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Abstract-This paper discusses the necessity of a good methodology
for the development of reliable software, especialy with respect to the
final software validation and testing activities. A formal specification
development and validation methodology is proposed. This method-
ology has been applied to the development and validation of a pilot
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software, incorporating typical features of critical software for nuclear
power plant safety protection. The main features of the approach
indude the use of a formal specification language and the independent
development of two sets of specifications. Analyses on the specifica-
tions consists of three-parts: validation against the functional require-
ments consistency and integrity of the specifications, and dual specifica-
tion comparison based on a high-level symbolic execution technique.
Dual design, implementation, and testing are performed. Automated
tools to facilitate the validation and testing activities are developed to
support the methodology. These includes the symbolic executor and
test data generator/dual program monitor system. The experiences of
applying the methodology to the pilot software are discussed, and the
impact on the quality of the software is assessed.

Index Ternu-Assertion, dual-programming, methodology, path anal-
ysis, process control, reliability, requirement, specification, symbolic
execution, testing, validation, verification.

I. INTRODUCTION
THE NEED for a methodology to develop reliable computer
Tsoftware is becoming increasingly important to the nu-

clear industry as the role of digital computers in the operation,

37$00.75 © 1981 IEEE

537



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-7, NO. 6, NOVEMBER 1981

control, and safety of a nuclear power plant expands. In these
critical applications it is important that the system will behave
as expected for all possible demands and input conditions.
Emphasis is placed on preventing errors in performance when
considering safety and cost.
This paper discusses the evolution, design, and implementa-

tion of a practical top-down software development methodol-
ogy for nuclear reactor safety (protection) systems. It was
developed with a tremendous concern for the quality (freedom
from errors) as well as effort required for a thorough valida-
tion. Since its inception the methodology was revised and
improved three times. The flexible structure of the original
methodology enabled these revisions without major complica-
tions. Since the previous studies [301 have shown about 75
percent of errors occur in the front end (requirements specifi-
cation and design) phases of software development, the follow-
ing features were incorporated.
The functional (originating) requirements developed by

nuclear engineers were analyzed independently by the two
development teams (Babcock & Wilcox and University of
California, Berkeley) and with the help of a third team (Science
Applications, Inc.) they were revised. Then the two develop-
ment teams derived specifications (also called preliminary
designs) in a formal language RSL [1]. Each team manually
verified the transformation against the originating requirements
individually. The two "validated" specifications (preliminary
designs) were compared against each other so that any ambigu-
ities, misinterpretations, etc. could be detected. After each
preliminary design had been revised, it was ready for back-end
phases such as detailed design, implementation, testing, and
verification.
Major problems incurred in the implementation and testing

phases are the cost of detection, location, and correction of
errors. Since in our project the computations were highly
complex, it was very difficult to develop correct results for a
specified set of inputs. Traditionally, most of the cost incurred
in the back-end software development phases are in developing
test cases (inputs) whose outputs are known and in locating
the cause of the error, when detected. In our project, the
computations were not only complex but also our inputs were
from physical sensors (temperature, pressure, neutron flux,
etc.) which changed gradually over time and were subjected to
noise. To overcome these problems, each team (B & W and
Berkeley) developed detail designs and implementations from
their individual revised and corrected specifications, and sub-
jected each program to walk-throughs, static and dynamic
analysis, and testing. After each team is satisfied with its
implemented program, the execution results of the two pro-
grams were compared with each other against identical inputs.
If the results are the same or within some specified numerical
threshold, then it is assumed that the result is correct; other-
wise one or both programs are incorrect for that specific input
set. In the latter case, both programs are analyzed against the
originating requirements, to obtain the reason for deviation
of the result. The program associated with the error is then
identified and corrected. We used an automatic test data gen-
erator to create inputs and a dual program monitor and ana-
lyzer to exercise the two programs to help identify errors con-
tained in them. Several thousand test cases can be generated to
automatically test the programs so that errors can be detected

and corrected. Our experience indicates that savings in testing,
error detection and location far out weighed the cost of dual
(two independent) program development. The size of the
programs were about 1900 lines of code in structured Fortran
(Iftran). The time to implement (coding and debugging) was
only about six weeks. It took about three and a half years to
develop the software methodology and the automated tools.
The latter are one-time costs. It is our belief the methodology
and its tools are similar to the manufacturing aids of an auto-
mobile assembly line. Since nuclear reactor safety systems
form a family of related systems it would be possible to imple-
ment safety system software for a wide variety of reactors
using these generic automated aids rapidly.
One of the programs (from Berkeley) after being thoroughly

tested (and debugged) was subjected to formal validation. This
was done in two phases. In the first phase, the input and out-
put assertion to each ALPHA (RSL term for a module or a
function) was developed. Then the RSL program of the safety
system was subjected to high-level symbolic validation. In
other words, the output assertion of the program is checked
against the input assertion of the program and the high-level
path conditions of its modules. The latter is derived from the
I/O assertions of the ALPHA's. Since the number of paths at
the level of specifications is small, this high-level symbolic
validation was feasible. In this way a formal validation at the
level of specification was performed.
In the second phase each module or ALPHA is validated

similarly using symbolic execution at Fortran level. Since we
are not using the whole program but a single module, the
number of executable paths were generally small. Thus each
ALPHA is validated against its I/O assertion. Thus the two
phases provided a two-level formal validation of our program
against the formal specifications.

It was also required to assess the quality of the software by
means of software reliability models. In a process control
application, operational reliability of the integrated hardware-
software system is desired. Since the determination of hard-
ware reliability is well known, one needs an appropriate soft-
ware reliability measure to develop the operational reliability
of the total computer system. One phase of our project con-
sisted of gathering error data and developing software reliabil-
ity measures.
We also incorporated the following features in our meth-

odology.
* Each step in the development is derived from the previous

step by formal procedures.
* Automated tools are used to validate each step against the

preceding step (from which it is derived).
* Systematic derivation of test cases from each step of the

software development.
The methodology has been applied to the development of a

pilot software to compute the core thermal power in a nuclear
reactor protection (safety) system. The nuclear plant safety
system hardware consists of channels and sensors. The sensors
monitor specific plant parameters (e.g., neutron flux, pressure,
temperature) and each channel generates a trip signal when
parameters from sensors exceed predefined limits. The system
generally uses quadredundant channels and initiates protection
actions on the basis of two-out-of-four logic. Digital compu-
ters are incorporated in each channel to compute the trip
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signal. (More details and references are found in [ 1] .) The
functional requirements have been selected to emphasize fea-
tures which would be typical in nuclear reactor applications.
These include the following:

* a large amount of computation,
* a relatively simple control structure,
* critical timing re'quirements, and
* computation based on past history of measured data.
The nuclear reactor safety system is an integral part of all

nuclear reactor systems. The safety system functions for nu-
clear power plant applications are quite distinct from system
to system. However, there are several common functions. The
modules'in the system are reusable, easily modifiable, and can
be added or deleted according to requirements changes. One
characteristic of nuclear reactor safety system software (and
other process control software) is that the software engineers
entrusted with the development task are not completely famil-
iar with the functional requirements. This is unlike most
scientific programs, such as sorting and matrix multiplication,
in which the functional requirement is well defined and inter-
preted correctly by the software designer. Thus one major
aspect in our methodology is to require formal validation of
preliminary design against the functional requirements to
detect and eliminate most errors that are due to ambiguities
and misinterpretations as early as possible.
In this paper we discuss the methodology and evaluate it

based on our experiences. In Section III, the requirements
specification and the preliminary design of the application
program are described. The detailed design and implementa-
tion are discussed in Section IV. Section V discusses the prob-
lems of validation and testing together with our experiences in
this application. Section VI discusses the reliability assessment
techniques. The various automated tools used in the project
are described as needed.
This paper is admittedly a summary of a very broad research

project. The research has generated a vast amount of literature
on all aspects of the methodology. These are referenced wher-
ever appropriate.
The project was initiated and conducted under the auspices

of the Electric Power Research Institute. Babcock and Wilcox,
and U. C. Berkeley were the two teams responsible for the
design and development of the software system. The algo-
rithms used in the functional requirements were selected jointly
by the Electric Power Research Institute (under Dr. A. B.
Long) and Babcock and Wilcox (Development Team 1). Uni-
versity of California at Berkeley (Development Team 2) had
the overall 'responsibility for the methodology and tool devel-
opment and was responsible for the verification and validation
activities. Science Applications, Inc. and General Research
Corporation were the independent evaluators and reviewers of
the project and were responsible for the documentation and
validation.

II. A METHODOLOGY FOR THE SPECIFICATION AND
VALIDATION OF CRITICAL SOFTWARE

Since the inception of the project, the software development
and validation methodology have been revised three times.
The flow diagram of the final version of the methodology for
the nuclear power plant protection software'is shown in Fig. 1.
The major features are as follows.

1) The engagement of two separate independent develop-
ment teams to produce two sets of software from the same
requirements (for various purposes discussed later).
2) The use of a third independent team to coordinate the

activities and to test, review, and intercompare the intermedi-
ate and final results.
3) The specification of software functions is documented by

a formal specification language that allows machine analysis
and rigorous comparison of the two specifications.
4) Validation of the final software is achieved through a

number of steps throughout the system development, i.e.,
the program is tested and proved against the software specifi-
cation, and the specification is validated against the functional
requirements, and the functional requirements are analyzed in
several levels of decomposition. Tools used for testing and
validation includes the automated test data generator and dual
program comparator for representative testing, and the sym-
bolic executor for validation.

