
SAIC-NASA-98028
 Final 12/20/02

:

Final Report for Fault-Based Analysis: Improving
Independent Verification and Validation (IV & V)

through Requirements Risk Reduction

Contract Number: NAS2-98028
Document Number: SAIC-NASA-98028

20 December 2002

Prepared for:

National Aeronautics and Space Administration

 Software IV&V Facility
100 University Drive

Fairmont, West Virginia 26554

Prepared by:

Dr. Jane Hayes, UKY/Science Applications International Corporation/D.N.American

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) i

Table of Contents

Executive Summary ...iii

1. Introduction..1

2. Standard Definitions ..2

3. Results by Task ..3

3.1 Task 1 - Select a Known Fault Taxonomy ..3
3.2 Task 2 - Presentation and Milestone Meeting 2 (PMR2) ...9
3.3 Task 3 - Presentation and Milestone Meeting 3 (PMR3) ...9
3.4 Task 4 - Examine NASA-Specific Requirements Faults..10
3.5 Task 5 - Build a List of IV&V Techniques ...10
3.6 Task 6 - Adopt or Build a Method for Extending the Taxonomy.............................15

3.6.1 Introduction ..15
3.6.2 Definitions..16
3.6.3 Process to Extend a Fault Taxonomy ..16

3.6.3.1 Motivation ...16
3.6.3.2 NASA Software Classes...19
3.6.3.3 Process (A) for Extending a Fault Taxonomy for a Project Class..20
3.6.3.4 Process (B) for Extending a Class Taxonomy for a Project22

3.6.4 Summary ..25
3.7 Task 7 - Implement the Method to Extend the Fault Taxonomy..............................26
3.8 Task 8 - Document all Results ..35
3.9 Task 9 - Year-End Report and Presentation (PMR 4)..35

4. Conclusions and Recommendations ..35

4.1 Conclusions/Findings ...35
4.1.1 Orthogonality Findings ...35
4.1.2 General Findings ..36

4.2 Recommendations ..36

5. Future ...37

6. References...37

Appendix A Final PMR Slides ..Error! Bookmark not defined.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) ii

List of Tables

Table 3-1. NRC Requirement Fault Taxonomy [4]. ..4
Table 3-2. Expanded Requirement Fault Taxonomy. ..5
Table 3-3. New Revised Requirement Fault Taxonomy..8
Table 3-4. NASA IV&V Techniques..11
Table 3-5 . Process (A) for Extending a Fault Taxonomy for Classes (A-D) of NASA Software

Projects. ...21
Table 3-6. Estimation of Fault Frequency for Software Requirement Fault Types.22
Table 3-7. Determination of Critical Requirement Faults for a System.22
Table 3-8. Process for a Project-Specific Fault Taxonomy..23
Table 3-9. Estimation of Tolerance Factor for a System Function Area to Requirement Fault

Type. ...24
Table 3-10. Calculation of Fault Exposure. ..25
Table 3-11. Final Generic NASA Requirement Fault Taxonomy..28
Table 3-12. Draft Class-Specific Requirement Fault Taxonomy for NASA Class A Projects....32
Table 3-13. Draft Class-Specific Requirement Fault Taxonomy for NASA Class B Projects. ...33
Table 3-14. Draft Class-Specific Requirement Fault Taxonomy for NASA Class C Projects. ...33
Table 3-15. ISS Project Categorization Percentage Data...34

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) iii

Executive Summary

The purpose of this research is to develop a requirements-driven method for selecting
IV&V techniques to apply. The first phase of the work concentrated on building a NASA-
specific fault taxonomy, as well as a process for tailoring it to a class of projects or a
specific project. During this year of the project we selected a known requirement fault
taxonomy, from NUREG/CR-6316 [4], and performed a thorough literature survey to
enhance it (Task 1). We examined NASA requirement faults for 6 systems and enhanced
the taxonomy further (Task 4). These activities resulted in a reorganization of and three
additions to the taxonomy. We developed two processes, one for tailoring the NASA
taxonomy for classes of software projects, and one for tailoring the taxonomy for a specific
software project (Task 6). We then performed the first process several times, further
improving the process each time (Task 7). The participation of the International Space
Station (ISS) project was pivotal in this activity. We also developed a preliminary list of
IV&V techniques that can be applied during the requirement phase (Task 5). We presented
the results of our work at two Program Management Reviews (PMRs), at the NASA
Software Assurance Symposium, and to the ISS project at JSC, Houston, Texas. The final
PMR presentation is enclosed with this report (Section 3.9). Much positive feedback
regarding this project has been received, particularly from the ISS project. Though the
follow-on to this project has not been funded, we plan to pursue other funding avenues to
continue the research.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 1
Final Report.doc

1

Final Report for Fault-Based Analysis: Improving
Independent Verification and Validation (IV & V)

through Requirements Risk Reduction

1. Introduction

This final report presents the findings of the first phase of the project for Fault-Based
Analysis: Improving Independent Verification and Validation (IV&V) through
Requirements Risk Reduction.

The problem addressed by this project is that there is never enough time or money to
perform IV&V on everything associated with a software project. We have only high-level
knowledge of how the potential existence of specific requirements faults increases the risk
of NASA projects. We have only high-level knowledge of how specific IV&V techniques
(requirements tracing, code analysis, etc.) contribute to improved NASA system software
reliability and reduced risk.

Therefore, there is a need to wisely select techniques to apply when performing IV&V on
NASA programs. Resources are constrained, and we seek to lower program risk as much
as possible with the least expenditure of time and money as possible. Specifically, we need
to improve how we focus our resources for IV&V of Critical/Catastrophic High-Risk
(CCHR) software functions. The nuclear power industry has found that a fault-based
analysis method results in the optimal application of resources to V&V and IV&V of their
critical software applications. They have identified the types of faults that are common in
nuclear power system software requirements, and then have identified the requirements
analysis techniques that can best prevent or detect these types of requirements faults.

The project objective in the first phase was to develop a requirements fault taxonomy for
NASA systems (expandable to a general one), develop a taxonomy of IV&V techniques,
examine requirements analysis techniques to determine what faults they can detect, and
develop guidance for NASA IV&V based on the results. For the first phase of the project
as detailed in this final report, the objectives were to build a list of IV&V techniques, adopt
or build a method for extending taxonomies, and implement this method for a requirements
fault taxonomy for NASA systems (expandable to a general one).

All first phase project objectives were met and the results per project task are detailed in
this report. This project had nine specific tasks as follows:

• Task 1 – Select a Known Fault Taxonomy
• Task 2 – Presentation and Milestone Meeting 2 (PMR 2)
• Task 3 – Presentation and Milestone Meeting 3 (PMR 3)
• Task 4 – Examine NASA-specific requirements faults
• Task 5 – Build a list of IV&V techniques

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 2
Final Report.doc

2

• Task 6 – Adopt or build a method for extending the taxonomy
• Task 7 – Implement the method to extend the fault taxonomy (to fully consider

NASA systems)
• Task 8 – Document all results
• Task 9 - Year-end report and presentation (PMR 4)

The organization of this report is as follows:

Section Content

Section 1 Introduction
Section 2 Standard Definitions
Section 3 Results by Task (Tasks 1 – 9)
Section 4 Conclusions/Findings and Recommendations
Section 5 Future
Section 6 References

2. Standard Definitions

Fault – defect or flaw.

