another key to improving
productivity by writing less code involves the reuse of
existing software components. The simplest approach in
this direction involves the development and use of librar-
ies of software components. A great deal of progress has
been made in this direction, particularly in such areas as
mathematical and statistical routines and operating system
related utilities. A great deal of further progress is pos-
sible via similar capabilities in user-application areas. For
example, Raytheon’s library and system of reusable busi-
ness-application components has achieved typical figures
of 60 percent reusable code for new applications {75] and
typical cost savings of 10 percent in the design phase, 50
percent in the code and test phase, and 60 percent in the
maintenance phase [97]. Toshiba’s system of reusable
components for industrial process control [83] has re-
sulted in typical productivity rates of over 2000 source
instructions per man-month for high-quality industrial
software products.

At this level of sophistication, such systems should bet-
ter be called application generators, rather than compo-
nent libraries, because they have addressed several sys-
tem-oriented component-compatibility issues such as
component interface conventions, data structuring, and
program control and error handling conventions. Similar
characteristics have made Unix a particularly strong foun-
dation for developing application generators [72], [116].

One can proceed even further in this direction to create
a very high level language or fourth generation language
(4GL) by adding a language for specifying desired ap-
plications and a set of capabilities for interpreting user
specifications, configuring the appropriate set of compo-
nents, and executing the resulting program. Currently, the
most fertile areas for 4GL’s are in the areas of spread-
sheet calculators (Visicalc, Multiplan, 1-2-3, etc.), and
small-business systems typically featuring a DBMS, re-
port generator, database query language, and graphics
package (NOMAD, RAMIS, FOCUS, ADF, DBase II,
etc). A good survey of these latter 4GL’s is [62].

As discussed in Section II-A-1, the most definitive ex-
periment to date comparing a 3GL (COBOL) and a 4GL

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

(FOCUS) found an average reduction of about 60 percent
in both lines of code developed and in manhours ex-
pended to develop a sample of six applications. Reference
[57] provides further evidence from a survey of 43 orga-
nizations that such 4GL’s reduce personnel costs, reduce
user frustrations, and more quickly satisfy user informa-
tion needs within their domain of applicability. On the
other hand, the survey found 4GL’s extremely inefficient
of computer resources and difficult to interface with con-
ventional applications programs. Some major disasters
have occurred in attempting to apply 4GL’s to large, high-
performance applications such as the New Jersey motor
vehicle registration system [8].

Overall, though, 4GL’s offer an extremely attractive
option for significantly improving software productivity,
and attempts are underway to create 4GL capabilities for
other application areas. Short of a 4GL capability, the
other more limited approaches to reusability such as com-
ponent libraries and application generators can both gen-
erate near-term cost savings and serve as a foundation of
more ambitious 4GL capabilities in the long run. A very
good collection of articles on reusability in software de-
velopment is the September 1984 issue of the IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING.

III. CONTROLLING SOFTWARE COSTS

Now that we have a better understanding of the primary
sources of software costs and of the ways of reducing
them, how can we use this understanding to improve our
ability to control software costs? There are two primary
avenues for doing this, as discussed below:

1) Building our understanding into a framework of ob-
jectives, which serve as a basis for a set of management-
by-objectives (MBO) control loops.

2) Optimizing our software development and evolution
strategy around predictability and control.

A. Management By Objectives (MBO)

The simplest sort of MBO for software project predict-
ability and control is exemplified by the earned-value
framework discussed in [23, ch. 32], and illustrated in
Fig. 8. In this framework, a set of cost and schedule es-
timates by phase, activity, and product components are
used to generate a set of PERT charts, work breakdown
structures, personnel plans, summary task planning
sheets, and other scarce-resource allocations which deter-
mine a set of ‘‘should-cost’” targets for each job. As the
project progresses, various instruments such as unit de-
velopment folders and earned value systems are used to
compare actual progress and expenditure of time, cost,
personnel, or other scarce resources versus the plans.
Then, comparing the actual progress and expenditure ver-
sus the plans can generate a set of exception reports which
flag key areas for MBO attention.