5) Integration testing is perfonned by all three teams.
6) A quantitative assessment of correctness and reliability is

made using representative testing and symbolic execution.
The methodology has been described in more detail else-

where [11]. The main differences between this final version
of the methodology and previous versions are 1) the addition
of a third team to perform independent'validation, verification,
and documentation of the software and 2) the performance of
dual programming on all critical and noncritical paths. These
provide added confidence and a separate view of the finished
software. Two sets of specifications are developed from the
same functional requirements. This allows us to catch most
of the ambiguities in the functional requirements. Implemen-
tation of two programs from two independently developed
versions of specifications allow the use of dual comparison for
testing and validation. This is one reason for the adoption of
the dual development approach in the methodology. One
major characteristic of the nuclear reactor safety protection
software is the time correlation of the program inputs; this
made the task of determining the correct output for a particu-
lar set of test inputs almost impossible. The use of dual devel-
opment and testing thus eliminates the need for determining
the correct system response a priori, and allows for execution
of a large number of test cases since it is unlikely that the two
programs will contain identical errors. Also, by comparing
intermediate outputs errors can be more easily located. One
question that often arises is why the magic number two, why
two sets of software and not three or four? In this project,
the dual development approach is cost-effective for reliability
and the other reasons mentioned above. Of course, the use of
three or more independently developed programs may lead to
better reliability, however, the cost of development will be
prohibitively large and hardly' justifiable due to a significant
increase in complexity.
In the following sections the various features of the method-

ology will be discussed in more detail.

III. REQUIREMENTS SPECIFICATION, PRELIMINARY
DESIGN, AND ANALYSIS

In this section, we discuss the pilot software, and the experi-
ences in the functional requirements and preliminary design
phases of the project.
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Fig. 1. Dual design methodology.

A. PilotSoftwareforProject

The operations of the safety protection system can be con-

sidered as a set of periodical calculations of the plant status
based on reactor signals. If the calculated results indicate
abnormal behavior, a signal is given out to trip (shut off) the

plant. (Many of the trip functions depend on the power level
of the reactor which, however, cannot be measured directly.)
The safety protection system software selected for this pro-

ject is the "neutron flux signal calibration" function [211 . Tie
function, in essence, tries to estimate the actual reactor power
(core thermal power) as closely as possible, based on primary
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system signals such as the out of core neutron flux signal, inlet
and outlet temperatures, pressures, etc.

B. Functional Requirements Specifications
The requirements document for the application, called spec-

ification of functional requirement (SFR) [21], is a structured
document written in free form English by the nuclear applica-
tions specialists. The requirements were formulated in two
major sections and accompanied by a set of detailed acceptance
test data [22].
Design Bases: Set forth the environment and the physics of

the problem.
Specification of Requirements: Represent a specific state-

ment of the requirements and associated algorithms which
have been thoroughl-y validated by the application specialist.
The functional requirements for the application are expressed

as 28 separate requirements and 16 more general rules or
criteria.
There have been seven sets of major revisions since the first

document was released. The reasons for these revisions are as
follows:

1) requirements changes such as adding new capabilities,
modifying existing requirements, etc.;

2) ambiguity of the requirements, incompleteness of the
requirements, and inconsistency among the requirements
found during the preliminary phase;
3) incompleteness of the requirements and inconsistency

among the requirements found during the detailed design and
coding phase.
A list of the functional requirements modifications and the

number of their occurrences are given as follows:
* incorrectness (23)
* clarification (21)
* inconsistency (7)
* missing information (5)
* redundant information (15)
* infeasible requirements in a sequential mode (4)
* others (38).
Most of the errors of the functional requirements are de-

tected during the formal specification (preliminary design)
phase because of inconsistencies arising during review and
comparison of the dual specifications. The large number of
revisions to the functional requirements document has empha-
sized the cost of, and stressed the need for, automating docu-
mentation control. Other desirable features include:

1) provision of all needed information but nothing extra-
neous;
2) if requirements cannot be stated in a closed form, a vali-

dated algorithm should be included;
3) all requirements should be separately identifiable and

testable;
4) control logic and sequence must be unambiguous.

C. Specification Development and Preliminary Design
As noted in Section II above, two independent teams are

engaged to develop the specifications from the functional
requirements. An independent third organization coordinates
the process and analyzes both specifications (preliminary de-
signs). -By this approach, a larger number of errors can be
identified at an early stage. To achieve this, a formal specifica-

Fig. 2. Dual specification analysis.

tion language is necessary to structure this effort and simplify
the evaluations which may be performed by a combination of
automated analyses (for certain aspects of consistency and
completeness) and by manual reviews. The discrepancies of
the dual specifications are reconciled to the mutual satisfac-
tion of the development and review teams. The development
teams then carry on the detailed design and implementation
of their own specifications.
There are three aspects of specification analysis, schemati-

cally shown in Fig. 2: 1) validation of specifications against
the functional requirements, 2) consistency analysis of the
specifications, and 3) intercomparison of the dual specifica-
tions. Since the functional requirements are the originating
document for the specifications, the latter must be verified as
to its correct derivation from the former. This is a very diffi-
cult task. However, analyzing the specification by itself usually
can reveal "glaring" errors and inconsistencies, particularly
those syntactically and structurally. oriented (although it is
less effective for semantic-based errors). Although this can
only be considered as partial validation, significant error detec-
tion can be achieved, eliminating much later validation effort.
The comparison of the two specifications is based on the
assumption that independent interpretations of the same set
of functional requirements would pinpoint most misinterpre-
tations and ambiguities in the original functional requirements
document. Furthermore, as a formal language, requirement
specification language (RSL) [1] provided by the Ballistic
Missile Defense Advanced Technology Center (BMDATC), is
used write the specifications, the dual, specifications are more
amenable to an automatic procedure for their comparison.
1) Application of RSL for Preliminary Design: A prelimi-

nary design (specification) of the application was developed by
software engineers of each team. RSL provided a medium for
describing the functional elements, data structures, required
event sequences, and interfaces. RSL also has a facility of
representing structures in graphical forms as well as in textual
forms.
In the preliminary design 116], each requirements statement

contained in the SFR (specification of functional requirements)
was translated into an RSL element called ORIGINATING-
REQUIREMENT. Every RSL ORIGINATING-REQUIRE-
MENT traces to one (or more) other RSL elements such as
R-NET, SUBNET, ALPHA, DATA, INPUT-INTERFACE,
OUTPUT-INTERFACE, MESSAGE, etc. [1]. Relationships
among these elements, and their attributes not only charac-
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terize the requirements but also provide the basis for validating
the preliminary design against its functional requirements.
For example, the traceability feature [ 1 ] ensures that every

RSL element is related to a specific portion of the functional
requirements, and that all requirements are decomposed into
some RSL elements. The R-NET STRUCTURE provided in
RSL as an attribute of R-NET or SUBNET ensures that the
control logic interconnecting functional modules (lower level
SUBNET's and ALPHA's) are unambiguous and that all alter-
natives at each decision point are addressed. RSL is accom-
panied by a collection of analysis tools called Requirements
Engineering Validation System (REVS) [1]. The latter elimi-
nates syntax errors and helps to document the preliminary
designs and ensures the completeness and consistency of the
designs. As an example, when a specific functional requirement
was modified, REVS was used to list all RSL elements tracing
to that functional requirement.
From our experience, the RSL preliminary designs are easier

for the reviewer to understand and examine. Using the sorting
and selective listing capabilities, the tasks of auditing and re-
view were simplified. The resulting preliminary design docu-
ment was easier to maintain using the capabilities of REVS.
However, the use of a formal preliminary design language and

a third team resulted in a substantial commitment of man-
power to learn about the systems (the application as well as
the RSL/REVS system) and to perform the necessary mechan-
ics of inputing a large amount of design information. It has
also become clear that the deeper the involvement the greater
the number of errors which are uncovered. For example,
during the functional requirements review process, a number
of high-level problems were detected and corrected. However,
it was not until the second team initiated their preliminary
design that a significant number of other problems were identi-
fied. Table I summarizes the differences between the two pre-
liminary design documents. Notice that there is a large dif-
ference in the number of paths although both designs have the
same requirements.

Fig. 3 illustrates the control flow diagram of the two prelim-
inary designs. After careful analysis and refinements the num-
ber of paths was reduced in Team 2's design resulting in a more
reliable implementation. RSL/REVS is still an experimental
tool which needs further improvements before it can be used
successfully in a commercial environment. Specifically, com-
puter resource requirements need to be reduced in terms of
memory size and execution time. For our application, the
memory on the CDC 7600 was frequently overcommitted and
the execution time (central processor time) was over 30 s for a
single update and a listing of the database.
2) Preliminary Design Experiences: The Software Prelimi-

nary Design Review (SPDR) process conducted after comple-
tion of the preliminary design uncovered many errors in the
design documents. Typical errors included:

1) incomplete data statements,
2) correct, but poor design,
3) untraceable statements to the

ORIGINATING-REQUIREMENTS.