Fault Taxonomy – orderly classification of software faults according to their
characteristics and relationships.

Requirements Analysis – analysis of requirements to ensure completeness, consistency,
clarity, explicitness, etc. [1].

Requirement Fault – fault that originates in the requirements phase (e.g., omitted
requirement, incomplete requirement description).

NASA Software Class – A NASA software classification scheme developed based on the
combined factors of cost, size, complexity, lifespan, risk, and consequences of failure. For
each class there is a corresponding set of minimum requirements for software management,
assurance, and engineering activities. This scheme is detailed in the NASA Software
Safety Standard [3].

Class-Specific Taxonomy – Starting with our researched generic fault taxonomy, NASA
project requirement faults and problem reports, and project specific information, perform
Process A as discussed in Section 3.6.3.3. The result is a taxonomy specific to a NASA
software project Class.

Project-Specific Taxonomy – Starting with the appropriate class-specific taxonomy,
NASA project requirement faults and problem reports, and project specific information,
perform Process B as discussed in Section 3.6.3.4. The result is a taxonomy specific to a
NASA project.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 3
Final Report.doc

3

3. Results by Task

The next few sub-sections present the detailed results of each task associated with the first
phase of this project.

3.1 Task 1 - Select a Known Fault Taxonomy

For this task, we first chose the Nuclear Regulatory Commission (NRC) requirement fault
taxonomy from NUREG/CR-6316 [4], as shown in Table 3-1. We selected this taxonomy
based on two key criteria:

1. The fault categories do not overlap with each other, and

2. The fault categories were not specific to a particular language, environment, or
system development approach.

Next, we performed a thorough search for requirements fault taxonomies. We searched
resources such as IEEE, ACM, Altavista, Hotbot, Google, Yahoo, Lycos, Excite, Wilson
Web, Kluwer, Cambridge Scientific Abstracts (CSA), Cite seer Search engines, CERT
Coordination Center (SEI), NASA website, NASA IV & V Facility online resources, and
libraries. We found many papers that confirmed our requirements fault types and found
only a few papers that described “new” requirement faults. Our literature survey
encompassed 61 references. We added a category for each “new” fault type such as not
traceable, non-verifiable, unachievable, misplaced, and intentional deviation. Based on
this, the requirement fault taxonomy is shown in Table 3-2.

We identified 18 requirement faults as opposed to the 13 in Table 3-1. As we examined the
faults very closely we found that there was an overlap in the existing taxonomy. As shown
in Table 3-3, the taxonomy was trimmed to 13 main requirement fault categories instead of
18 categories in Table 3-2. These 13 are somewhat different from the original 13 in the
NRC taxonomy we started with in Table 3-1. The resulting new set of 13 categories was
considered to be relevant as a NASA "generic" fault taxonomy.

We arrived at 13 categories as follows. We grouped all incomplete requirement faults into
one major category incomplete. Under incomplete major requirement fault, we have two
subfault categories: 1) Incomplete Decomposition and 2) Incomplete Requirement
Description. These are categories .1 and .5 in Table 3-2. We made a distinction between
omitted/missing requirement and incorrect requirement by making categories .10 and .11
two separate major fault categories in Table 3-2.

We consider omitted or missing requirement as one major category. The subfault
categories identified under this category are: 1) Omitted requirement, 2) Missing External
Constants, and 3) Missing Description of initial system state. These are .2, .10, and .11
categories in Table 3-2. We identified incorrect as one major category. The subfault
categories are: 1) Incorrect External Constants, 2) Incorrect Input or Output Descriptions,
3) Incorrect Description of Initial System State, and 4) Incorrect Assignment of Resources
(i.e., categories .10, .11, .13, .8 of Table 3-2).

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 4
Final Report.doc

4

We added one major requirement fault, ambiguous, and under it we grouped: 1) Improper
translation (category .3 of Table 3-2), and added a new subfault category 2) Lack of clarity.
We grouped conflicting requirements into one major fault category, inconsistent, and the
subfaults under this category are: 1) External Conflicts, and 2) Internal Conflicts (i.e., .7
and .9 categories in Table 3-2). We added a new major requirement fault, redundant, to
cover the situation where a requirement appears duplicated elsewhere in the specification.
We left the remaining requirement faults as one major category as each of these fault types
do not overlap.

As you can observe, there is no operational environment incompatibility category in our
revised requirement fault taxonomy in Table 3-3. This is because the requirement subfault
missing external constants subsumes operational environment incompatibility fault. This
is a more detailed or decomposed lower level fault of missing external constants and we
found that it is very difficult to make a clear distinction between these two faults during the
requirements phase. In order to avoid overlap, we consider any fault under operational
environment incompatibility category as subfault missing external constants under the
omitted requirement major fault.

Table 3-1. NRC Requirement Fault Taxonomy [4].

Type Description Occurs

0. Requirements Originate in Requirements phase; found in the Requirements
Specification

1. Incomplete Decomposition Failure to adequately decompose a more abstract specification. System,
Sub, Mod

2. Omitted Requirement Failure to specify one or more of the next lower levels of
abstraction of a higher level specified.

System,
Sub, Mod

3. Improper Translation

Failure to carry detailed requirement through decomposition
process, resulting in ambiguity in the specification.

System,
Sub, Mod

4. Operational Environment
Incompatibility

Specification which does not accommodate the operational
environment, such as data rates, data formats, etc.

System,
Sub, Mod

5. Incomplete Requirement
Description

Failure to fully describe all requirements of a function. Mod

6. Infeasible Requirement

Requirement, which is unfeasible or impossible to achieve given
other system factors, e.g., process speed, memory available.

Mod

7. Conflicting Requirement

Requirements that are pairwise incompatible. System,
Sub, Mod

8. Incorrect Assignment of
Resources

Over-or-under stating the computing resources assigned to a
specification.

Mod

9. Conflicting Inter-system
Specification

Requirements of cooperating systems, or parent/embedded
systems, which taken pairwise are incompatible.

System

10. Incorrect or missing external
constants

Specification of an incorrect value or variable, or a missing value
or variable in a requirement.

Mod

11. Incorrect or missing
description of initial system state

Failure to specify the initial system state, when that state is not
equal to 0.

Mod

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 5
Final Report.doc

5

Type Description Occurs

12. Overspecification of
Requirements

Requirements or specification limits that are excessive for the
operational need, causing additional system cost.

System,
Sub

13. Incorrect input or output
descriptions

Failure to fully describe system input or output. Mod

Table 3-2. Expanded Requirement Fault Taxonomy.

Type

Description

Occurs

Source

Development
phase where it
is earliest
detectable

.0 Requirements

Originate in Requirements phase; found in the
Requirements Specification

.1 Incomplete
Decomposition

Failure to adequately decompose a more abstract
specification.