This generic approach has been highly successful in
many situations, but it frequently needs extension to bal-
ance cost, schedule, and functionality objectives with

1473

other important quality-oriented objectives. The best ap-
proach to date in handling these additional objectives has
been to incorporate them as additional specific MBO tar-
gets, as in Design by Objectives [51] and the GOALS
approach [23].

Actually, it is even better to do this in terms of the soft-
ware end-user’s mission objectives. This implies that the
users must perform an analysis of the relative costs and
benefits of alternative software product functions and fea-
tures, to relate these to incremental gains in mission cost-
effectiveness, and to use this information in an overall
MBO control loop in which the software is only a part.
For examples of this type of approach, see [80], [5], [65],
and [76].

B. Optimizing Around Software Predictability and
Control

Frequently, software customers are more concerned
about predictability and control of software cost and
schedule than they are about the absolute values of the
cost and schedule [89]. Such customers prefer a project
which may cost a bit more, but which allows them to con-
fidently synchronize their software development with
other critical developments such as a satellite launch, a
factory opening, or a major service cutover. In such sit-
uations, customers will generally prefer a risk-driven de-
velopment approach which invests some additional early
time and effort into identifying and eliminating the pri-
mary sources of project risk—as contrasted with a ‘‘suc-
cess-oriented’’ approach which will be very efficient if all
the project’s optimistic assumptions are true, but very
costly if reality runs out otherwise (as it frequently does).
The spiral model discussed in Section II-B-1 is an exam-
ple of such a risk-driven development approach.

Another option which can be derived from the risk-
driven spiral approach is the option to trade marginal
product functionality for project predictability and con-
trol, using a design-to-cost or design-to-schedule ap-
proach. Thus, if the highest project risk is associated with
exceeding the available budget or with missing a crucial
delivery date, the project can reduce risk by designating
borderline product capabilities as a management reserve
to be traded against budget and schedule pressures as nec-
essary.

IV. CONCLUSIONS

The information and discussions above support the fol-
lowing primary conclusions:

1) Understanding and controlling software costs is ex-
tremely important, not just from an economic standpoint,
but also in terms of our future quality of life.

2) Understanding and controlling software costs inev-
itably requires us to understand and control the various
aspects of software quality as well.

3) There are two primary ways of understanding soft-
ware costs. The ‘‘black box’’ or influence function ap-
proach provides useful insights on the relative productiv-
ity and quality leverage of various management, technical,

1474

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 10, OCTOBER 1988

ALrD COCOmMO
acnviry STaaT
[T
9 WO SRLALDOWS STRUCTURE O
o PASTD eom vipaus
@O DULE COMEONE NT
S Tmaatis acTvery
I RASED ACTIVITY
VIS Tet
SLAMKID €73 ORT
v
avarn
I I-u
ORI | ¥ [o) y | (0)
BRAEANY TASK
Ly——y por-iifiyond aom. han
drfuia pwivisiale []
T [— s acIvITY dlFfv|afuis]| vorau
? — 0
? —
(4 ——
ot
a—
LABOR
NOUR
SmEFTOMLS aoerm
SANNED VALSS aoorTs
AUTHONTY
TO FROCED
mORCY SRORCY CHARGES
s o CARD B0 |
YIS BLEYY GUORrT ACYUAL ';‘:,‘.’] wivlel von :..:
s eows __ __
- e . ..
. . . Snpn g ————— YT
. . . WORL ACCOMPLISMED
. . . VIET DEVILOMMENT POLDER
SOLLAR COSTS
ERLSTONES PASSID
}mm
SAMMED VALLE
GREBARY AIPORT

Fig. 8. Software project planning and control framework.

environment, and personnel options. The ‘‘glass box’’ or
cost distribution approach helps identify strategies for in-
tegrated software productivity and quality improvement
programs, via such structures as the value chain and the
software productivity opportunity tree.

4) The most attractive individual strategies for improv-
ing software productivity are: .