These errors were detected 1) by manually comparing the
preliminary design document and the functional requirements

TABLE I
Preliminm Design Statistics

RSL Structure TEAMl TEAM2
R-Nets 3 1

# Sub-Modules (ALPHAs) 24 28
# Interfaces 2 2
# Paths 448 36

and 2) by using REVS. Table II summarizes the results of
the manual review and Table III summarizes the results of the
analysis tools.
The design process also detected several deficiencies in the

functional requirements document. These are summarized in
Table IV.
In conclusion, the preliminary design phase has resulted in

the detection and correction of many significant errors in both
the functional requirements and the preliminary designs. These
occurred early in the software development cycle when errors
are easier and less costly to correct. The dual development
approach contributed significantly in the identification of
errors and ambiguities in the functional requirements.

IV. DETAIL DESIGN AND IMPLEMENTATION

The design process is one in which a design is synthesized
from the software requirements specification. The resulting
design should contain sufficient information for a straight-
forward implementation. In this project the detail design
activity is to incorporate input/output assertions into each of
the ALPHA's (modules) as defined in the preliminary design
phase in RSL. Fig. 3(b) illustrates the incorporation of I/O
assertions for each ALPHA into the RSL description in the
detailed design phase.
An input/output assertion is a description of the relation

between the input and output variables in a module (e.g.,
ALPHA, subroutine, etc.). Fig. 4(a) shows the input/output
assertion for an ALPHA for the application program. The
assertions are expressed in a Fortran-like syntax using some
additional notations from first-order logic. Unlike the high-
level input/output assertions usually written for some routines
(for example, a sort routine), we have found it more natural
to develop low-level, expression-oriented assertions for the
routines in our application program. Also, we have used tem-
porary variables for the more complicated ALPHA's in order
to facilitate the specification of the assertions, even though
these could have been written without using any temporary
variables.
The input/output assertion for each ALPHA is augmented

by a list of the input and output variables and the input asser-
tion (constraints on the input variables). This enables the
coding to be done with minimal reference to the RSL descrip-
tion of the specifications. (In our project, two versions of
the application program were developed in less than a week by
two different programmers.)
One problem is that the input/output assertions are extremely

difficult to generate from the specifications. What would be
helpful is to have some tools for assisting the generation and
checking of the resultant I/O assertions. Unfortunately, REVS
does not have the analysis tools for checking the validity of
the input/output assertions. Thus we were forced to check
the assertions manually. The review was performed by the
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TABLE II

Deficiencies in Preliminary Design
Found During Review (Manual)

Categories Frequency
Missing data group definitions by referring 5
to other places such as TABLES (non-
standard RSL)
Insufficient or wrong traceability to originat- 12
ing requirements
Uninitialized data values 33
Design Errors (correct interpretation of 1
F.R., wrong design)
Improved Design (better design practices: 12
e.g., simplification of formula, handling of
spare slots of memory space, direct and
clear traceability to originating require-
ments, sufficient comments,. consideration
for overflows, etc.)
Spelling Errors 2

TABLE III

Deficiencies in Preliminary Design
Found During Review (using REVS)

Categories Frequency
Data Flow Anomalies 4
Incomplete DIesign:
. Data Definition 6
* Validation Points/Validation Path 4
'Performance Requirements 1
* Not traced from Originating Requirements 4

TABLE IV

designer and two other persons. In spite of this, 20 errors

were found in the input/output assertions during the imple-
mentation stage (see below). Later in this project, we have
developed an assertion checker [24] which checks among

other things for syntax errors in the assertions. It consists of
approximately 2500 lines Pascal code, 2000 lines of which are

for checking the assertions and the rest for preprocessing the
assertions into the standard form. While using the assertion
checker, about 70 percent of the errors detected were syntax
errors, 15 percent were errors like improper declarations and
type information missing, 15 percent were improper type
usage. Most of these were typographical in nature, such as

spelling errors and mismatched parentheses. However, some of
these errors lead to serious misinterpretation of the design,
which were rectified later.

A. Experiences
The implementation stage consists of the activities which

transform the design into a functional program (B1) in some

ALPHA: CFI_.CALC.
DESCRIPTION: 'CALCULATE THE CONTROL ROD POSITION FACTOR, CF1.'.
INPUT-ASSERTION: TRUE'.
OUTPUT-ASSERTION:

CFI .EO. (LPRODUCT. 1-1,7 (1+AR.I*'FFL(ZRIIXS)+(FFL(ZRIIX65+1)
-PFL(ZRI I15) *(ZRI I15-ZRI IXS )))1 *
(1+ARB*BIFPL(ZRIX85)+FPL(ZRIBXS%1)-FPL(ZRIXS11*
(ZR B/5-ZR) 8X5)))1.

INPUTS:
DATA: ZRl_STATE.

OUTPUTS:
DATA: Cfl.

TRACED FROM:
ORIGINATING-REQUIREMENT: F6R6R54.8.2.

REFERRED BY:
SUSNET: COMPUTE.PHINNHAT.

(a)
SUBROUTINE BCFICL(CF.ZR)

C FUNCTIONAL DESCRIPTION
C CALCULATE THE CONTROL ROD POSITION FACTOR,CF(1)
C ALPHA DESCRIPTION
C BCFlCL(CF1-CALC)
C IDENTIFIER DESCRIPTION
C CF VARIABLE PARAMETER OUTPUT
C ZR VARIABLE PARAMETER INPUT
C AR CONSTANT GLOBA-L INPUT
C FFL CQNSTANT GLOBAL INPUT
C FPL CONSTANT GLOBAL INPUT
C I VARIABLE LOCAL
C VARIABLE LOCAL
C JJ VARIABLE LOCAL
C CALLED BY
C BCPHNH 'COMPUTE PHINHIPHIN-HAT)
C MODULES CALLED
C NONE
C RESTRICTIONS/EXCEPTIONS
C NONE

C USE LINEAR INTERPOLATION IN THE TABLE OF F(PL)
C WHERE THE INDEX INTO THE TABLE IS 51 OF THE CONTROL
C ROD POSITION IN BANK (ZR[BI) TO FIND F(PL).
C INDEX INTEGER OF ZE8B/5.0
C DELTA ZR83I/5.0 - REAL OF INDEX
C F(PL) - FPL (INDEX] + DELTA * (FPLCINDEX + 11

C - FPL [INDEX]
C SET
C CF1 1.5 + AR83 * FEPL)
C FOR I 1 TO 7
C USE LINEAR INTERPOLATION IN THE TABLE OF F(FL)
C WHERE THE INDEX INTO THE TABLE IS SX OF THE CONTROL
C ROD POSITION IN BANK I )ZR1I]) TO FIND F(FL).
C INDEX INTEGER OF ZREI)/5.0
C DELTA ZRII3/5.0 - REAL OF INDEX
C FIFL) FFLEINDEXJ + DELTA * (FFLEINDEX + 1]

C - FFLlINDEX]
C SET
C CF1 - CF1 * (1.0 + ARC1h * F(FL)
C END FOR

C CONSTANT DECLARATION
COMMON /BFARCT/AR,FFL,FPL
REAL FFL(22),FPL(22),AR(8)

C VARIABLE DECLARATION
REAL CF)4),ZR8X)
INTEGER 1,J,JJ

C MODULE PROGRAM CODE
CF) )-1.
DO) I-1.7)
J-ZR) I)/5
CF(l)-CFI1)*(FFL(J+1)+(FFL(J+2)-FFL(J+1))*(ZR)I)/S-J)))
END DO
JJ-ZR 1/5
CF(1)-CF) 1)*( l.0+AR(B *( FPL( J3l1 +) FPL( JJ+2 -FPL(JJ+1) )*

(ZR a )/5-3J3j
RETURN
END

(b)

Fig. 4. (a) An ALPHA in RSL. (b) Subroutine corresponding to the
ALPHA of (a).

programming language. Iftran [28], a structured Fortran lan-
guage, was chosen as the implementation language because of
its widespread industrial use. Also, several analysis tools (like,
PET [26], FACES [18], etc.) are available for analyzing For-
tran programs.
Using the same input/output assertions, another program

(B2) was developed to aid in the program testing phase (see
Section V). This B2 program, coded in Fortran by another
programmer, served as a veriflcation aid for the existing
Iftran program.
As mentioned before, the ALPHA's constituting the design

are primarily described by input/output assertions. These

assertions are so detailed that the implementation is very
straightforward. However, naming conventions and data struc-

tures which conflict with the syntax of Iftran have to be

changed. Because of the Fortran-like syntax of the assertions,

Functional Requirements Deficiencies
Found During Preliminary De.sign

Categories Frequency
Redundant data definitions 2
Inconsistencies in F.R.:
* Processing order of functions 2
* Data item spelling errors I
* incomprehensible 2
Ambiguous or incomplete requirements 7
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coding the B2 program was relatively easy. The pertinent
features of the implementation are as follows.

1) InprogramBl:
* each subroutine in the implementation corresponds to an

ALPHA;
* the application program consists of about 1900 lines of

structured code;
* each subroutine contains pseudocodes and identifier de-

scriptions to enhance understanding of the subroutine.
As an example, the subroutine corresponding to the ALPHA

of Fig. 4(a) is shown in Fig. 4(b).
2) In program B2:
* each subroutine in the implementation corresponds to an

ALPHA;
* the application program consists of about 1300 lines of

structured code;
* it is a "bare" program, without much documentation since

its function is exclusively to aid in testing program B 1.
The implementors experienced several difficulties in the

coding of the programs. They came across cases of inconsis-
tencies and incompleteness in the input/output assertions.
Even though RSL and the input/output assertions are formal
descriptions, there were a few cases of ambiguities. Some of
these difficulties were traced to defects in the requirements
specification and design. Both of these had been thoroughly
reviewed. One reason is that personnel involved in developing
the software (from the preliminary design to the implementa-
tion) had no background in nuclear engineering. Thus require-
ments that may be obviously infeasible to a nuclear engineer
may not be caught until a very late stage when the program
has to be actually implemented.
The following sections discuss the testing and validation

issues.

