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Abstract—Software Configuration Management is the discipline of managing large collections of software development artefacts from
which software products are built. Software configuration management tools typically deal with artefacts at fine levels of

granularity—such as individual source code files—and assist with coordination of changes to such artefacts. This paper describes a
lightweight tool, designed to be used on top of a traditional file-based configuration management system. The add-on tool support

enables users to flexibly define new hierarchical views of product structure, independent of the underlying artefact-repository structure.
The tool extracts configuration and change data with respect to the user-defined hierarchy, leading to improved visibility of how

individual subsystems have changed. The approach yields a range of new capabilities for build managers, and verification and
validation teams. The paper includes a description of our experience using the tool in an organization that builds large embedded

software systems.
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1 INTRODUCTION

1.1 Motivation

SOFTWARE Configuration Management (CM) [5], [13], [29],
[36] is a key discipline for development and maintenance

of large software systems. Tomotivate the need for improved
hierarchical CM support, we first describe how CM is
currently performed in organizations that develop multiple
related software products, in different configurations for
different customers [22]. Typically, there are many different
types of artefacts to maintain (source code, binaries, doc-
umentation, etc.) and each artefact requires individual
version control. Typically, a Configuration Control Board
(CCB) oversees change management, project managers
coordinate the change implementation process, and a soft-
ware build process is used to integrate individual changes into
baselines to build newproduct versions [27]. Product versions
consist of different configurations of artefact versions, and
these configuration structures evolve over time.

A wide range of CM tools are available to support such
activities [7]. Traditionally, CM tools provided support
primarily at two levels of granularity:

. at the level of basic artefacts, such as source-code
files, documents and test sets—called atomic Config-
uration Items below, and

. at the level of system baselines, consisting of a
complete snapshot of the system at key stages in its
development, such as when components are re-
leased for verification and validation (V&V), or
when products are released to customers.

Modern software development practices introduce hier-
archical structuring of systems into subsystems (aggregations
of software artefacts) to improve manageability. The
problem of handling Configuration Items (CIs) at arbitrary
levels of granularity has been recognized for some time [4],
[36]. Most CM repositories do support some form of
hierarchical structuring, but there is a tendency for system
hierarchies to be put in place early and to change little
thereafter. Those repositories that do support hierarchical
structuring provide limited or no versioning of the
intermediate levels, which means organizations need to
develop their own procedures for retrieving versioning and
change information of subsystems.

1.2 Contributions

This paper reports on the evaluation of an approach to
subsystem-based CM that aims to enable CM at flexible,
intermediate levels of granularity. Candidates for subsys-
tem-based CM include:

. coarse-grained items such as product families and
their major components;

. medium-grained components such as middleware,
test suites and the modules implementing particular
communications protocols; and

. smaller, shared components such as calculation
functions in a code library and interface objects.

Fig. 1 illustrates the kinds of hierarchical structures the
approach aims to support: It shows a product graph [9] for
a family of product versions. In our approach, organiza-
tions are assumed to have CM support in place for system
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versioning and change tracking of atomic CIs. We then
provide lightweight, add-on tool support that allows users
to define their own system hierarchies and provides
automated support for viewing configuration and change
information for the resulting subsystems, mechanically
extracted from data in the existing CM repository.
Subsystem hierarchies can be defined independently of
the system structure on which the underlying CM
repository is based.

We defined requirements for the approach in an earlier
paper [19] and later showed what kind of tool support
would be needed [33]. The current paper reports on the
adaptation and trial of a prototype tool in a company that
develops and maintains large embedded software systems.
The evaluation revealed the strengths—and some weak-
nesses—of the approach and yielded new insights into
ways in which subsystem-based CM can improve the
software process.

The result of the evaluation was a subtle but profound
reassessment of the goals of subsystem-based CM. Our
original goal was to provide proactive, forward-looking
management of subsystems, so that subsystem-based CM
would be used to determine and manage enhancements to
systems. As we worked with industry personnel, it became
apparent that software developers would resist the intro-
duction of an approach that interfered with their CM
practices without offering them tangible benefits. Build
managers and verification and validation (V&V) personnel
on the other hand could see potential benefit from visibility
of subsystem configuration and change data. Hence, over
the duration of the project, the main goal became to provide
visibility of subsystem configuration and change data to
build managers and V&V personnel. We believe the revised
approach offers an effective lightweight add-on to existing
CM tools. Since CM repositories typically represent a
critical investment for organisations, such considerations
are extremely important.