System,
Sub, Mod

[2], [13], [14] Requirements

.2 Omitted Requirement

Failure to specify one or more of the next lower levels
of abstraction of a higher level specified.

System,
Sub, Mod

[2], [4], [9],
[10], [11],
[13]

Requirements

.3 Improper Translation

Failure to carry detailed requirement through
decomposition process, resulting in ambiguity in the
specification.

System,
Sub, Mod

[2], [3], [4],
[8], [9], [10],
[11], [13],
[14]

Requirements

.4 Operational Environment
Incompatibility

Specification which does not accommodate the
operational environment, such as data rates, data
formats, etc.

System,
Sub, Mod

[2], [3], [8],
[13]

Requirements

.5 Incomplete Requirement
Description

Failure to fully describe all requirements of a function. Mod [2], [3], [10],
[11], [13],
[14]

Requirements

.6 Infeasible Requirement

Requirement, which is unfeasible or impossible to
achieve given other system factors, e.g., process
speed, memory available.

Mod [2], [13] Requirements

.7 Conflicting Requirement

Requirements that are pairwise incompatible. System,
Sub, Mod

[2], [3], [4],
[8], [9], [10],
[11], [13],
[14]

Requirements

.8 Incorrect Assignment of
Resources

Over-or-under stating the computing resources
assigned to a specification.

Mod [2], [10],
[11], [13]

Requirements

.9 Conflicting Inter-system
Specification

Requirements of cooperating systems, or
parent/embedded systems, which taken pairwise are
incompatible.

System [2], [3], [10],
[11], [13],
[14]

Requirements

.10 Incorrect or missing
external constants

Specification of an incorrect value or variable, or a
missing value or variable in a requirement.

Mod [2], [10],
[11], [13]

Requirements

.11 Incorrect or missing
description of initial system
state

Failure to specify the initial system state, when that
state is not equal to 0.

Mod [2], [10],
[11], [13]

Requirements

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 6
Final Report.doc

6

Type

Description

Occurs

Source

Development
phase where it
is earliest
detectable

.12 Overspecification of
Requirements

Requirements or specification limits that are
excessive for the operational need, causing
additional system cost.

System, Sub [2], [4], [7],
[9], [13]

Requirements

.13 Incorrect input or output
descriptions

Failure to fully describe system input or output. Mod [2], [10],
[11], [13]

Requirements

.14 Not traceable

Requirement which is specified but not implemented.
Items cannot be traced to the appropriate previous or
subsequent phases.

System,
Sub, Mod

[10], [11],
[14]

Design

.15 Unachievable item

Requirement that is specified but difficult to achieve.
The requirement statement or functional description
cannot be true in the reasonable lifetime of the
product

System,
Sub, Mod

[10], [11] Design, coding

.16 Non-verifiable Item The Requirement statement or functional description
cannot be verified by any reasonable testing methods

System,
Sub, Mod

[10], [11],
[14]

Design, coding,
testing

.17 Wrong Section Information which is in a different section in
requirements document

System,
Sub, Mod

[13] Requirements

.18 Intentional Deviation from
specifications

The Requirement which is specified at higher level
but intentionally deviated at lower level

System,
Sub, Mod

[13] Requirements

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 7
Final Report.doc

7

 Incompleteness

 Omitted/Missing

 Incorrect

Requirement
Faults
 Ambiguous

 Infeasible

 Inconsistent

 Overspecification

 Not Traceable

 Non-Verifiable

 Misplaced

 Intentional Deviation

 Redundant

Figure 3-1. Connectors of Requirement Faults.

Missing External Constants

Omitted Requirement

Incorrect External Constants

Incorrect Assignment of
Resources

Incorrect Description of Initial
System State

Lack of Clarity

Ambiguous Translation

External Conflicts

Internal Conflicts

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 8
Final Report.doc

8

Table 3-3. New Revised Requirement Fault Taxonomy.

Major Fault Sub-Faults Description of Sub-Faults Original taxonomy

faults mapped here

.1 Incompleteness

.1.1 Incomplete
Decomposition
.1.2 Incomplete
Requirement
Description

.1.1 Failure to adequately
decompose a more abstract
specification.
.1.2 Failure to fully describe all
requirements of a function.

.1,.5

.2 Omitted/Missing

.2.1 Omitted
Requirement
.2.2 Missing External
Constants
.2.3 Missing Description
of Initial System State

.2.1 Failure to specify one or more
of the next lower levels of
abstraction of a higher level
specified.
.2.2 Specification of a Missing
value or variable in a requirement.
.2.3 Failure to specify the initial
system state, when that state is not
equal to 0.

.2,.10,.11

.3 Incorrect .3.1 Incorrect External
Constants
.3.2 Incorrect Input or
Output Descriptions
.3.3 Incorrect
Description of Initial
System State
.3.4 Incorrect
Assignment of
Resources

.3.1 Specification of an incorrect
value or variable in a requirement.
.3.2 Failure to fully describe system
input or output.
.3.3 Failure to specify the initial
system state, when that state is not
equal to 0.
.3.4 Over-or-under stating the
computing resources assigned to a
specification.

.10,.11, .13, .8

.4 Ambiguous

.4.1 Improper
Translation
.4.2 Lack of Clarity

.4.1 Failure to carry detailed
requirement through
decomposition process, resulting in
ambiguity in the specification.
.4.2 difficult to understand or lack of
clarity and therefore ambiguous.

.3

.5 Infeasible . ---------------------- .5.1 Requirement, which is
unfeasible or impossible to achieve
given other system factors, e.g.,
process speed, memory available.

.6

.6 Inconsistent .6.1 External Conflicts
.6.2 Internal Conflicts

.6.1 Requirements that are pairwise
incompatible.
.6.2 Requirements of cooperating
systems, or parent/embedded
systems, which taken pairwise are
incompatible.

.7,.9

.7 Overspecification --------------------- .7.1 Requirements or specification
limits that are excessive for the
operational need, causing
additional system cost.

.12

.8 Not Traceable .---------------------- .8.1 Requirement which cannot be
traced to previous or subsequent
phases.

.14

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 9
Final Report.doc

9

Major Fault Sub-Faults Description of Sub-Faults Original taxonomy
faults mapped here

.9 Unachievable Item ----------------------- .9.1 Requirement that is specified
but difficult to achieve. The
requirement statement or
functional description cannot be
true in the reasonable lifetime of
the product.

.15

.10 Non-Verifiable

---------------------- .10.1 The Requirement statement
or functional description cannot be
verified by any reasonable testing
methods
Process exists to test satisfaction
of each requirement.
Every requirement is specified
behaviorally.

.16

.11 Misplaced ----------------------- .11.1 Information which is in a
different section in requirements
document.

.17

.12 Intentional Deviation ----------------------- .12.1 The Requirement that is
specified at higher level but
intentionally deviated at lower level
from specifications.