V. VALIDATION AND TESTING

In our methodology for developing reliable software, the
validation and testing phases are extremely critical for assuring
the quality of the software developed. Our methodology calls
for thorough validation procedures to be followed at the com-
pletion of each phase in the development process. The various
review and validation activities followed will be mentioned
when our experiences in the various phases are discussed. In
the following subsections, validation procedures employing
symbolic execution and the automatic testing tools are dis-
cussed. Table V illustrates the tools used during the develop-
ment phase.
The notion of symbolically executing a program follows quite

naturally from normal program execution. Instead of using
real data objects, all inputs to a program are assigned symbolic
data objects. An instantaneous program state is maintained
during the symbolic execution of a statement in a path. The
program state consists of the symbolic values of the program
variables and the path constraint (PC). The symbolic execu-
tion of a path is defined as transformation over the system vec-
tor (A1 , A2, , A,m, pc) where Ai represents the symbolic

condition which is a predicate describing the symbolic inputs
to the program. Initially each Ai is undefined and pc = T. In
executing an assignment statement symbolically, the arith-
metic expression is evaluated following the rules of algebraic
manipulations and the symbolic result is used to update the
corresponding output variable in the program state. Path con-
straints are updated during the execution of conditional state-
ments. For example, if the statement IF <booleanexpression>
THEN <statement,> ELSE <statement2> is executed, and
the true branch is taken, then PC <- PC A <booleanexpression>.
The path constraint is a set of equalities and inequalities de-
scribing the program inputs such that input data satisfying
these constraints will lead to the execution of that statement.
Program validation using symbolic execution has been found
useful for 1) deriving the outputs as a function of inputs for
manual inspection, 2) generating test cases automatically, and
3) deriving verification conditions for correctness proofs. In
the following subsections, we will discuss some of the uses of
symbolic execution for validation.
1) High-Level Symbolic Execution of Specifications for

Intercomparison: The use of a formally defined language
such as RSL is an initial and important step towards an ap-
proach for the comparison of specifications. A major feature
of RSL is its ability to model the system response to stimulus
as an R-net. Comparison of dual specifications can be based
on symbolic execution of the R-nets which closely resemble
that of a program. It has long been recognized that the size of
the symbolic expressions is the limiting factor in the symbolic
execution of programs. Applying symbolic execution at an
earlier phase where programming Odetails are not present will
alleviate this problem. An R-net with parallel tasks is first
converted into an equivalent R-net without parallel tasks by
sequentializing them in an arbitrary order. Paths or execution
sequences are then identified from the R-net. Each path at the
specification level consists of a sequence of ALPHA's whose
functional characteristics are defined by its corresponding
input and output assertions. During high-level symbolic execu-
tion, the function of each ALPHA is represented by the I/O
assertion for the ALPHA in question (Fig. 3(b)). In traversing
the path during high-level symbolic execution the transforma-
tion of the path constraints and system variables is solely a
function of the I/O assertion of the alphas along the path.
This is performed using the I/O Assertion Checker [24]. The
internal details of the ALPHA is not considered at this level.
Validation of the individual ALPHA's with respect to the I/O
assertions is accomplished using symbolic execution at the
Fortran level as described in the next section. For each
RSL constructs, transformation to the system state vector
(A1,A2, * * , Am,pc) during execution is defined. When
symbolic execution is completed, the path condition gives the
conditions on the inputs that lead to the execution of that
path, and Ai gives the symbolic expression of vi upon exit.
When the two specifications are compared, one of them, say

A, is used as the standard against which the other, say B, is
compared. A path in A is identified and symbolic execution
is used to derive its path condition and output expressions.
Using this path condition, corresponding path(s) in the other
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TABLE V
SUMMARY OF SOFTWARE TOOLS

Tools Requirement
Requirement Engineering and Dual Test Input-Outpu

Development Statement Validation System Static Dynamic Testing Symbolic Case Theorem Assertion
Phase Language (REVS) Analyzer Analyzer Tools Executor Generator Prover Checker

Specification I

Spec. Analysis

Design Analysis V

Implementation

Module Testing Ill

Integration Testing 1 Iv

Reliahility
Assessment

1) criticality
factor I

2) correctness
factor _ /

3) machine
factor

4) compilation
factor /

Development
Effort in 24 12 6 15 12 3
Man-months

Size
(lines of code) 40,000 8,000 3,000 1,500 6,000 5,000 2500

specification is identified and output expressions are derived.
These two sets of output expressions and path conditions are
finally compared and the discrepancies analyzed. Fig. 5 illus-
trates how the capabilities ofA are mapped into capabilities of
B using the above procedure. Area y corresponds to capabil-
ities common to both specifications A and B. Area x corre-
sponds to capabilities which exist in A and not in B. Note that
capabilities that are provided by B, but not A (area z) cannot
be detected by this procedure. However, by reversing the role
of specifications A and B, i.e., use B as the standard to check
A, the last class of discrepancy can be detected. Since this
procedure is carried out at a higher level (specifications rather
than code), powerful heuristics for simplifying expressions
and manipulating input and output assertions will be needed.
Thus, it is extremely difficult to mechanize and this procedure
is mainly manual. The procedure to resolve discrepancies is
expected to be fairly complicated since not being identical
does not necessarily mean that one specification is wrong and
other is correct. Individualized analyses are expected and a
certain extent ofjudgment is definitely involved.
2) Symbolic Execution for Program Verification: Symbolic

execution is also used to generate verification conditions me-
chanically for proving the correctness of an execution path.
In Fig. 6, let I(x) and 0(y) be the input and output assertions
and let a be an execution path from program entry to exit;
then to prove that a is correct, we have to show that

I(x) A PCc(x) * 0(R ))

where PC<>(x) are the path constraints and R,(x) gives the
value of the program variables in terms of the program inputs
and the initial values of variables.
To prove that a program is correct, we have to show that

every path in the program is correct, i.e.,

A [I(x) APCi(Y) = O(Ri(Y))]
iG

where ep is the set of execution paths in the program. For
programs with a large number of paths, this may not be a fea-
sible approach to prove correctness. However, for the critical
applications we are considering, the number of paths is usually
small.
3) The Symbolic Execution System: The design and imple-

mentation of the symbolic execution system for this project
serves as an interesting software engineering study in the
incorporation of large sophisticated special purpose systems
into a general purpose system for program manipulation. The
Fortran-to-Lisp project at M.I.T. [17] provides our system
with a production quality input language processor. The
mathematical typesetting facility residing on the Berkeley
VAX/UNIX [8] provides sophisticated output of symbolic
mathematical formulas. Finally, the MACSYMA symbolic
and algebraic manipulation system [12] forms the backbone
of the formula manipulation capability of our system. All of
these systems are linked together through the Berkeley
INGRES 11/70 ARPANET host.
The construction of the symbolic executor over MACSYMA
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SYMBOLIC

EXECUTION

Fig. 5. Specification analysis.

I (si)

0(Y)

Fig. 6. Path analysis.

reflects our belief that the proper role model for symbolic
execution is the system for symbolic mathematics, rather than
the general purpose programming language execution system.
Although other systems for symbolic mathematics are avail-
able, such as REDUCE, the MACSYMA system is certainly the
most ambitious of these.
The presence of a system for symbolic mathematics is especi-

ally important to the application area we are dealing with in
our project, namely process control software. Such software
involves heavy computation, placing equally heavy demands
on the formula manipulation capabilities of the symbolic
executor.

Among the facilities made available through MACSYMA that
have proven to be most valuable to us have been: a powerful
mechanism for the two dimensional display of expressions; the
general purpose simplifier; user-controlled pattern-matching;
and a flexible conversational environment.
The nature and operation of the system is illustrated by

the symbolic execution of a typical module from the safety
system software. Fig. 7(a) shows a typical subroutine, together
with a small calling program. They were written in Iftran, and
are shown here after translation into Fortran IV, which is
accepted by the system. The input language has been aug-
mented by nonstandard statements pertinent to symbolic
execution. For instance, note the SYMREAD statements of
the calling program whose purpose is to assign symbolic values
to their arguments. They are prefixed by special comment
sequences allowing them to be introduced directly into the
code. Symbolic values assigned to variables take the form of
lowercase names.