® writing less code, by reusing software compo-

nents, developing and using very high level languages,
and avoiding software gold-plating;

® getting the best from people, via better manage-
ment, staffing, incentives, and work environments;

® avoiding rework, via better risk management, pro-
totyping, incremental development, software computer
aided design, and modemn programming practices, partic-
ularly information hiding;

® developing and using integrated project support
environments.

5) Good frameworks of techniques exist for controlling

software budgets, schedules, and work completed. There

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

have been some initial attempts to extend these to support
control with respect to software quality objectives and
end-user system objectives, but a great deal more prog-
ress is needed in these directions.

6) The better we are able to understand software cost
and qualities, the better we are able to control them—and
vice versa.

REFERENCES

[1] B. Adelson and E. Soloway, ‘‘The role of domain experience in
software design,”” IEEE Trans. Software Eng., vol. SE-11, pp.
1351-1360, Nov. 1985.

[2] A. J. Albrecht, ‘*Measuring application development productiv-
ity,” in Proc. SHARE-GUIDE Applications Develoment Symp., Oct.
1979, pp.83-92.

[3] M. W. Alford, “‘A requirements engineering methodology for real-
time processing requirements,”’ IEEE Trans. Sofiware Eng.. vol.
SE-3, pp. 60-68, Jan. 1977.

[4] —, *‘SREM at the age of eight: The distributed computing design
system,”” Computer, vol. 18, Apr. 1985.

[5) J. Allen and B. P. Lientz, Systems in Action: A Managerial and
Social Approach, Goodyear, 1978.

[6] R. S. Arnold, Ed., Software Maintenance Workshop Record, IEEE,
Dec. 1983.

[71 J. D. Aron, ‘‘Estimating resources for large programming sys-
tems,’’ NATO Science Committee, Rome, Italy, Oct. 1969; in Soft-
ware Engineering Techniques, Buxton and Randell, Eds.

[8] C. Babcock, ‘‘New Jersey motorists in software jam,”” Computer-
world, pp. 1, 6, Sept. 30, 1985.

9] R. M. Balzer, “‘A 15 year perspective on automatic programming,”’
IEEE Trans. Software Eng., vol. SE-11, pp. 1357-1268, Nov. 1985.

[10] R. M. Balzer, T. E. Cheatham, and C. Green, ‘‘Software technol-
ogy in the 1990’s: Using a new paradigm,”” Computer, vol. 16, pp.
39-45, Nov. 1983.

[11] D. R. Barstow, ‘‘Domain-specific automatic programming,’’ IEEE
Trans. Software Eng., vol. SE-11, pp. 1321-1336, Nov. 1985.

[12] D. R. Barstow, H. Shrobe, and E. Sandewall, Interactive Program-
ming Environments. New York: McGraw-Hill, 1984.

[13] V. R. Basili and D. M. Weiss, ‘*Evaluation of a software require-
ments document by means of change data,”" in Proc. Fifth Int. Conf.
Software Engineering, 1IEEE, Mar. 1981, pp. 314-323.

[14] L. A. Belady and M. M. Lehman, ‘‘Characteristics of large sys-
tems,”’ Research Directions in Software Technology, P. Wegner,
Ed. Cambridge, MA: MIT Press, 1979.

[15] T. E. Bell, D. C. Bixler, and M. E. Dyer, ‘‘An extendible approach
to computer-aided software requirements engineering,’’ JEEE Trans.
Software Eng., pp. 49-59, Jan. 1977.

[16] H. D. Benington, ‘‘Production of large computer programs,’’ in
Proc. ONR Symp. Advanced Programming Methods for Digital
Computers, June 1956, pp. 15-27; also in Proc. 9th Int. Conf. Soft-
ware Engineering, IEEE, Mar. 1987,

[17] R. K. D. Black, R. P. Curnow, R. Katz, and M. D. Gray, ‘‘BCS
software production data,”” Boeing Computer Services, Inc., Final
Tech. Rep. RADC-TR-77-116, NTIS No. AD-A039852, Mar. 1977.

[18] B. H. Boar, Application Prototyping. New York: Wiley, 1984.