.18

.13 Redundant or
Duplicate

----------------------- .13.1 Requirement was already
specified elsewhere in the
specification

As our three independent analysts performed the activities and implemented the processes
associated with Tasks 4 and 7 (Sections 3.4 and 3.7 respectively), changes and additions
were made to the revised taxonomy generated by Task 1 (Table 3-3 above). The final
generic taxonomy clarified and generated for NASA is discussed under Task 7 (see Table
3-11).

3.2 Task 2 - Presentation and Milestone Meeting 2 (PMR2)

Presentation materials were developed and presented at Milestone Meeting 2 (PMR2) on
3/29/02. PMR2 covered progress to date and outlined issues faced by the project. The
presentation is not included as part of this final report but can be provided again upon
request.

3.3 Task 3 - Presentation and Milestone Meeting 3 (PMR3)

Presentation materials were developed and presented at Milestone Meeting 3 (PMR3) on
6/28/02. PMR3 covered progress to date and outlined issues faced by the project. The
presentation is not included as part of this final report but can be provided again upon
request.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 10
Final Report.doc

10

3.4 Task 4 - Examine NASA-Specific Requirements Faults

Obtaining NASA project-specific fault data has proven to be difficult and it was noted that
the level of fault data detail provided varied greatly. However, we did receive and examine
IV&V “comments” on requirement problems for four projects and Project fault reports
(requirements) for another two projects. The data received was very useful. Analysis of
the data resulted in changes to our generic fault taxonomy and to our taxonomy
extension/tailoring processes.

Four projects provided data. Data from two projects was in the form of Project Fault
Reports. The data for the other projects was in the form of IV&V "comments" on
requirement problems.

Three analysts independently examined and categorized project faults for the six data
sources. Each analyst followed the fault taxonomy extension process for NASA software
classes. The fault taxonomy extension process, broken down into Process A and B, was
developed for Task 6 (see Section 3.6). In implementing Process A (see Section 3.6.3.3),
they each started with the new revised generic taxonomy that was produced as the final
product for Task 1 (see Table 3-3). During this process the analysts only consulted with
each other to verify that they were following the categorization process consistently and
had a shared understanding of the generic taxonomy and associated category definitions.

It was noted that in many cases across the six project data sources, multiple requirement
faults were included in a single Project Problem Report (PR) or IV&V comment. This
warranted special attention by the analysts to properly count and categorize project fault
data. Based on this observation, one suggestion, discussed in Section 4.2,
Recommendations, would be for the projects and IV&V reviewing analysts to document
each individual fault separately.

Further, in consultation with the primary researcher, the analysts also shared lessons
learned during the process, as they encountered them, to ensure that in the final analysis,
categorization metrics collected from each analyst could be directly compared (i.e., apples
and apples). Some of the lessons learned resulted in revisions to Process A. These lessons
also resulted in adding new generic taxonomy categories, clarifying existing category
definitions, and shedding new light on the orthogonality of the taxonomy.

Section 3.7, Task 7, discusses the clarifications and additions made to the revised
taxonomy based on lessons learned. Table 3-11 in Section 3.7 displays the final generic
taxonomy categories developed for NASA.

3.5 Task 5 - Build a List of IV&V Techniques

Table 3-4 below is a full list of IV&V activities that are commenced and/or completed
during the Software Requirements Phase of NASA Code-S Missions. For any particular
Code-S project, based on a criticality/CCHR assessment, only a relevant subset of these
activities are recommended, project-approved, and then implemented. The activities

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 11
Final Report.doc

11

described in the table below are not listed in any specific order. The table includes the
activity/technique, a description, and purpose.

The information was gathered from the following sources: NASA Code-S Statement of
Work (SOW), NASA IV&V website, SAIC NASA IV&V Methods document (for SAIC
Risk Cube), IV&V Activities PowerPoint presentations to a NASA project, SAIC NASA
IV&V Formulation Phase and Project Plan Documents/Templates, SAIC Kernels, other
internal SAIC IV&V documents/artifacts (e.g., SAIC IV&V Division Management
Guide/Plan), and industry experience of an IV&V software engineer contributing to this
project.

Table 3-4. NASA IV&V Techniques.

Activity/Technique Description Purpose
Documentation Reviews Critically evaluate system documentation

based on inspection criteria tailored to the
document’s purpose and maturity.
Evaluation criteria defined by NASA-STD-
2100-91:

• The documentation goals of the project

are adequately satisfied.
• Clear descriptions of the software

management, engineering, and
assurance processes and products are
provided.

• Consistency of format across the
project documentation is achieved.

• Traceability to the untailored Standard
is maintained.

• Traceability between products of each
phase of the development life cycle is
maintained.

Verify that the following core set of
documents exist, are adequate for the
purpose of managing project software
development activities, and are current:

• Software/Product Development Plan
• Configuration Management Plan(s)
• Quality Assurance Plans(s)
• Software Systems Specification(s)
• Integrated/Individual SW Development

Schedule(s)
• Software Test Plan(s)

Technical Reviews &
Audits—Process Audits

Independently review program process data
and information for the purpose of assessing
compliance of actual practices with
established processes.

To determine the effectiveness of process
implementation.
To detect and report risk areas based on
discrepancies between established
processes and everyday practices.
To identify areas of process improvement

Software Requirements
Analysis--Modeling with Tool

Examine tools and methods used by
developer to model sophisticated
requirements.

To verify software requirements are
correctly modeling using appropriate tools.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 12
Final Report.doc

12

Activity/Technique Description Purpose
Traceability Analysis—
Requirements

Trace various levels of requirements
throughout the software development
lifecycle.
Trace system requirements to software
requirements, software requirements to
design, design to code, code to test.
Perform a trace both forwards and
backwards, meaning all high-level
requirements are satisfied by lower-level
requirements and all lower-level
requirements are derived from high-level
requirements.

To verify the decomposition of system and
the software throughout the development
lifecycle; identify requirements not
implemented; determine test program
coverage.

Software Requirements
Analysis

Evaluate requirements documentation based
on a predefined set of criteria tailored to the
documentation’s purpose and maturity.
Examples of criteria include: correctness,
consistency, completeness, performance,
reliability, constraints, organization,
compliance, accuracy, readability, and
testability.

To assess how well the requirements
documentation satisfies software system
objectives;
To ensure an accurate translation between
higher and lower level requirements
documents

Interface Requirements
Analysis

Investigate issues, questions, comments,
violations, discrepancies, or deviations
between interface requirements and their
related software requirements for CCHR
related areas.

To verify software requirements are
correctly reflected in interface requirements
documents;
To ensure that assumptions, which are
implied in the requirements documents, are
consistent with specific requirements in
those same documents.

Inspection (Requirements) Verify that the requirements meet customer
needs, can be implemented, and are
complete, traceable, testable, and consistent
so that omissions, defects, and ambiguities
in the requirements are detected. The
inspection process may consist of multiple
steps for the segregation of the inspection
functions of: 1) Inspection planning; 2)
Product overview; 3) Inspection preparation;
4) Examination meeting; 5) Defect rework; 6)
Resolution follow-up.