Fig. 7(b) is a protocol of the symbolic execution of this pro-
gram. Annotations to the protocol appear enclosed in asterisks.
In this program there are two possible branch points, both in-
volving the value of the variable CC. An interactive resolution
of these branches takes place during the course of execution.
The MACSYMA conversational mode consists of labeled lines
which can be later referenced by the user.
In addition to the user-controlled mode of conditional reso-

lution shown here, there are also automatic and path-directed
modes of resolution available.
After completion of symbolic execution, all symbolic values

reside the MACSYMA workspace, and the user is free to inter-
act with MACSYMA to inspect, manipulate and store symbolic
values. The protocol shows the inspection of three typical
values, illustrating the two-dimensional display at the same
time. In this particular program we find a mixture of numeric
and symbolic calculations, as reflected in the output values.
MACSYMA has the capability for arbitrary-precision floating-
point arithmetic.
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The last value to be inspected in the protocol is the PC, or
Yet it is a matter of judgment to select the most appropriate
form: in this unsimplified state, the PC yields a clear trace of
the path through the program which was taken. However, a
more simplified form may be desirable when validating the
program.
A more detailed discussion of the symbolic executor may be

found in [7].
4) Symbolic Execution Experiences: Symbolic execution

is used in the validation process to generate output expressions
which can be visually examined and compared to requirements
and specifications. Formal proving is also attempted using
symbolic execution and the input/output assertions.
In our project, symbolic execution is performed on a module

basis in a bottom-up fashion. This is necessary in order to limit
the symbolic execution activities to a reasonable number of
path and to contain the growth of the symbolic execution tree
to a manageable size for the system. Since we have developed
input/output assertions for each module, the symbolic expres-
sions generated can be verified against the I/O assertions and
correctness of the module proven. After this is performed,
symbolic execution of a higher level module can be performed
by substituting calls to lower level modules by the I/O assertions.
Our experiences with symbolic execution indicates that visual

inspection of output expressions is very useful for indicating
problem areas in the code. With this type of process control
software, since output depends on previous cycles of the in-
put, output expressions usually follows a very regular form as
a function of the input values in previous time instances; any
deviations from the regularity in the expressions are very prom-
inent and usually indicate errors.

A. Test Data Generation and Dual Program Comparison

Testing remains an indispensable tool for demonstrating the
correct implementation of a program. 'Early planning is of
paramount importance if testing is to be carried out effectively.
In our methodology, test planning forms an integral part of
the specification, design, and implementation process. Con-
siderable attention was given to choosing test cases during the
various stag'es of the development process so as to be effective
and representative. If one chooses suitable test cases, one
could have a fair degree of confidence in the correctness of a
program.
For the pilot software, acceptance test cases were obtained

from simulation data of the various simulation models used by
the nuclear reactor vendor, Babcock and Wilcox [22]. These
test cases require approximately 24 hours of machine time.
They will provide confidence that the system performs cor-
rectly under most operating conditions.
A test plan and test cases based on the functional require-

ments have been developed by the independent team and the
two development teams. These test cases cover all the capabil-
ities described by the requirements and are independent of the
specifications and preliminary design. During the specification
process, additional test cases were derived based upon the
R-NET's. Each path in an R-NET specifies the system response
to stimulus [1] and test cases were generated to exercise all

PROGRAM BBTPRG
INTEGER CC
REAL LAMDC(6) .CTF8P,CTPHAT,CTP8HT
REAL CTPP,EK8,EK(2),PHINH

C& SYIIREAD CC,LAIO0C,CTP80,CTPHAt,CTP0-T
C& SYIREAD CTPP,EK8,EK,PHINH

CALL BCTPBP (CC,LA!1DC,CTP8P,CTPH-AT,
1 CTPZHT,CTPP,1EK8,EK,PHI 1H)
STOP
END

C
C
C

SUBROUTINE BCTP0P lCC,IJfl)C,CTPBP,CTPtHAT,CT?EIT,CT¶,
1 EKB,EK,PHII4I)
INTEGER CC
REAL APHINKT,LNIOC (6i) ,SLIlCkT,SPN*T
REAL CTPB?, CTP0Htl, CTPHAT, EK0, N (2)3, PHI*1, CTPP
DATA SPHSNKT,SLMCKT,rAPI-HN T/288.B,e.8gef
LAMOCI (1)} -0. 915392*LAMOC (1; 4. 88E24*>tlINH
LAtlDC (2) -8. 971SB2*LADC (2)34+. eEBE3S*PtI NHl
LAtlDC (3) -8. 998E;36*LAfIC 13)} e. 83Z21SHI m
IF(CC.EO.0) GO 10 19997
GO TO 19998

19997 CONTINUE
SPHNKT-PHINtl
SLIICKT- (LAMOC(1)4Atfl (2)+AI1D (3}))
GO TO 1999

19298 CONTINUE
SPHdNKT-SPHINKT+iPHINH
SL(ICKT-SL(CKT44.AC (1 ). AMO (2) .sAt'C (3)
iFICC.EQ.39) G;O TO 13999
GO TO 19995

19994 CONTINUE
APf#NKT-SPHNKT/48. 8
LArlC (4)4-. 987549*LAP1OC: (4)4+. 888239*API*CT
LAIIC (5) -B. 999853*LA(IOC: (5)4. 888811*API4JKT
LArDC (6) -8. 9!999814*LAt1DC (6)4i. 2SE-7*API-fXT
EK(23)-K (1)

EK13.8. 93S738*API^KT.LAMD (4) +LAIIC tS)4LAMODC (6)+SLtlCIC148.8
C:TPP-8.68l631£CTPHAT+8. 393469iK~(2)
CTP8P-8. 686531*CTP8H1T+8. 393469iCTPP

19995t CONTINUJE
1.5999 C:ONTINUE
199399 CONTINhUE

RETURN
END

(a)
Fig. 7. (a) Typical subroutine with calling program for symbolic

execution.

stimulus-response in the R-NET. Additional test cases were
identified to test the implementation. These include test cases
derived from the input/output a'ss'ertions of the vsoftware sys-
tem as well as those of the individual modules. Some test
cases were derived based on the algorithm used in the specific
application. These include boundary and interior values (in-
cluding out of range values) to validate the functional form the
various expressions used in the algorithm. Finally, integration
test cases are identified to test interfaces among modules and
some internal logic.
Thus, test cases are chosen during each phase of the software

development, forming a hierarchy of test cases. For example,
test cases derived from the requirements specification test for
broad characteristics while those based on the implemented
code test for finer details. The former test cases check for
gross (large "size") er-rors while the latter check for subtle
(small "'size") errors. The advantages of such a hierarchical
set of test cases are 1) faster verification of the code after a
modification, 2) systematic location of errors, and 3) it is sim-
pler to derive a complete set of test cases from the require-
ments specification than from the code (which can contain a
very large number of paths). The test cases are exercised in
the hierarchical order.
The application program in this project maintains a history

of past inputs as internal states. The outputs are a function of
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(C95) EXECUTE(BCTPRG)$

[BCTPOP, 9] IF(CC.EQ.O) GO TO 1999,
UNRESOLVED CONDITIONAL:
1 : EQUAL (cc, O)
2 : cc # O
SELECT RELATION NUMBER:
2;

[BCTPOP, 9]
ASSUMED: cc # 0

[BCTPOP, 18] IF(CC.EQ.39] GO TO 19'
UN RESOLVED CONDITIONAL:
1 : EQUAL(cc, 39)
2 cc #39
SELECT RELATI-ON NUMBER:
1;

_-- - - -

**** Invoke symbolic execusion ****
**** of BCTPRG program

**** Symbolic values in *
**** conditional predicate ****

**** Resolved interactively ****

[BCTPOP, 18]
ASSUMED: EQUAL(cc, 39) ****Resolution of second branch****

[BCTPRG, 7] END OF SYMBOLIC EXECUTION **** Return to MACSYMA *
(C96) EKO; ****Interrogate workspace for symbolic values *

****of some typical variables

(D96) 0.0233997155 (sphnkt + phinh) + 0.025
(slmckt + 5.421E-4 phinh + 0.996636 lamdc3 + 0.971562 lamdc2

+0.915303 lamdc1) + 0.999904 landc6 + 0.999053 lamdc5 + 0.987549 lamdc4

(C97) CTPP;
(D97) 0.606531 ctphat + 0.393469 ek1

(C98) LAMDC[4];
(D98) 5.975E-6 (sphnkt + phinh) + 0.987549 lamdc4

(C99) PC; **** Print out value of Path Condition ****

(D99) cc # 0 AND EQUAL(cc, 39)

(b)

Fig. 7. (Continued.) (b) Protocol of the symbolic execution of module in (a).

the inputs and the states. Unless the state variables can be
accessed and set by the tester, it is difficult to force the pro-
gram to exercise a particular function. In addition, consecutive
inputs to the program are related to each other and represent
some physical phenomenon, e.g., temperature variations.
Hence, the concept of input trajectory is useful. A trajectory
is a sequence of test inputs which may be used to bring a
program into a particular internal state for testing or just
a sequence of related inputs. The use of input trajectories as
test cases eliminates tests which are physically unrealizable and
reduces the input space considerably. In this application,
trajectory testing is used extensively.
Some examples of representative test cases developed for

the pilot software are given in [5], [13], [22].
1) Dual Program Testing: The methodology calls for the

independent development of dual sets of specification and,
from these, two sets of application software. This dual pro-
gramming technique plays a dominant role in testing. The dual
set of software developed can be easily checked by running
the same set of inputs on both programs and comparing the
corresponding outputs. Since it is unlikely -that both programs
contain the same errors (specifications and designs are devel-

oped independently), discrepancies among outputs (outside
certain tolerance limits) may indicate problem areas. With
conventional testing approaches, a detailed manual output
analysis is required for checking the validity of the outputs.
Thus dual programming greatly reduces the manual effort
required for the validation of test results and allows a large
number of tests to be performed and checked in relatively
short time,
The efficiency of dual program testing is further enhanced

by tools which aid in the generation of test data and automatic
comparison of output values.
2) Dual Program Monitor and Test Data Generator: An

automated test data generator and a dual program monitor
have been developed to accompany the methodology. Inputs
that are generated by the test data generator are applied and
outputs are observed under the control of the dual program
monitor. Discrepancies in functions and performance are
noted for review.
In Fig. 8 the dual program monitor is shown to interact with

the two programs and the test data generator and some com-
mon database. The major objectives of the dual program mon-
itor are 1) to monitor the execution, 2) to compare the results,
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TABLE VI

