
03/16/2007 01:49 PMIEEE Software "Best Practices" Column by Steve McConnell

Page 1 of 3http://stevemcconnell.com/ieeesoftware/bp08.htm

Books

Articles

Interviews

Presentations

About Me

Contact Me

 

 

 

Best Practices 
IEEE Software, Vol. 14, No. 2, March/April 1997

Software's Ten Essentials

Virtually every backpacker, rock climber, and recreational hiker in the Pacific Northwest is
familiar with the Seattle Mountaineers' list of "Ten Essentials": extra clothing, extra food,
sunglasses, knife, firestarter, first aid kit, waterproof matches, flashlight, map, and compass.

The Ten Essentials are the end-product of years of hard-won experience. They are intended to
help mountaineers avoid getting into trouble in the first place, and, if that doesn't work, to
minimize the damage. No experienced mountaineer would go into the mountains without the
Ten Essentials.

Experienced software developers have also accumulated years of hard-won experience. Our
software adventures often contain more uncharted paths and dangerous territory than a simple
hike in the woods does, and so I propose a list of Ten Essentials for software projects.

Software's Ten Essentials
A Product Specification is a software project's compass. Without one, you can perform the
work of Hercules and still not produce a working product because the work in aggregate hasn't
been aimed in any particular direction. Without good direction, any individual's work can go the
wrong direction and different people can work at cross purposes.

With today's highly interactive systems it is becoming increasingly difficult to capture the
essence of a product specification without constructing a Detailed User Interface Prototype.
Static paper documentation often cannot adequately describe the intended look and feel of a
product. If the product specification is the compass, the detailed user interface prototype is the
trail map that points out the hills and valleys, groomed trails and portions of the software
outing that will require special skills.

A beneficial side effect of user interface prototyping is that it can be an effective way of lighting
a fire under both the customer and the development team. Visibly working software is good for
customer and developer morale. A user interface prototype isn't working software, but it looks
like working software, and it can have almost the same effect.

No experienced hiker would think of going on a long hike without sufficient food, water, and
clothing. On a software project, a Realistic Schedule provides the essential planning
foundation for adequate staffing, adequate quality assurance activities, and in general the
appropriate level of formality in the project's software processes. Every fall we hear of hikers
trapped in the woods by an unexpected snowstorm. Every spring we hear about a software
product that was supposed to ship on January 1 but which doesn't actually ship until many
months later. Basing a software project on an unrealistic schedule and the insufficient staffing
and technical planning that result from it is tantamount to heading into the woods in November
without a warm jacket.

If a hiker gets into trouble, it's useful to know that a person can go for days without food but
not without water. A successful software project establishes Explicit Priorities, so that if it gets



03/16/2007 01:49 PMIEEE Software "Best Practices" Column by Steve McConnell

Page 2 of 3http://stevemcconnell.com/ieeesoftware/bp08.htm

into trouble it knows which features are essential and which can be jettisoned. Explicit priorities
help to avoid the problem of wanting all possible features with the best quality in the shortest
time with the least effort. Setting "I want it all" priorities is tantamount to setting no priorities at
all. They provide no guidance when the project needs to make tough choices. Explicit priorities
make the tough choices easier.

A common theme running through the Ten Essentials is that of hoping for the best but
preparing for the worst. You wouldn't go hiking if you expected to break your leg, and you
wouldn't start a software project if you expected it to run 300 percent over budget. In spite of
your best hopes, however, you'd be foolish to go hiking without adequately preparing for the
risks inherent in the activity. Active Risk Management is also a key component of successful
software projects. As Tom Gilb says, if you do not actively attack the risks on your project,
they will actively attack you.

A Quality Assurance Plan is the software project's first aid kit. The first priority in first aid is
avoiding doing anything that will require you to use the first aid kit. But even the most careful
hikers sometimes get hurt, and in such a case a first aid kit is essential. Many software
projects perform the moral equivalent of leaving the first aid kit in the car. By the time
problems become too obvious to ignore, much of the damage has been done. Defects have
been inserted into the product and not corrected during requirements and design activities. All
that can be done at that point is to correct the defects at great cost during construction and
system testing. A good quality assurance plan will orient the project toward detecting defects
early, close to the point of insertion and not allow defects to infect work later in the project.

For longer hikes, hikers have to file an itinerary. If the hikers file an itinerary for a 3 day hike
and haven't signed out after 3 or 4 days, the Forest Service sends out a search party.
Successful software projects use Detailed Activity Lists. These lists are typically comprised of
tasks that last a few days each and that are considered to be either done or not done--not "90
percent done." Comparing the list of completed activities to the list of planned activities
indicates whether a project is on time or needs to be rescued.

Software Configuration Management won't keep you warm and dry, but it will keep you from
succumbing to some of the more dangerous software project risks. At the most basic level,
software projects put source code under automated source code management. This prevents
problems such as one developer inadvertently overwriting each other's work. Source code
control is typically combined with an off-site backup plan so that if the server with the master
sources crashes you're not left out in the cold.

At a more esoteric level, the most successful projects also put designs, requirements, and
project planning materials under configuration management. When this is done, a change in
the schedule or budget requires explicit approval and notification of the concerned parties. This
helps to keep schedule and budget related decisions visible and prevents hundreds of small
changes from quietly accumulating into large schedule and budget overruns.

Sometimes you'll see a hiker with a 20-year old backpack patched together with so much duct
tape and twine that you can't make out the original backpack; that's what software systems
developed without an explicit focus on Software Architecture look like. Internally, software
architecture promotes consistent design and implementation approaches, which in turn
facilitate future corrections and extensions. Externally, the most visible aspect of explicit
software architecture is its support for consistent user interfaces. Consistency is a generally
desirable characteristic that you attain almost automatically when you have good architecture
and only with great difficulty when you don't.

One of the thorniest implementation problems is the problem of integrating software
components that were not designed with integration in mind. An explicit Integration Plan is
therefore the last of the Ten Essentials. With a good integration plan such as the Daily Build
process (see this column in IEEE Software, July 1996), you can almost forget that integration
tends to be a troublesome issue. Without an integration plan, you can enter an extended
integration, test, bug-fix cycle that exposes so many defects that it can kill the project.

Software's Ten Essentials
1. A product specification
2. A detailed user interface prototype
3. A realistic schedule



03/16/2007 01:49 PMIEEE Software "Best Practices" Column by Steve McConnell

Page 3 of 3http://stevemcconnell.com/ieeesoftware/bp08.htm

4. Explicit priorities 
5. Active risk management 
6. A quality assurance plan 
7. Detailed activity lists
8. Software configuration management 
9. Software architecture 
10. An integration plan

Other Essentials
Several organizations have published similar lists of software project essentials. The Software
Project Manager's Network publishes a "Project Breathalyzer," which is a ten question test
designed to determine whether a project should be on the road. The test is available on the
Internet from http://www.spmn.com. The Standish Group published a report titled "Charting the
Seas of Information Technology" which included a list of the top 10 success factors for MIS
projects. The key process areas required to advance from Level 1 to Level 2 of the Software
Engineering Institute's Capability Maturity Model might also be considered "essentials." You
can read about those in Capability Maturity Model for Software, Version 1.1 by Mark C. Paulk,
et al, which is downloadable from the SEI's website at http://www.sei.cmu.edu.

Editor: Steve McConnell, Construx Software, 11820 Northup Way #E200, Bellevue, WA 98005.
E-mail: steve.mcconnell@construx.com - WWW: http://www.construx.com/stevemcc/

Email me at stevemcc@construx.com.

                       