To find, classify, report and analyze defects
in the product. To detect anomalies and
problems and verify their resolution by the
author.
An inspection is performed by a small team
of peer developers and includes, but is not
led by, the author. The inspection team
usually consists of three to six persons, and
in some cases includes personnel from the
test group, quality assurance, or V&V. The
participants assume specific roles in order
to find, classify, report and analyze defects
in the product. Each type of inspection is
specifically defined by its intended purpose,
required entry criteria, defect classification,
checklists, exit criteria, designated
participants, and its preparation and
examination procedures. Inspections do not
debate engineering judgments, suggest
corrections, or educate project members;
they detect anomalies and problems and
verify their resolution by the author.

Walkthroughs
(Requirements)

Participate in a walkthrough of the
requirements specification to ensure that the
software requirements are correct,
unambiguous, complete, verifiable,
consistent, modifiable, traceable, testable,
and usable throughout the life cycle.

To participate in the evaluation processes in
which development personnel lead others
through a structured examination of a
product. To ensure that the participants are
qualified to examine the products and are
not subject to undue influence.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 13
Final Report.doc

13

Activity/Technique Description Purpose
Formal Requirements
Review

Participate in formally evaluating the
adequacy of project/system/software
requirements with customer representatives
typically during the requirements stage of the
development lifecycle (e.g., at SRR and
possibly PDR). Support the customer review
by reviewing available documentation and
performing other tasks requested by the
project (for example, creating a review
checklist).

To provide insight to the status of risk items
associated with requirements in their
current state; identify action items; aid in
determining the overall condition of the
project/system/software requirements with
respect to technical issues and schedule;
assist in improving communication between
project members.

Special Studies—
Operational Concept
Analysis

Analyze the manner in which the software
system interacts with and is dependent upon
states of the environment and external
decisions, especially of human operators.
Use available project artifacts, information
and software demonstrations, if possible.

To make certain the implemented software
meets intended operational concepts.

Software Design Analysis—
General Review

Review the technical adequacy of the design
according to detailed pre-established set of
criteria and procedures.

To ensure that the software/system design
meets requirements; aid in evaluating and
mitigating risk associated with the design;
assist in determining if the project is ready
to advance to the next stage in the
development lifecycle.

IV&V Analysis of V&V Test
Program

Perform analyses of the developer’s testing
program to ensure complete and adequate
test coverage and specification.

To verify the program limits are correctly
stated and implemented.

Evaluation of Software Test
Environment/Facilities

Evaluate the test environment for suitable
tools, simulations, hardware and software.

To verify that the test environment and
facilities are sufficient for verifying system
requirements and as-built functionality.

Reusability Assessment Assess the use of commercial-off-the-shelf
(COTS) software, modification of existing
software, and the use of code modules
specifically designed for reuse.

Two important tasks to verify are: 1) to
identify dependencies on the original
hardware or software operating
environment; 2) to verify that the human
interface will function correctly in the new
target environment. Reuse of existing
software can cost-effectively improve the
quality of a software product (and reduce
requirement scope creep and reduce
injection of requirement related defects).

Security Assessment Evaluate the security controls (requirements)
on the system to ensure that they protect the
hardware and software components from
unauthorized use, modifications, and
disclosures, and to verify the accountability
of the authorized users.

To verify that these controls (requirements)
are appropriate for achieving the system's
security objectives. A system security
assessment will include both the physical
components (e.g., computers, controllers,
networks, modems, radio frequency,
infrared devices) and logical components
(e.g., operating systems, utilities,
application programs, communication
protocols, data, administrative operating
policies and procedures).

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 14
Final Report.doc

14

Activity/Technique Description Purpose
Develop the
Catastrophic/Critical/High
Risk (CCHR) Functions List
(CFL)

Develop, maintain, and deliver a
Catastrophic/Critical/High Risk (CCHR)
Functions List (CFL) as the basis for
planning IV&V areas of concentration and
work prioritization.

To develop a report that lists all of the
functions which involve software that are
classified as having catastrophic or critical
safety risk, or have high technical or
developmental risk.

For each item, the rationale for list inclusion
is identified, as well as all software involved
in the performance of the function at the
Computer Software Configuration Item –
CSCI (and Computer Software Component
- CSC) level if necessary to define IV&V
efforts clearly. How each software entity is
involved in the function is identified. The
listing also includes SAIC's
recommendations on which functions
should not be IV&V’d or receive reduced or
enhanced analyses, the rationale for each
recommendation, and the NASA IV&V
Project manager’s final decision on those
recommendations

Issues Tracking Report on a monthly basis all significant
issues involving CCHR software. Issues
may cover any part of the software
development lifecycle for CCHR software
(e.g., requirements, design, code, test, etc)

To keep NASA Management informed
about the status of all issues affecting
CCHR software. Part of required monthly
reporting to NASA. Can be included as one
of the sections of the Task Order Monthly
Progress Report.

Metrics Assessment Utilize project software development metrics,
and knowledge gained through other
sources (e.g., analyses efforts) to assess
project ability to comply with project
requirements and schedules.

To identify and report on deficiencies
throughout the life-cycle and provide the
results as part of the Monthly Software
Status Report. The metrics to be assessed
include, but are not limited to: Processor
sizing; Processor timing; Mass Memory
sizing; Software Development, Test, and
Integration Progress; and Software Errors.

Change Impact Analysis Technically assess all proposed changes
(e.g., Engineering Change Proposals, and
Discrepancy Reports) that are associated
with selected CCHR function areas or affect
processes associated with those areas to
evaluate the impact on those function areas.
Assessments may be required for changes
to flight rules, operational procedures,
hardware, software, and system
requirements to assess the impact on project
software receiving IV&V.

To assess and determine if the changes are
complete, meet the intent of the change,
are necessary, and ensure that all
performance and operational usage
impacts are identified. Assessment results
are reported in the format of an approved
Analysis Report.

IV&V Test Planning For selected CCHR software functions,
recommend independent testing with the
objective of verifying agreement between
software and software specifications and
demonstrating the software’s adequacy to
perform the mission.

To complement rather than duplicate the
project software developer’s testing. The
recommendation for independent testing is
to be submitted to the NASA IV&V Project
Manager at least 90 days prior to any
planned IV&V testing as an IV&V Test Plan.
The test plan includes the objectives,
scope, program value, and required
resources of the test being proposed. Prior
to its execution the NASA IV&V Project
Manager approves proposed IV&V testing.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 15
Final Report.doc

15

Activity/Technique Description Purpose
IV&V Project Planning Define the recommended level of IV&V

support for the project. Recommendation is
founded upon a software risk criticality
assessment conducted during the IV&V
Formulation Phase.

To recommend a set of IV&V risk–reduction
activities tailored specifically to the Project's
software development and to list the IV&V
activities per CCHR Function List (CFL)
item. To provide a schedule for executing
the recommended implementation phase
activities, correlated with the project's
schedule and to list the IV&V deliverables
and due dates based on the IV&V
Statement of Work (SOW).