Eror Statistics from Dual Testi
ERROR Bi B2

Syntax 47 18
Wrong Identifier Name 4 8
Due to Design Changes 4 5
Bad Expression 0O 14
Missing Statement/Control Flow 5 7
Missing Declaration/COMMON/DATA 2 2
Bad Dimensioning 2 0
Bad Subroutine Parameter 1 0
Unused Variables 5 0

Fig. 8. Dual program monitor and test data generator.

and 3) to collect statistics about the dual programs without
modifying the code of either program and maintaining com-

plete isolation between the programs during execution. Since
the software under-test has to be the same as the s'oftware used
in the protection system, the monitoring fuinction is performed
at the end 'of each cycle and all relevant information is made
available through the interface buffers. Complete isolation
between the two sets of software is achieved by having distinct
function names of the programs and providing each program

with a private copy of all input buffers.
The test data generator [3] is capable of generating test data

in the following ways.

1) It generates test cases that satisfy some specified logical
relationship among variables (e.g., path conditions obtained by
symbolic execution).

2) It generates random test cases according to a distribution
over the program input domain.
3) It generates input trajectories (i.e., a sequence of related

inputs) given the correlation 'among variables, rate of change,
etc.
Aside from generating inputs as described above, the test

data generator is capable of directing inputs from input files
(such 'as actual recorded data or generated from simulation
models) to the dual program monitor.
The test data generator and dual program monitor have been

implemented and are currently running on a PRIME 400 com-

puter with virtual memory support. The PRIME version of
the test data generator and dual program monitor consists
of approximately 5000 Fortran statements and is completely
interactive. Their design and implementation took approxi-

mately 9 man-months for completion. The test data generator
takes approximately 20 to 30 ms to generate one test case (for
29 input variables). The dual program monitor takes approxi-
mately 50 ms to execute the dual programs for one cycle. On
the average, the tools can perform 11 tests/s. The major bottle-
neck in the testing process is the I/O time required for record-
ing test cases and results in test-log files. The testing process

has taken approximately 650 h of machine time. Experiences
in using the test data generator and du-al program monitor for
dual testing will be presented in the next section.

B. Experiences in Program Testing
1) Testing Procedure: The two programs (B 1 and B2) were

developed according to the same input/output assertions.

After several independent compilations of the programs, the
syntactical errors were removed and the two programs were
tested using' the test data generator and dual program monitor.
During the dual testing phase, the testers were able to ob-

serve the values of designated variables in the TDG test buffer
for a specified test case. Inconsistencies in the values of a vari-
able signifies that either one or both of the programs contain
errors. The error location process is a long and tedious process.
However, provision is made for the tester to observe values
of internal variables in order,to track down the cause of the
errors. The testing proceeds by exercising one test case at a
time and subsequent test cases are exercised only upon success-
ful completion of the previous test cases-.
2) Error Statistics: The errors detected during the testing

process were analyzed and classified as shown in Table VI.
3) Explanation of the Errors: It is somewhat difficult to

provide an adequate explanation as to the cause of all -the er-
rors encountered during the testing phase. Many of the errors,
especially the design errors were due to the many revisions in
the functional requirement specifications (see Section III-B).
A few of these changes may have been overlooked and' not
incorporated in the I/O assertions. Upon completion of the
detailed design, it was sometimes necessary to go back and
incorporate additional changes in the functional requirements.
Because of the differences in the level of complexity and intri-
cacies between the requirements specification and the imple-
mentation, there was sometimes a need to change the former
to ease coding and readability.
Other design errors were caused by unbalanced parentheses

in the input/output assertions. In some ALPHA's, parentheses
were nested to five levels or more which caused difficulty
during the coding phase. Typographical errors and inconsistent
variable names in the input/output assertions also posed prob-
lems for the implementor. Some typographical errors were
relatively easy to detect. However, those which were buried
in a block of arithmetic code were harder to locate. Some
variables that had names which were similar in spelling (for
example, FFL and FPL), were more difficult to locate than
others.
Problems due to errors in the I/O assertions were the most

difficult to locate. The error had to be traced back several
levels to the functional requirements in order to correct the
error. Fortunately, the frequency of such errors were minimal.

It should be noted that there were no analysis tools for
checking the validity of the input/output assertions and the
programs were coded according to the original version of the
I/O assertions. Since then, we have developed an assertion
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checker [24] which checks for consistencies of the assertions;
however, validation of assertions against requirements is still
impossible to be mechanized.
After a critical analysis of the error data the following ques-

tion was raised: which of these could have been prevented by
better language features, methodology?
There were some errors that were difficult to locate due to

some restrictions imposed by the design specifications and the
programming language. The following are examples of identi-
fier names that were incorrectly used:

1) ACKMD for ACKDMD
2) RTEST for BRTEST
3) TALT for TAl LT
4) CC for CL
5) TCSA1 for TRCSA 1
There may have been a decrease of such errors if the num-

ber of letters for the variables were not restricted. For ex-
ample, the identifiers OPMP1, OPMP2, OPMP3, can be con-
fusing, whereas SELECT-MANUAL, SELECT-AUTO,
SELECT-TRIP are more mnemonic. Errors such as these
are easily detected. However, they may take time to locate.
Other errors were found in indexing array dimensions and

in missing declarations in COMMON and DATA statements.
These are potential areas for improvement.
For example, in the pseudoread routines arrays (A) were

used where lists (B) are more appropriate:

(A) OPMP1 = LINP(1); OPMP2 = LINP(2);
OPMP3 = LINP(3); OPMP4 = LINP(4);
OPMP5 = LINP(5); OPMP6 = LINP(6);
HCMP1 = LINP(7).

(B) [OPMPl ,OPMP2,OPMP3,OPMP4,OPMP5,OPMP6,
HCMP1] : LINP(I to 7)

Clearly, the code in (B) is more "compact" resulting in larger
error sizes since errors in "LINP" or its index are more easily
detected. Also, it is easier to modify since additional variables
in the array list on the left are implicitly assigned to a variable-
index combination by position.
The frequency of missing declaration of COMMON and

DATA statements could be attributed to the nature of such
statements. A suggestion is in using structures similar to Algol/
Pascal's global variables and modules (class structures) employ-
ing statements like

read<module name>.<identifier name>
write <module name>.<identifier name>.

All the above concerns with issues in the design of program-
ming language constructs. Increasing the "size" of errors (if
any) of the individual constructs will greatly facilitate the task
of error detection and location and simplify the testing process.

VI. RELIABILITY ASSESSMENT

A necessary step in the licensing process of nuclear reactors
is the assessment of the reliability of the control system. The
reliability of the hardware can be estimated by methods based
on sound theoretical principles [2]. However, to date no
wholly satisfactory theory has been developed for estimating
the reliability (or correctness) of the software. The Nelson

model [27] is theoretically valid, but it requires a large amount
of testing in order to achieve a high confidence bound on the
reliability estimate. Also, it assumes random sampling of the
input space. This may not be true in cases where the inputs
are correlated in time. In this section we will briefly describe
the problem of reliability assessment as applied to the project.
Software reliability has been defined as the probability that

a software fault which causes deviation from required output
by more than specified tolerances in a specified environment,
does not occur during a specified exposure period [27]. Thus,
the software need be correct only for inputs for which it is
designed ("specified environment"). Also, if the output is cor-
rect within the specified tolerances in spite of some error, then
the error is ignored. This may happen in the evaluation of
complicated floating point expressions where many approxi-
mations are used (e.g., polynomial approximations for Cosine,
Sine, etc.).
Several software reliability models have been proposed.