{19] B. H. Boehm, J. R. Brown, H. Kaspar, M. Lipow, E. J. MacLeod,
and M. J. Merritt, Characteristics of Software Quality. Amster-
dam, The Netherlands: North-Holland, 1978.

[20] B. W. Boehm, M. H. Penedo, E. D. Stuckle, R. D. Williams, and
A. H. Pyster, ‘“A software development environment for improving
productivity,”” Computer, vol. 17, pp. 30-44, June 1984.

[21] B. W. Boehm, ‘‘Software and its impact: A quantitative assess-
ment,”” Datamation, pp. 48-59, May 1973.

[22] —. “‘Software engineering,”” IEEE Trans. Comput., vol. C-25,
pp. 1226-1241, Dec. 1976.

[23] —, Software Engineering Economics. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[24] —. The hardware/software cost ratio: Is it a myth?"” Computer,
vol. 16, pp. 78-80, Mar. 1983.

[25] —, “‘Software engineering economics,”” IEEE Trans. Software
Eng., vol. SE-10, pp. 4-21, Jan. 1984.

[26] —, ““COCOMO: Answering the most frequent questions.’’ in

Proc. COCOMO Users’ Group, Wang Institute, May 1985.

1475

[27] —, “*A sprial model of software development and enhancement,”’
Computer, vol. 21, pp. 61-72, May 1988.

[28] B. W. Boehm, T. E. Gray, and T. Seewaldt, ‘‘Prototyping vs. spec-
ifying: A multi-project experiment,”’ IEEE Trans. Software Eng.,
vol. SE-10, pp. 133-145, May 1984.

[29] F. P. Brooks, Jr., The Mythical Man-Month.
dison-Wesley, 1975.

[30] J. R. Brown and M. Lipow, ‘‘The quantitative measurement of soft-
ware safety and reliability,”” TRW Rep. QR 1776, Aug. 1973.

[31] R. J. A. Buhr, C. M. Woodside, G. M. Karam, K. Van Der Loo,
and G. D. Lewis, ‘‘Experiments with Prolog design descriptions
and tools in CAEDE: An iconic design environment for multitask-
ing, embedded systems,’’ in Proc. 8th Int. Conf. Software Engi-
neering, Aug. 1985, pp. 62-67.

[32] J. Buxton, ‘‘Requirements for Ada programming support environ-
ments: ‘Stoneman’,”” U.S. Dep. Defense, OSD/R&E, Washington,
DC, Feb. 1980.

[33] J. D. Couger and R. A. Zawacki, Motivating and Managing Com-
puter Personnel. New York: Wiley, 1980.

[34] B. Curtis, ‘‘Fifteen years of psychology in software engineering:
Individual differences and cognitive science,’” in Proc. 7th Int. Conf.
Software Engineering, Mar. 1984, pp. 97-106.

[35] E. B. Daly, ‘‘Management of software engineering,”’ IEEE Trans.
Software Eng., vol. SE-3, pp. 229-242, May 1977.

[36] T. De Marco, Controlling Software Projects. New York: Your-
don, 1982.

[37]1 T. A. De Marco and T. Lister, ‘‘Programmer performance and the
effects of the workplace,’” in Proc. 8th Int. Conf. Software Engi-
neering, Aug. 1985, pp. 268-272.

[38] W. J. Doherty and R. P. Kelisky, ‘‘Managing VM/CMS for user
effectiveness,”” IBM Syst. J., vol. 18, no. 1, pp. 143-163, 1979.

[39] A. Douville, J. Salasin, and T. H. Probert, ‘‘Ada impact on CO-
COMO workshop report,”” Inst. Defense Analysis, May 1985.

[40) M. Dowson and J. C. Wileden, Ed., Proc. Second Software Process
Workshop (ACM Software Eng. Notes), Aug. 1986.

[41] S. W. Draper and D. A. Norman, ‘‘Software engineering for user
interfaces,”’ IEEE Trans. Software Eng., vol. SE-11, Mar. 1985.

{42] Electronic Industries Association, ‘‘DoD computing activities and
programs: Ten year market forecast issues, 1985-1995,”" Oct. 1985.