3.6 Task 6 - Adopt or Build a Method for Extending the Taxonomy

We have built and adopted a method for extending the taxonomy as described in the next
few subsections. Subsection 3.6.1 provides an introduction to Task 6 explaining why it is
crucial to detect faults at the requirements phase of the software development life cycle and
our overall process for extending a fault taxonomy to avoid faults at the requirements stage.
Subsection 3.6.2 lists standard terms and definitions used throughout this section.
Subsection 3.6.3 is broken down into the following subsections: Motivation, NASA
Software Classes, Process (A) for Extending a Fault Taxonomy for a Project Class, and
Process (B) for Extending a Class Taxonomy for a Project. Under the motivation
subsection, we discuss the challenges in defining a process to extend a fault taxonomy and
the inspiration for our taxonomy. We also discuss our high level process of extending a
fault taxonomy with the help of a figure. The NASA software classes subsection discusses
the criteria for the classification of NASA projects. We split our process for extending a
fault taxonomy into two parts: Process A and Process B. Process A discusses all the
activities that are to be performed to develop a class-specific taxonomy. The outputs of
Process A are inputs to Process B (i.e., we take a class-specific taxonomy and perform all
the activities described in the Process B section to develop a project-specific taxonomy).
Subsection 3.6.4 provides a summary of our accomplishments. Throughout this section,
many tables and figures have been provided to enable a clear and better understanding of
our process to extend a fault taxonomy.

3.6.1 Introduction

Understanding faults at the requirements stage saves effort, time, and cost and helps
developers build correct and reliable software. Early detection and correction of faults at
the requirements phase is less expensive than detecting faults during the design, coding,
and/or testing phase [7]. Task 6 focuses on faults at the requirements stage of the software
life cycle to improve Independent Verification and Validation (IV&V) and also to reduce
the cost, time, and effort of eliminating faults at advanced stages of the software life cycle.

Discussed within this section is a process to extend a fault taxonomy. We split our effort
into two processes: Process A and Process B. For Process A, we take our generic fault
taxonomy and NASA project requirement faults/problem reports and then perform the
activities of categorizing the faults according to the generic fault taxonomy. We then
determine fault types for NASA software classes. The outcome of these activities is a

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 16
Final Report.doc

16

class-specific taxonomy. For Process B, we begin by taking a class-specific taxonomy,
requirement faults and/or problem reports for projects and project specific goals/priorities.
We then perform the activities associated with categorizing the faults for a project
according to a class-specific taxonomy. The outcome of this process is a project-specific
taxonomy.

In this section, we have also considered some optional activities that will be useful for
NASA projects. The optional activities include estimating the effect of the requirement
faults on a system and the probability of its occurrence. The critical requirement faults can
also be identified for a project under a class.

3.6.2 Definitions

Refer to Section 2, Standard Definitions, for definitions relevant to the taxonomy process
as described for Task 6.

3.6.3 Process to Extend a Fault Taxonomy

3.6.3.1 Motivation

Challenges in taxonomy creation and materials useful to building a taxonomy have been
identified. Originally it seemed that taxonomy creation was straightforward. However, as
the research effort progressed, we became aware of complexities.
We searched for papers for a method to extend the fault taxonomy from a generic
taxonomy to a class-specific taxonomy. There are no papers for extending a fault
taxonomy in the literature. We also searched for papers in areas besides software
engineering, including websites such as the Digital Library Network for Engineering and
Technology (DLNET). We also examined resources such as IEEE, ACM Digital Library,
Altavista, Hotbot, Google, Yahoo, WilsonWeb, Kluwer, CSA, Cite seer search engines,
CERT Coordination Center (SEI), NASA website, and NASA IV &V Facility online
resources and libraries.
With a lack of an existing method, we defined a new process to extend a fault taxonomy.
The inspiration for this taxonomy was a paper entitled “Towards a Taxonomy of Software
Connectors” [2]. The paper presents a comprehensive classification framework and
taxonomy of software connectors. Connectors manifest themselves in a software system as
shared variable accesses, table entries, buffers, instructions to a linker, procedure calls,
networking protocols, SQL links between a database and an application, and so forth. In
large and especially distributed systems, connectors become key determinants of system
properties, such as performance, resource utilization, global rates of flow, scalability,
reliability, security, evolvability, etc. The classification supports a deeper understanding of
existing connectors and their relationships. It also provides the information needed to
design new, more powerful connectors by combining existing mechanisms [2].

The taxonomy is obtained through an extensive analysis of existing component
interactions, as software systems are composed from prefabricated, heterogeneous
components that provide complex functionality and engage in complex interactions. The

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 17
Final Report.doc

17

paper demonstrates the use of the taxonomy on the architecture of a large, existing system.
The overall structure of the connector classification framework can be viewed in Appendix
A. Each connector is identified by its primary service category and further refined based
on the choices made to realize these services [2]. For example, for our taxonomy we start
at the main system (e.g., manned flight) and keep adding connectors. The next level of
connectors we add are major requirement faults, and then to sub-faults of requirements
faults.

Our process for extending a fault taxonomy is shown in Figure 3-2. The process builds on
our generic taxonomy, which is a major enhancement of the fault taxonomy worked on in
[4] and is discussed in this Final Report. First, we take our generic fault taxonomy, NASA
project requirement faults and problem reports and perform Process A as discussed in
Section 3.6.3.3. The result is a taxonomy for a NASA software project class. The criteria
for the classes are shown in Section 0. Based on Project Task 1, we grouped manned
missions and manned exploration projects into Class A, aerospace, earth space, and science
space projects into Class B, biological and physical projects into Class C, and the
remaining projects which do not satisfy any of the prior class conditions into Class D.
Next, we perform Process B as discussed in Section 3.6.3.4. The result is a project-specific
requirement fault taxonomy. Finally, an optional activity is to perform tolerance analysis
and to develop a prioritized fault list for the project. Tolerance analysis is discussed in
Section 3.6.3.4.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 18
Final Report.doc

18

Figure 3-2. High Level Process to Extend a Fault Taxonomy.

 Optional Activity

Generic fault

taxonomy

Process (A) to extend a fault taxonomy

for a software project Class

NASA project

requirements

faults/problem reports

2) Class B

(e.g., Aerospace,

Earth Science,

Space Science

projects)

Fault taxonomy for a

specific project

3) Class C

(e.g., Biological/

Physical projects)

1) Class A

(e.g., Manned

Exploration,

Manned

Missions)

Project-

specific

information

(goals,

priorities)

Prioritized fault list for

a project

Tolerance Analysis

4) Class D

(e.g., Other

projects which

do not fall into

Class A, B or C)

Process (B) to extend a fault

taxonomy for a project

shaded

4

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 19
Final Report.doc

19

3.6.3.2 NASA Software Classes

The software classification scheme is incorporated from the NASA software safety
standard [3]. The result is a four-class structure tagged Class ‘A’, ‘B’, ‘C’, and ‘D’. A
software category is determined according to the following procedure [3]:

1. Begin at ‘Class A’. If any criteria are met, then software is ‘Class A’; else continue

2. At ‘Class B’, if any criteria are met, then software is ‘Class B’; else continue

3. At ‘Class C’, if any criteria are met, then software is ‘Class C’; else software is
‘Class D’ (i.e., none of the Class A, B, or C criteria are met).