Some of the models predict the reliability based on the error
history [23]. These models treat the software as a black box.
Others estimate the reliability based on the results of tests
after the debugging phase [23], [6]. Errors found during the
reliability estimation phase are not corrected. These models
take into account the program structure.
Below we discuss a reliability growth model used during the

debugging phase. We also discuss an experimental approach,
based on error seeding, in assessing how thoroughly the soft-
ware has been tested.
Let

ti = P {success on a run i errors detected and corrected}
where a "run" denotes the execution of an input. Assuming
that no new errors are introduced when an error is corrected,
we have

01=01i-I + Ai.
In order to model the case where the correction of an earlier
error increases the reliability more than the correction of later
errors (in a stochastic sense), we have

Ai <Ai1*
St

Obviously, Ai E (0, 1 - ii 1) It is assumed to have the dis-
tribution (1 - oti -)*X, where X has the beta (r, s) distribution
(r > 1; s > 1). Assuming that initially there is an error present
for any input (i.e., cN = 0), this yields [19]

E[oti] = 1 - a',

I r+s- Il a'MTTF1=I-I S.- 1 ja'

where a = s

for s >> 1

where E[- I denotes the expectation and MTTFi is the mean
time (number of "runs") to failure after i errors have been
detected and corrected.
Thus, on the average this model is equivalent to the Jelinski-

Moranda geometric deeutrophication model [14]. Assuming
the average behavior, the maximum likelihood estimate of a
is obtained by solving
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TABLE VII

error no. 1 ITTF = [1/a]i actual MTTF

1 2.0 2.0 1

2 1.59 2.5281 2

3 1.508 3.43338 10

4 1.676 7.89035 6

5 1.606 10.6838 1

6 1.5015 11.4591 198

7 1.8436 72.3883 203

8 1.874651 152.509 3598

9 2.16678 1052.77 49

10 2.115301 1793.58 1611

11 2.090145 3326.14 9986

12 2.105023 7569.93

±
i=0

njiV =i(i + 1)
2

where n1 = number of successful runs between the (I- l)th
and the /th failure.
We now discuss the application of this model to the error

data derived from the OCED Halden reactor project [4] as

well as our pilot software project (the EPRI project).
Like the EPRI project, the Halden project involved research

on the development methodology for critical software for
nuclear power plant safety control systems. A major problem
is the validation of the software and the assessment of its
reliability. Table VII and Fig. 9 show the application of the
reliability model to the Halden project data. Table VII shows
the estimate of the constant "a" and the predicted MTTF's.
From a comparison of the predicted and actual MTTF we can-

not conclude much regarding the validity of the model. How-
ever, we make two important observations. Firstly, the esti-
mate of "a" shows rapid convergence, so that by the jack-knife
technique of Mosteller and Tukey [15] we can conclude that
the fit is reasonable good, i.e., additional data do not change
the model parameters much. Secondly, from Fig. 9 we see

that the error data lie largely within the 90 percent upper and
lower confidence bounds. The fit is relatively good considering
the large fluctuations in the actual data.
In the EPRI project the two programs B 1 and B2 (see Sec-

tion IV-A) were tested with the same set of test cases, as dis-
cussed in Section V-B. Since the testing was not random, we

have to modify the above derivations.
We consider the mixed function testing process, i.e., a func-

tion is tested a certain number of times, then a transition is
made to another function (which may have been already
tested), and so on. The MLE of "a" is determined by solving
the following equation for a' [ 19]:

UPPER 90%

90% BOUNID

ACTUAL DATA

1 2 3 4 5 6 7 8 9 10 11 12 13

ERROR NUMIBER

Fig. 9. Upper and lower 90 percent confidence bounds for the time
between failures.

-j(j1) i i inikF
2 LF a i

i'l1 k=l-I rika

where

j= the total number of errors detected;
ni= the number of transitions from function to function

between the detection of the (i - l)th and the ith
errors;

nik = the number of times the kth function (in the sequence
between the detection of the (i - l)th and the ith
errors) is tested;

Fik = n, if the kth function (in the sequence between the
detection of the (i - 1)th and the ith errors) is the
nth distinct function to be tested.

Table VIII-A shows the application of the model to B 1,
yielding R(l) = 0.99993 and MTTF6 = 13903. The applica-
tion of the model to the data for B2 shown in Table VIII-B.
Here R(l) = 0.9990 and MTTF5 = 12896.
We define the thoroughness (or completeness) of a set of

test cases, irrespective of the test selection strategy, to be
some measure of the confidence in the correctness of the
program if it works for the given test cases. That is, it is a
measure of our belief in the a posteriori correctness of the
software [20]. An interesting experimental approach is pro-
gram mutation due to DeMillo and Lipton [29]. However,
this technique is expensive since the number of mutations is
combinatorially explosive for programs of realistic sizes. The
majority of the mutations have large error sizes and these are
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TABLE VIII

A

_~~~~~~~~~~~~
J "j %ji %i a

1 1 1 1 2.0000

.2 1 20 1 4.0000

3 1 20 2 3.6973

4 1 40 2 3.3828

5 2 200 1 3.4863

200 2

6 5 1000 2 3.9073

120 3

300 4
600 5

1 6

R(l) 0.99993; - *TTF= 139036

B

nj 31 f21 1 1ii ji 2

2 1 01 1 2.0000

2 1 20 1 4. 0000

3 2 200 1 5.'2366
1 2

4 2 40 2 4.5700
20 3

5 3 1000 3 4.8426
120 4

1 5

6 3 300 5 _

600 6
8 7

R(l) -0.99990; MTTFI5w 12896

easily detected. A practical solution is to seed the program
with errors, such that the size of the errors is controlled.
We applied the error seeding technique to assess the thorough-

ness of the set of test cases used in validating programs B 1 and
B2 in the first phase of the EPRI project. Eight errors were

seeded in B1. Errors in expressions were detected by almost
all the test cases, implying that arithmetic errors usually have
a large size. However, three errors escaped detection. These
were of the boundary value and missing control flow type of
errors. This indicates that further test cases exercising the
ranges of the variables and boundary conditions are necessary.
To summarize, we have developed a software reliability

growth model which includes the testing process used during
the debugging phase of the project. Error seeding is then used
to get an estimate of how well the software has been tested.

- VII. CONCLUSIONS

The foregoing sections describe an approach for the develop-
ment and validation of software for critical applications. The

results of applying the methodology to the development of a
pilot software are also described. The proposed effort has been
developed for applications that are small (in terms of the final
program size) and critical enough to allow for and justify the
large amount of development and validation effort. The dual
development of specifications is the most questionable feature
(yet the most important in the methodology) for application
in a larger scale development, since the development of single
set of specifications by itself is already a very significant per-
centage of the overall effort. We believe, however, that the
techniques should be and can be applied to selected portions
of the system which are critical to achieve the overall func-
tional objectives.
The project was an attempt at a methodology for automating

the development of process control software. The entire effort
required nearly 34 years with the majority of time devoted to
the development of the software validation tools. Coding and
debugging of the detailed designs required approximately
6 weeks since the identification of the modules was easy from
the preliminary design. The algorithms used in the functional
requirements were selected jointly by engineers from the
Electric Power Research Institute, Science Applications, Inc.,
and Babcock and Wilcox.

It should be emphasized that the flexible structure of the
methodology allowed for ease of revision. Formal specifica-
tion design, dual specifications, formal validation techniques,
the use of powerful automated test tools, and systematic deri-
vation of test cases are some of the highlights of this method-
ology. Error seeding was used to assess the comprehensibility
of the test methods.
A project similar in scope to the one described here has been

conducted in Europe jointly by the Technical Research Center
of Finland and the OECD Halden Project of Norway [4]. The
objective of their project is to develop and test highly reliable
programs (computer-based control systems for nuclear reac-
tors). Dual programming is also used and a variety of testing
approaches were tried such as simulator generated test data,
random test data, seeded errors, etc. A significant departure
from the methodology described in Section II is that the speci-
fication is not done formally and dual effort starts after the
specifications. Furthermore, there is no attempt toward a
reliability assessment of the software product. In the Halden
Project, two requirements languages were used for the speci-
fication and two programming languages in the detailed de-
signs. The results of their project confirm the need for the
major elements of our methodology. First, a significant per-
centage of all errors detected is due to errors or ambiguity in
the specifications. A formal specification would be necessary
to avoid these problems. Manual translation of specifications
to code and validation is also found to be error prone (6.5 per-
cent of total error counts are categorized as "correction errors")
and not as effective as automatic test case analysis.
Another issue that we have addressed in detail in the paper is

the systematic method of generating test cases in the sense
that they will test the functional requirements of the program
as compared to others which are chosen after the implementa-
tion is done and based on the program structure. Potentially a
justifiably complete set of test cases can be derived. Currently,
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no mechanical methods exist. It is possible, however, to obtain
a set of capabilities the system is supposed to deliver and con-
struct test cases to cover all capabilities. But this is an essen-
tially manual procedure.
One of the major problem areas in this project concerns the

transformation of the requirements from natural language to a
formal requirement specification language such as RSL. The
major difficulty involved the validation of the formal specifi-
cation against the originating natural language requirements.
In our project, we attempt to overcome this via dual specifica-
tion and comparison and manually tracing the formal specifi-
cation against the originating requirements in English. Power-
ful methods using natural language analysis techniques may be
more appropriate. Also, comparison of two RSL programs at
two different levels of abstraction proved to be extremely
difficult. Our approach of using high-level symbolic execution
was only "semi-automated" and further research into the area
of high-level symbolic execution is desirable. In this project,
the generation of I/O assertion is a manual error-prone process.
This can be observed in the large number of errors caught
during the I/O assertion checking phase. We perceive this as a
major difficulty in applying the techniques of I/O assertion for
development and validation. I/O assertion checking may be
difficult to perform on the entire program and for some of
the larger and more complex modules. However, for simple
modules, assertion checking was easy. In the requirements
specification, RSL was used. RSL is still an experimental tool
and needs further improvements.
The tools that was used in this project resides in a myriad of

machines and requires familiarity with a diverse set of languages.
This involves a large amount effort spent by the developers in
familiarizing themselves with the development environment.
We did not have opportunity to attempt a triprogramming
methodology due to cost and complexity factors. In the pro-
ject there was emphasis in simplicity. This allowed us to con-
centrate to improve and refine different areas of the method-
ology one at a time. By adopting this methodology, we believe
that we have eliminated most of the errors and reduced the
development time of the application programs.