[43] 1. L. Elshoff, ‘‘An analysis of some commercial PL/I programs,”
IEEE Trans. Software Eng., vol. SE-2, pp. 113-120, June 1976.

[44] M. R. Fagan, ‘‘Design and code inspections to reduce errors in pro-
gram development,”” IBM Syst. J., vol. 15, no. 3, pp. 182-211,
1976.

[45] S. 1. Feldman, ‘‘MAKE—A program for maintaining computer pro-
grams,”’ Unix Programmers’ Manual, vol. 9, pp. 255-265, Apr.
1979.

[46] D. Fisher, ‘‘Software costs in the Department of Defense,”” IDA
Rep. R-1079, 1974.

[47] G. Formica, ‘‘Software management by the European space agency:
Lessons learned and future plans,”’ in Proc. Third Int. Software
Management Conf., AIAA/RAeS, London, Oct. 1978, pp. 15-35.

[48) F. R. Freiman and R. E. Park, ‘‘PRICE software model version 3:
An overview,” in Proc. IEEE-PINY Workshop Quantitative Sofi-
ware Models, IEEE Catalog No. TH0067-9, Oct. 1979, pp. 32-41.

{49] E. Frewin, P. Hamer, B. Kitchenham, N. Ross, and L. Wood,
*‘Quality measurement and modeling—State of the art report,”’ ES-
PRIT Rep. REQUEST/STC-gdf/001/51/QL-RP/00.7, July 1985.

[50] ‘‘GUIDE survey of new programming technologies,”” Guide Proc.,
GUIDE, Inc., Chicago, IL, pp. 306-308, 1979.

[511 T. Gilb, Design by Objectives. Amsterdam, The Netherlands:
North-Holland, 1985.

[52] R. L. Glass and R. A. Noiseux, Software Maintenance Guidebook.
Englewood Cliffs, NJ: Prentice-Hall, 1981.

[53] J. D. Gould and C. Lewis, ‘‘Designing for usability: Key principles
and what designers think,”’ Commun. ACM, pp. 300-311, Mar.
1985.

[54] E. Grant and H. Sackman, ‘‘An exploratory investigation of pro-
grammer performance under on-line and off-line conditions,”” Sys-
tem Development Corp., Rep. SP-2581, Sept. 1966.

[55] C. C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich,
*‘Report on a knowledge-based software assistant,”” USAF/RADC
Rep. RADC-TR-195, Aug. 1983.

[56] C. C. Green, ‘‘The design of the PSI program synthesis system,”’
in Proc. 2nd Int. Conf. Software Engineering, Oct. 1976, pp. 4-18.

{57] T. Guimaraes, ‘*A study of application program development tech-
niques,”” Commun. ACM, pp. 494-499, May 1985.

Reading, MA: Ad-

1476

[58] M. H. Halstead, Elements of Software Science.
ier, 1977.

[59] E. Harel and E. R. Mc Lean, “‘The effects of using a nonprocedural
language on programmer productivity,’”” UCLA Grad. School Man-
agement, Inform. Syst. Working Paper 3-83, Nov. 1982.

[60} P. Heckel, The Elements of Friendly Software Design.
Books, 1984.

[61] J. R. Herd, J. N. Postak, W. E. Russel, and K. R. Stewart, ‘‘Soft-
ware cost estimation study—Study results,’” Doty Associates, Inc.,
Rockville, MD, Final Tech. Rep. RADC-TR-77-220, Vol. I (of
two), June 1977.

[62] E. Horowitz, A. Kemper, and B. Narasimhan, ‘A survey of appli-
cation generators,’’ IEEE Software, vol. 2, pp. 40-54, Jan. 1985.

[63]1 W. A. Hosier, ‘‘Pitfalls and safeguards in real-time digital systems
with emphasis on programming,’” IRE Trans. Eng. Management,
pp. 99-115, June 1961; in Proc. 9th Int. Conf. Software Engineer-
ing, IEEE, Mar. 1987.