The software classification is made according to the following criteria:

(1) “Class A” when any of the following conditions are met:

a) Potential for loss of life – Yes

b) Potential for loss of equipment – Greater than $100M

c) Potential for waste of resource investment – Greater than 200 work-years on
software

d) Software control category IA (from NASA Software Safety Guidebook [5])

(2) “Class B” when any of the following conditions are met:

 a) Potential for serious injury – Yes

 b) Potential for catastrophic mission failure – Yes

c) Potential for loss of equipment – Greater than $20M

d) Potential for waste of resource investment – Greater than 100 work-years on
software

e) Software control categories IIA and IIB (from NASA Software Safety Guidebook
[5])

(3) “Class C” when any of the following conditions are met:

a) Potential for partial mission failure – Yes

b) Potential for loss of equipment – Greater than $2M

c) Potential for waste of resource investment – Greater than 20 work-years on
software

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 20
Final Report.doc

20

d) Software control categories IIIA and IIIB (from NASA Software Safety Guidebook
[5])

(4) “Class D” - Software not meeting any of the above criteria. For example:

a) Potential for loss of life or serious injury – No

b) Potential for loss of equipment – less than $2M

c) Potential for waste of resource investment – less than 20 work-years on software

d) Safety control category IV (from NASA Software Safety Guidebook [5])

It should be noted that numerous discussions transpired among NASA civil servants and
the researchers to determine the class of a project. Much of the criteria (such as dollar
amount for equipment) is difficult to obtain and/or subjective. The classes assigned in Task
4 and 7 were finally reached by consensus using available information.

3.6.3.3 Process (A) for Extending a Fault Taxonomy for a Project Class

The Process for developing a class-specific requirement fault taxonomy is shown in Table
3-5. The table consists of six fields: entry criteria, activities, exit criteria, inputs, outputs,
and process controls and metrics. The entry criteria field describes a checklist of pre-
conditions that must be met before the process activities can start. All the information and
data needed such as the generic fault taxonomy, NASA project requirement faults, problem
reports and class project definitions must be available before the process starts. NASA
must authorize the use of project data. In addition, it is necessary that NASA has
authorized the taxonomy extension project.

The activities to be performed include selecting a generic requirement fault taxonomy,
obtaining problem reports for projects in Class A, B, C, and D, categorizing the faults
obtained for each project using our fault taxonomy (as shown in Table 3-6), determining
the number of faults for each category and the percentage of occurrences, and identifying
the top five critical requirement faults for each Class A, B, C, and D (as depicted in Table
3-7).

We will use Table 3-6 to estimate fault frequency for different projects under each class.
For example, we will use the table for aerospace, earth science and space science projects
under the Class B category. Then, we identify the requirement fault types, fault frequency
count, and percentage of fault occurrences for each project. As shown in the example in
Table 3-6, 50 incomplete decomposition requirement faults exist in the Class B project and
10 incomplete description faults exist. Overall 45 requirement faults were found for Class
B. The percentage of occurrence of incomplete requirement faults is 23% for Class B.

Finally, we will determine the historically most probable requirement faults for each class
as shown in Table 3-7. As shown in the example in Table 3-7, for manned exploration and

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 21
Final Report.doc

21

manned mission projects under Class A the most critical sub-faults are incomplete
decomposition and incomplete requirement description under major fault incomplete
requirement fault (plus other sub-faults). We list the top five major and sub-requirement
faults for Class A projects (as shown in the example in Table 3-7). We will assign a
complexity of high, medium, or low depending upon a fault’s frequency. If certain faults
are found more frequently for a certain class, then it is crucial to seek improvement in that
area and to attempt to prevent and/or detect these fault types.

The outputs of this process are the frequency counts of the faults, percent of fault
occurrence, and the crucial requirement faults for each class. We repeat this process for
each class for which we have project data until our exit criteria is met (i.e., we have
developed a class-specific requirement fault taxonomy). The process controls ensure all
versions of our requirement fault taxonomy are properly maintained under configuration
control. Also NASA project data must be maintained by class. Process metrics include
person hours for the effort, number of projects, number of requirements faults, etc.

Table 3-5 . Process (A) for Extending a Fault Taxonomy for Classes (A-D) of NASA Software
Projects.

Entry Criteria Activities Exit Criteria

1. All inputs are available
2. NASA has authorized

use of project data
3. NASA has authorized the

taxonomy extension
project

1. Select generic requirement fault
taxonomy

2. Examine problem reports for
projects in Class A, B, C, and/or
D

3. Categorize the faults for each
project according to the generic
taxonomy

4. Determine frequency fault types
for each class and percent of
fault occurrences

5. Identify crucial fault categories
for each class

1. A Class-specific
requirement fault
taxonomy has been
developed (Class A, B,
C, and/or D)

Inputs Process Controls/Metrics Outputs
1. Generic fault taxonomy
2. NASA project

requirement
faults/problem reports

3. Class project definitions

Controls:
1. Maintenance of configuration

control of taxonomy
2. Maintenance and management

of NASA project data by class
Metrics:

1. Person Hours of effort
2. # of projects
3. # faults
4. frequency of fault
5. % of fault occurrence
6. Top 5 Historical Fault areas by

class

1. Frequency counts of
faults per class and
percent of fault
occurrences

2. Crucial fault categories
for each class

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 22
Final Report.doc

22

Table 3-6. Estimation of Fault Frequency for Software Requirement Fault Types.

S/W Requirement Fault Types Count of Fault Frequency % of Fault Occurrences
1) Major Fault: Incomplete
0.1 Incomplete Decomposition
0.2 Incomplete Requirement
Description

 9
 1

 20 %
 2 %

:
:

N) New Fault
0.n Subfault

Totals 45 100%

Table 3-7. Determination of Critical Requirement Faults for a System.

System Historical Top 5 Most Probable Function Areas

(Critical Requirement Faults)
Class A
(e.g., Manned Exploration, Manned Mission)

1): Incomplete
.1: Incomplete Decomposition
.2: Incomplete Requirement Description
2):
3):
4):
5):

Class B
(e.g., Aerospace, Earth Science, Space Science)

1):
2):

Class C
(e.g., Biological/Physical)

1):
2):

Class D
(e.g. projects that do not fall under Class A, B or C)

1):
2):

3.6.3.4 Process (B) for Extending a Class Taxonomy for a Project

Similarly, the process involved in developing a project-specific requirement fault
taxonomy is shown in Table 3-8. The table consists of six fields: entry criteria, activities,
exit criteria, inputs, outputs, and process controls/metrics. The entry criteria field describes
a checklist of pre-conditions that must be met before process activities can start. All the
information and data needed such as a class-specific fault taxonomy, requirement faults
and/or problem reports for projects, and project specific goals/priorities must be available
before the process starts. NASA must authorize the use of project data. In addition, it is
necessary that NASA has authorized the taxonomy extension project.