ACKNOWLEDGMENT

Tremendous support and suggestions have come from Dr.
A. B. Long of EPRI for the development of the methodology
and associated tools discussed in the paper. Several of the
ideas were inspired by Dr. C. R. Vick of Systems Control, Inc.
and Dr. C. Davis of the Ballistic Missile Defense Advanced
Technology Center. We would also like to acknowledge the
close collaboration in the project with H. Reeves of the Bab-
cock and Wilcox Company, Dr. S. Saib of General Research
Corporation, Dr. E. A. Straker, Dr. R. Downs and Dr. T. Albert
of Science Applications, Inc., and our colleagues Dr. S. F. Ho
and Dr. H. H. So (now with Bell Laboratories), Dr. C. W. Nam
(now with Systems Control, Inc.), J. M. Favaro (now with
Siemens, Germany), M. J. Shen (now with Intel Corp.), and
K. S. Siyan (now with Rolm Corp.).

REFERENCES

(1 M. W. Alford et al., "Software requirements engineering method-
ology," SREP Final Rep., vol. I, TRW Rep. CDRL C005, Hunts-
ville, AL, 1977.

[2] R. E. Barlow and F. Proschan, Statistical Theory of Reliability
and Life Testing. New York: Holt, Rinehart and Winston, 1975.

[31 F. B. Bastani, "The specification, design, and implementation of
an automated test data generator," Master Res. Project Rep.,
Dep. Elec. Eng. Comput. Sci., Univ. California, Berkeley, 1978.

[4] G. Dahll and J. Lahti, "Investigation of methods for production
and verification of computer programmers with high require-
ments for reliability," OECD Halden Reactor Project, preliminary
version (unpublished paper).

[5] S. A. Davey, "Sample test case," SAI Rep. SAI/SV-UCB-08, Mar.
1979.

[6] W. Ehrenberger and K. Plogert, "Statistical verification of reactor
protection software," in Proc. Int. Symp. Nuclear Power Plant
Contr., Cannes, paper 39, Apr. 1978.

[71 J. M. Favaro, "A FORTRAN symbolic executor based on
MACSYMA," in Proc. 2nd MACSYMA User's Conf., June 1979.

[81 J. R. Foderaro, "Typesetting MACSYMA equations," in Proc.
2ndMACSYMA User's Conf., June 1979.

[9] S. L. Hantler and J. C. King, "An introduction to proving the
correctness of programs," ACM Comput. Surveys, vol. 8, Sept.
1976.

[10] S. B. Ho, "A systematic approach to the development and valida-
tion of software for critical applications," Ph.D dissertation,
Dep. Elec. Eng. Comput. Sci., Univ. California, Berkeley, Nov.
1978.

[11] A. B. Long et al., "A methodology for the development and
validation of critical software for nuclear power plant," in Proc.
Ist Int. Conf. Software Appl., Nov. 1977.

[12] W. A. Martin and R. J. Fateman, "The MACSYMA system," in
Proc. 2nd Symp. Symbolic Algebraic Manipulation, 1972.

[13] Y. R. Mok, "Test plan for a calibrated neutron flux signal device,"
Dep. Elec. Eng. Comput. Sci., Univ. California, Berkeley, EPRI
RP-961 Project, UCB-ALL-62, 1979.

[14] P. B. Moranda, "Prediction of software reliability during debug-
ging," in Proc. 1975 Annu. Reliability and Maintainability Symp.,
pp. 327-332.

[151 F. Mosteller and J. W. Tukey, Data Analysis and Regression: A
Second Course in Statistics. Reading, MA: Addison-Wesley,
1977.

[16] C. W. Nam, "Software preliminary design document for a cali-
brated neutron flux signal device," Dep. Elec. Eng. Comput. Sci.,
Univ. California, Berkeley, EPRI RP-961 Project, UCB-ALL-62,
1979.

[17] K. M. Pitman, "A FORTRAN - LISP translator," in Proc. 2nd
MACSYMA User's Conf., June 1979.

[18] C. V. Ramamoorthy and S. F. Ho, "FORTRAN automated code
evaluation systems," Electron. Res. Lab. M-466, Univ. California,
Berkeley, Aug. 1974.

[19] C. V. Ramamoorthy and F. B. Bastani, "Modeling of the software
reliability growth process," in Proc. COMPSAC 80, Chicago, IL,
Nov. 1980, pp. 161-169.

[20] -, "Software reliability-Status and perspectives," IEEE Trans.
Software Eng., to be published.

[21] H. L. Reeves and N. L. Snidow, "Design bases and specification
of functional requirements for a calibrated neutron flux signal
device," Babcock & Wilcox, Lynchburg, VA, Rep. RP-961, 1978.

[22] H. L. Reeves, "Specification of functional requirements, accep-
tance test data," Babcock & Wilcox, Rep. SFR-BAW-A3, Apr.
1979.

[23] G. J. Schick and R. W. Wolverton, "An analysis of competing
software reliability model," IEEE Trans. Software Eng., vol.
SE-4, Mar. 1978.

[24] K. S. Siyan, "The specification, design and implementation of an
input/output assertion verifier," Master Res. Project Rep., Dep.
Elec. Eng. Comput. Sci., Univ. California, Berkeley, Dec. 1980.

[25] H. H. So, "An approach to the requirements analysis and specifl-
cation of large-scale software systems," Ph.D dissertation, Dep.
Elec. Eng. Comput. Sci., Univ. California, Berkeley, Feb. 1979.

[26] L. G. Stucki, "Automated generation of self-metric software," in
Con!f Rec. IEEE Symp. Comput. Software Reliability, 1973.

554



RAMAMOORTHY et aL.: RELIABLE PROCESS CONTROL SOFTWARE

[27] TRW Defense and Space Systems Group, "Software reliability
study," Rep. 76-2260.1-9-5, TRW, Redondo Beach, CA.

[28] S. H. Sqib, "IFTRAN: Structured programming preprocessors for
FORTRAN, IFTRAN-3 user's guide," General Res. Corp., Santa
Barbara, CA, Jan. 1978.

[29] R. A. DeMillo, J. Lipton, and F. C. Sayward, "Hints on test data
selection: Help for the practicing programmer," Computer, Apr.
1978.

(30] B. W. Boehm, "Software and its impact: A quantitative assess-
ment," Datamation, May 1973.

C. V. Ramamoorthy (M'57-SM'76-F'78) re-
lceived the undergraduate degrees in physics and
technology from the University of Madras,
India, the M.S. degree and the professional
degree of Mechanical Engineer, both from the
University of California, Berkeley, and the M.A.
and Ph.D. degrees in applied mathematics and
computer theory from Harvard University, Cam-
bridge, MA.

V He was associated with Honeywell's Elec-
tronic Data Processing Division from 1956 to

1971, last as Senior Staff Scientist. He was a Professor in the Depart-
ment of Electrical Engineering and Computer Sciences at the Univer-
sity of Texas, Austin. Currently, he is a Professor in the Department of
Electrical Engineering and Computer Sciences, University of California,
Berkeley.

Dr. Ramamoorthy was Chairman of the Education Committee of the
IEEE Computer Society and Chairman of the Committee to develop
E.C.P.D Accreditation Guidelines for Computer Science and Engineer-
ing Degree Programs. He also was the Chairman of the AFIPS Educa-
tion Committee, a member of the Science and Technology Advisory
Group of the U.S. Air Force, and a member of the Technology Advisory
Panel of Ballistic Missile Defense (U.S. Army). He is currently the Vice
President for Education of the IEEE Computer Society.

Yu-King R. Mok (S'75-M'80) received the B.S.
V l degree in electrical engineering from the Uni-

versity of California, Davis, and the M.S. and
Ph.D. degrees in electrical engineering and com-
puter science from the University of California,
Berkeley.
He is currently with Bell Laboratories, Na-

perville, IL. His current interests are the area
of software development and vaUdation, dis-
tributed systems, computer networks, and
communication.

Farokh B. Bastani received the B.Tech. degree
in electrical engineering from the Indian Insti-
tute of Technology, Bombay, India, in 1977,
and the M.S. and Ph.D. degrees in electrical en-
gineering and computer science from the Urni-
versity of California, Berkeley, in 1978 and
1980, respectively.
He joined the University of Houston, Hous-

ton, TX, in 1980 where he is currently Assis-
tant Professor of Computer Science. His re-
search interests include developing a design

methodology and quality assessment techniques for large-scale com-
puter systems.

i: ~Gene H. Chin (M'79) received the B.A. degreel in computer science from the University of
California, Berkeley, in 1981.
He is currently a Software Engineer with

the Information Networks Division, Hewlett-
Packard Corporation, Cupertino, CA, where he
is working on software quality assurance and
testing, reliability engineering, and evaluation.
His research interests include software design
methodology, testing, query languages, and
database management.

Mr. Chin is a member of the Association for Computing Machinery.

Keuichi Suzuki (M'78) received the B.A. degree
in pure and applied sciences and the M.S. de-
gree in coordinated science from the University
of Tokyo, Tokyo, Japan, and the M.S. degree in
computer science from the University of Cali-
fornia, Berkeley.
He was with Hitachi Software Engineering

Company, Yokohama, Japan. He is currently
a Software Engineer with Intel Corporation,
Santa Clara, CA, where he is working on soft-
ware evaluation.

Mr. Suzuki is a member of the Association for Computing Machinery.

555