[64] H. Hunke, Ed., Software Engineering Environments.
The Netherlands: North-Holland, 1981.

[65] M. A. Jackson, System Development. Englewood Cliffs, NJ: Pren-
tice-Hall, 1983.

[66] R. W. Jensen, “*An improved macrolevel software development re-
source estimation model,’” in Proc. 5th ISPA Conf., Apr. 1983, pp.
88-92.

[67] —, *‘Projected productivity impact of near-term Ada use in soft-
ware system development,’” in Proc. 7th ISPA Conf., May 1985.

[68] R. W. Jensen and S. Lucas, ‘‘Sensitivity analysis of the Jensen soft-
ware model,”’ in Proc. 5th ISPA Conf., Apr. 1983, pp. 384-389.

[69] T. C. Jones, ‘‘Demographic and technical trends in the computing
industry,’” Software Productivity Research, Inc., July 1983.

[70] —, Programming Productivity. New York: McGraw-Hill, 1986.
[71] E. Kant, *‘Understanding and automating algorithm design,’” IEEE
Trans. Software Eng., vol. SE-11, pp. 1361-1374, Nov. 1985.

[72] B. W. Kernighan, **The Unix system and software reusability,”’
IEEE Trans. Software Eng., vol. SE-10, pp. 513-518, Sept. 1984.

[73] B. W. Kernighan and J. R. Mashey, ‘‘The Unix programming en-
vironment,’’ Computer, vol. 14, pp. 12-24, Apr. 1981.

[74] B. W. Kernighan and P. J. Plauger, Sofiware Tools. Reading, MA:
Addison-Wesley, 1976.

[75] R. G. Lanegran and C. A. Grasso, ‘‘Software engineering with
reusable design and code,”’ IEEE Trans. Software Eng., vol. SE-
10, pp. 498-501, Sept. 1984.

[76] J. Z. Lavi, **A systems engineering approach to software engineer-
ing,”” in Proc. IEEE Software Workshop, Feb. 1984, pp. 49-57.

[77] M. M. Lehman, V. Stenning, and C. Potts, Eds., Proc. Software
Process Workshop, 1EEE, Feb. 1984.

[78] E. Lieblein, ‘*‘STARS program overview,’’ in Proc. DoD/Industry
STARS Workshop, EIA, May 1985.

[79] B. P. Lientz and E. B. Swanson, Software Maintenance Manage-
ment: A study of the Maintenance of Computer Application Software
in 487 Data Processing Organizations. Reading, MA: Addison-
Wesley, 1980.

[80] M. Lundeberg, G. Goldkuhl, and A. Nilsson, Information Systems
Development: A Systematic Approach. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[81]1 J. H. Manley, ‘‘Software engineering provisioning process,’” in
Proc. 8th Int. Conf. Software Engineering, Aug. 1985, pp. 273~
284,

[82] E. W. Martin, ‘‘Strategy for a DoD software initiative,”” Computer,
vol. 16, pp. 52-59, Mar. 1983.

[83] Y. Matsumoto, ‘‘Management of industrial software production,’’
Computer, vol. 17, pp. 59-70, Feb. 1984.

[84] T. J. McCabe, ‘A complexity measure,”” IEEE Trans. Software
Eng., vol. SE-2, pp. 308-320, Dec. 1976.

[85] J. A. McCall, P. K. Richards, and G. F. Walters, ‘‘Factors in soft-
ware quality,”” General Electric, Co., Rep. GE-TIS-77 CIS 02,
1977.

[86] D. D. McCracken and M. A. Jackson, ‘‘Life cycle concept consid-
ered harmful,”” ACM Software Eng. Notes, pp. 29-32, Apr. 1982.

[87] R. W. McGuffin, A. E. Elliston, B. R. Tranter, and P. N. West-
macott, ‘‘CADES—Software engineering in practices,’’ in Proc. 4th
Int. Conf. Software Engineering, Sept. 1979, pp. 136-144.

[88] P. J. Metzger, Managing a Programming Project, 2nd ed.
wood Cliffs, NJ: Prentice-Hall, 1981.