The activities to be performed include selecting a class-specific requirement fault
taxonomy, and examining problem reports or requirement faults of projects. We perform
an additional optional activity of tolerance analysis for each project as follows. From the

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 23
Final Report.doc

23

fault types identified in Table 3-6, we determine a tolerance factor for each requirement
fault to corresponding function areas (e.g., flight safety function) for each project (e.g.,
manned flight) as shown in Table 3-9. We assign a tolerance factor on a scale of 1 to 10.
If the tolerance factor for a fault type is 10 then it has a potential severe effect on the
system and a tolerance factor of 1 has no effect on the system. For example, the tolerance
factor for requirement fault lack of clarity for flight safety and manual safety function is
severe for manned systems that fall under Class A and is therefore assigned a tolerance
factor of 10. On the other hand, for a communication function it is 7. This indicates that
compared to the previous fault it might not be as severe but still might have significant
effect on the system as shown in Table 3-9.

Next, as shown in Table 3-10, the requirement fault and corresponding feature of the
system are combined and both the probability of a faults’ historical occurrence and fault
exposure for the system is determined. As shown in the example in the first row in Table
3-10, the lack of clarity to flight safety feature pair has a tolerance factor of 10 which is
severe and its historical probability of occurrence is also high at 0.9. Finally, as shown in
Table 3-10, we calculate fault exposure. Fault exposure is the product of the tolerance
factor and the probability of its occurrence. It is similar to risk exposure [6]. From these
calculations, the most critical aspects are identified. For example, the * symbol in the first
row of Table 3-10 with 9.0 fault exposure value indicates that this fault occurring for this
function area could have a severe effect on the system.

The outputs of this process are the frequency counts of the faults and the crucial
requirement fault categories for the project. The optional output, if we perform the
optional activity, is a prioritized fault list for the project. From the fault exposure values,
we prioritize a list of faults as critical (that could have critical effect on the system). The
fault exposure values with severe effect are indicated by the * symbol for requirement fault
to function area pairs. We repeat this process for the project until our exit criteria is met
(i.e., we have developed a project-specific requirement fault taxonomy). Similar to Process
A, the process controls ensure that all versions of our requirement fault taxonomy are
properly maintained under configuration control. Also, NASA project data must be
maintained by class. Process metrics include person hours for the effort, number of
projects, number of requirement faults, tolerance factors, historical probability of
occurrence, and fault exposure values, etc.

Table 3-8. Process for a Project-Specific Fault Taxonomy.

Entry Criteria Activities Exit Criteria

1. All inputs are available
2. NASA has authorized use

of project data
3. NASA has authorized the

taxonomy extension project

1. Select Class-specific
requirement fault taxonomy

2. Examine NASA specific
projects in selected class

3. Categorize the faults for the
project according to the
class-specific fault
taxonomy

4. Determine the frequency of
faults for the project

1. A project-specific
requirement fault taxonomy
has been developed

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 24
Final Report.doc

24

Entry Criteria Activities Exit Criteria
5. Identify the crucial fault

categories for the project
Optional Activity:

6. Estimate the tolerance of
each function area of a
project to a corresponding
requirement fault (Table
3-9)

7. Determine the historical
probability of occurrence of
the fault (Table 3-10)

8. Calculate the product of
probability of occurrence
and tolerance factor to
determine the critical
requirement faults (Table
3-10)

Inputs Process Controls/Metrics Outputs
1. Class-specific fault

taxonomy
2. Requirement faults/problem

reports for the project
3. Project specific information

(goals, priorities)

Process Controls:
1. Maintenance of

configuration control of
taxonomy

2. Maintenance and
management of NASA
project data by Class

Metrics:
1. Person Hours for effort
2. # projects
3. # faults
4. Tolerance Factors
5. Historical Probability of

Occurrence
6. Fault Exposure Values

1. Frequency counts of faults
2. Crucial fault categories for

the project
3. Prioritized fault list for the

project (Optional activity)

Table 3-9. Estimation of Tolerance Factor for a System Function Area to Requirement Fault Type.

System Type and
Class

 Function
 Areas

Critical
Requirement
Fault

Flight
Safety

Manual
Safety

Communication

Manned, Class A Lack of Clarity 10 10 7
 Inconsistent 7 7 2

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 25
Final Report.doc

25

Table 3-10. Calculation of Fault Exposure.

Critical Requirement
Fault to Function area
(row and column
combined from Table
3-9)

Tolerance Historical Data on
Probability of
Occurrence

Fault Exposure=
Tolerance*probability

Lack of clarity/flight safety 10 0.9 9.0 *
Lack of clarity/manual
safety

10 0.9 9.0 *

Inconsistent/flight safety 7 0.7 4.9
Inconsistent/manual safety 7 0.8 5.6
 1 1.0 1.0
 8 1.0 8 .0 *

 * = severe effect on system

3.6.4 Summary

In summary for Task 6, we have built a process to extend a requirement fault taxonomy.
We use two processes, Process A and Process B, to develop a class-specific taxonomy and
a project-specific taxonomy. Our method helps in identifying the most probable critical
requirement faults for a system. We defined the additional optional activity of estimating
the tolerance effect of a requirement fault on a system, in order to seek improvement in that
area.

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 26
Final Report.doc

26

Figure 3-3. Structure of the Connector Classification Framework.

3.7 Task 7 - Implement the Method to Extend the Fault Taxonomy

This task entailed implementing the method to extend the fault taxonomy to develop a
class-specific taxonomy (Process A) and a project-specific taxonomy (Process B). Prior to
beginning Process A, feedback from staff at the IV&V Facility in West Virginia
corroborated the researcher's categorization of one project as NASA Class C; two projects
as NASA Class B, and the ISS project as NASA Class A. These NASA classes are
described in Section 3.6.3.2.

Our three analysts followed all steps for Process A starting with the revised generic
taxonomy resulting from Task 1. During this process, lessons learned from each analyst
resulted in revisions, clarifications, deletions, and additions to that generic taxonomy.
Insight was also gained during a review of the orthogonality concept as applied to these
taxonomy categories. Our conclusions from lessons learned on orthogonality are discussed
in Section 4.1. The final generic requirement fault taxonomy for NASA is represented in
Table 3-11 below.

The three analysts in conjunction with the primary researcher made the following changes
to the revised generic taxonomy (see Table 3-3) from Task 1:

SAIC-NASA-98028
12/20/02 Final

Science Applications International Corporation (SAIC) 27
Final Report.doc

27

a) Descriptions of the several Fault and Subfault categories were clarified to
reduce confusion among present and future NASA analysts using this generic
taxonomy. Descriptions now align closely with the intent of the category or
subcategory. In some cases, elaborative comments or examples were added in
the last column of Table 3-11. All of the fault category item descriptions
were clarified except for Category 7.

b) Mainly for reasons of orthogonality, the following categories or subcategories
were combined due to their similarity with or indistinguishability from other
categories or subcategories: Subcategories 1.1 and 1.2 were combined;
Subcategories 4.1 and 4.2 were combined; and Categories 5 and 9 were
combined. Category 9 is now "Reserved for future."

c) The following subcategory was deleted/removed from the taxonomy, again
due to orthogonality or similarity issues: Subcategory 2.3.