[89] J. Munson, ‘‘Report of the USAF Scientific Advisory Board com-
mittee on the high cost and risk of mission-critical software,”” Dec.

1983.

New York: Elsev-

Warmer

Amsterdam,

Engle-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 10, OCTOBER 1988

[90] Naval Ocean Systems Center, ‘‘SEATECS: Software engineering
automation for tactical embedded computer systems,”’ Aug. 31,
1982.

[91] E. A. Nelson, Management Handbook for the Estimation of Com-
puter Programming Costs, Systems Development Corp., Ad-
A648750, Oct. 31, 1966.

[92] D. L. Parnas, ‘‘Designing software for ease of extension and con-
traction,”” IEEE Trans. Software Eng., vol. SE-5, pp. 128-137,
Mar. 1979.

[93] D. L. Parnas, P. C. Clements, and D. M. Weiss, ‘‘The modular
structure of complex systems,’” I[EEE Trans. Software Eng., vol.
SE-11, pp. 259-266, Mar. 1985.

[94] M. E. Porter, Competitive Strategy: Techniques for Analyzing In-
dustries and Competitors. New York: Free Press, 1980.

[95] —, Competitive Advantage. New York: Free Press, 1985.

[96] L. H. Putnam, ‘‘A general empirical solution to the macro software
sizing and estimating problem,”’ JEEE Trans. Software Eng., vol.
SE-4, pp. 345-361, July 1978.

[97] Raytheon Computer Services, ‘‘Reusable software: Theory and im-
plementation,’” Raytheon Co., 1983.

[98]1 D.). Reifer, Tutorial: Software Management.
IEEE Computer Society, 1981.

[99] D. J. Reifer and S. Trattner, ‘‘A glossary of software tools and tech-
niques,’” Computer, vol. 10, pp. 52-60, July 1977.

[100] S. P. Reiss, ‘‘PECAN: Program development systems that support
multiple views,”” IEEE Trans. Software Eng., vol. SE-11, pp. 276~
285, Mar. 1985.

[101] C. Rich and H. E. Shrobe, ‘‘Initial report on a programmer’s ap-
prentice,”” IEEE Trans. Software Eng., pp. 456-467, Nov. 1978.

[102] R. J. Rubey, J. A. Dana, and P. W. Biche, ‘‘Quantitative aspects
of software validation,’’ IEEE Trans. Software Eng., vol. SE-1, pp.
150-155, June 1975.

[103] H. A. Rubin, ‘*A comparison of cost estimation tools,”’ in Proc.
8th Int. Conf. Software Eng., Aug. 1985, pp. 174-180.

[104] B. Shneiderman, Software Psychology: Human Factors in Computer
and Information Systems. Cambridge, MA: Winthrop, 1980.
[105] D. R. Smith, G. B. Kotik, and S. J. Westfold, ‘‘Research on knowi-
edge-based software environments at Kestrel Institute,”” IEEE Trans.

Software Eng., vol. SE-11, pp. 1278-1295, November 1985.

[106] H. M. Sneed and A. Marey, ‘‘Automated software quality assur-
ance,”” IEEE Trans. Software Eng., vol. SE-11, pp. 909-916, Sept.
1985.

[107] D. Spadaro, ‘‘Project evaluation made simple,”’ Datamation, pp.
121-124, Nov. 1985.

[108] H. G. Steubing, ‘‘A software engineering environment (SEE) for
weapon system software,”” IEEE Trans. Software Eng., vol. SE-10,
pp. 384-397, July 1984.

[109] G. E. Swinson, ‘‘Workstation-based rapid simulation aids for dis-
tributed processing networks,’” in Proc. IEEE Simulation Conf.,
1984.

[110] STARS Joint Program Office, ‘‘STARS—SEE operational concept
document,”” Oct. 2, 1985.

[111]} D. Teichroew and E. A. Hershey III, ‘‘PSL/PSA: A computer-aided
technique for structured documentation and analysis of information
processing systems,”’ [EEE Trans. Software Eng., vol. SE-3, pp.
41-48, Jan. 1977.

[112] W. Teitelman, ‘‘A tour through Cedar,”” IEEE Trans. Software
Eng., vol. SE-11, pp. 285-302, Mar. 1985.

[113] W. Teitelman and L. Masinter, ‘‘The Interlisp programming envi-
ronment,”” Computer, vol. 14, pp. 25-33, Apr. 1981.

[114] A. J. Thadhani, ‘‘Factors affecting programmer productivity during
application development,”’ IBM Syst. J., vol. 23, pp. 19-35, Nov.
1984,

{115] C. E. Walston and C. P. Felix, ‘‘A method of programming mea-
surement and estimation,”” /BM Syst. J., vol. 16, no. 1, pp. 54-73,
1977.

[116] S. P. Wartik and M. H. Penedo, “‘Fillin: A reusable tool for form-
oriented software,”” IEEE Software, vol. 3, pp. 61-69, Mar. 1986.

[117) A. 1. Wasserman, Tutorial: Software Development Environments.
Washington, DC: Computer Society, 1981.

[118] R. G. Waters, ‘“The Programmer’s Apprentice: A session with KBE-
macs,”” IEEE Trans. Software Eng., vol. SE-11, pp. 1296-1320,
Nov. 1985.

[119] P. Wegner, ‘‘Capital-intensive software technology,’' IEEE Soft-
ware, vol. 1, pp. 7-45, July 1984.

[120] G. M. Weinberg, The Psychology of Computer Programming. New
York: Van Nostrand Reinhold, 1971.

Washington, DC:

BOEHM AND PAPACCIO: UNDERSTANDING SOFTWARE COSTS

[121] G. M. Weinberg and E. L. Schulman, ‘*Goals and performance in
computer programming,”” Human Factors, vol. 16, no. 1, pp. 70-
717, 1974.

[122] R. D. Wiiliams, ‘‘Managing the development of reliable software, ™’
in Proc. 1975 Int. Conf. Reliable Software, IEEE/ACM, Apr. 1975,

. 3-8.

- 23) pAp O. Williman and C. O’Donnell, ‘‘Through the central ‘multipro-
cessor’ avionics enters the computer era,’” Astronautics and Aero-
nautics, July 1970.

[124] R. W. Wolverton, *‘The cost of developing large-scale software,”
IEEE Trans. Comput., vol. C-24, pp. 615-636, June 1975.

[125] P. Zave, ‘*The operational versus the conventional approach to soft-
ware development,”” Commun. ACM, pp. 104-118, Feb. 1984.

[126] M. Zelkowitz and S. Squires, Ed., Proc. ACM Rapid Prototyping
Symp., ACM, Oct. 1982.

Barry W. Boehm (SM’84) received the B.A. de-
gree in mathematics from Harvard University,
Cambridge, MA, in 1957 and the M.A. and Ph.D.
degrees in mathematics from the University of
California, Los Angeles, in 1961 and 1964, re-
spectively.

He is the Chief Scientist for the Redondo
Beach, California-based TRW Defense Systems
Group. He is responsible for the Group’s Ada of-
fice as well as its technology education program
and the Quantum Leap program in software de-

1477

velopment. He is also an Adjunct Professor of Computer Science at the
University of California, Los Angeles.

Philip N. Papaccio received the B.S.E.E. degree
from the U.S. Naval Academy and the M.B.A.
degree from the University of Southern Califor-
nia, Los Angeles. He is also a graduate of the
UCLA Executive Management Program.

He is Vice President and General Manager of
the System Development Division for the TRW
Defense Systems Group of the Electronics and
Defense Sector. The Division, located in Man-
hattan Beach, CA., is responsible for software sys-
tem integration and sensor data processing for ma-
jor Department of Defense programs. Previously, he was Assistant General
Manager of the Software and Information Systems Division of the TRW
Defense Systems Group and was responsible for the development and op-
eration of computer-based systems. Prior to joining TRW in 1977, he was
a member of the United States Air Force where he achieved the rank of
Colonel. He was associated with research and development for the U.S.
space program.