1.3 Paper Structure

Section 2 outlines our approach to subsystem-based CM,
which we call SubCM. Section 3 presents the revised

conceptual model for subsystem-based CM on which our
approach is based. Section 4 describes a prototype SubCM
Tool developed to support the approach; the prototype
interfaces with Telelogic’s CMSynergy tool [28] but is
general enough to interface easily with other CM tools.
Section 5 is concerned with how the tool might be
integrated into the software lifecycle, including the devel-
opment, maintenance, and V&V processes. Section 6 reports
on experience applying the SubCM Tool to products
developed by the Invensys SCADA development group,
who develop technology for the Supervisory Control and
Data Acquisition (SCADA) domain. Section 7 describes
related work and includes comparisons with related
research projects and existing CM tools.

2 OUTLINE OF APPROACH

The SubCM approach is intended to extend the capabilities
of existing CM approaches to subsystems, by addressing
issues such as the following:

. Configuration information: What is, and what is
contained in, a given version of a subsystem?
Conversely, which subsystem versions (if any)
contain a given object.

. Change data: In what ways has a subsystem (and its
constituents) changed between versions? What
caused a change to a subsystem, and how was the
change carried out and checked?

. Variant comparisons: How do two versions of a
subsystem differ?

The two key steps to using the approach are to define the
subsystem—or more generally, the subsystem hierarchy
—that is of interest and the system baselines across which it
is to be investigated. This section overviews the two steps;
Section 3 defines the underlying data structures in more
detail and Section 4 describes the SubCM Tool.

In the first step of subsystem definition, the user defines
a subsystem hierarchy by nominating a set of subsystems and
their constituents. Subsystems can consist of other sub-
systems and atomic CIs, and constituents can be shared
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between subsystems. Conceptually, the hierarchy is speci-
fied as a directed acyclic graph, corresponding to a product
graph [9] with atomic CIs at the leaf nodes and the arcs
representing references between a subsystem and its
constituents: see Fig. 2. The user needs to name the
subsystems and specify the identifiers of the atomic CIs.
In principle, the atomic CIs can reside across different CM
repositories, for example when code is stored separately
from documentation or when code is stored in multiple CM
repositories: In such cases, the user needs to identify the
appropriate repository and supply the identifier used by
that repository. However, the SubCM Tool currently has
only been prototyped with a single CM repository.

In the second step, the user nominates a collection of
system baselines, called the baselines reference basis. Typi-
cally, this will be a branching structure with branches
corresponding to the “is a modification of” relationship
between different baselines of the system [34]. Fig. 3 shows
the version graph [9] for an example. The user decides
which baselines to include in the reference basis: For
example, they might decide to include all development
releases, only releases to V&V, only product releases to
customers, or some arbitrary combination of these. Typi-
cally, the reference basis will contain only a subset of all
possible baselines, and its members need not represent
consecutive baselines.

Given a subsystem hierarchy and a baselines reference
basis, the SubCM Tool inspects the CM repository and
builds a subsystems version graph corresponding to each
baseline in the reference basis: see Fig. 4, where the dashed
arrows represent the derived “is a modification of”

relationship between subsystems and the vertical arcs
represents the relationship between the baselines and the
corresponding subsystem versions. For each atomic CI in
the hierarchy, if the CI was included in the baseline, then
its particular version is noted in the graph for that baseline;
otherwise, it is omitted. (In the example, the atomic CIs in
the graph corresponding to baseline 1 happen to be labeled
version 1 but no significance should be read into this.) The
SubCM Tool also provides support for manually changing
the structure of subsystem hierarchies, which is similar to
the setup process.

The tool assigns version numbers to subsystems as
follows: All subsystems in the first baseline (the root of the
reference basis) are labeled as root versions. Where a
subsystem has not changed in any way between two
successive reference baselines, the subsystem version
identifier does not change. Changes percolate up the
hierarchy: If the version of one of its constituents changes,
the subsystem is deemed to have changed, and a new
version of the subsystem is created. Where a subsystem has
changed between baselines, a version identifier is created
for the new subsystem using an appropriate numbering
convention. (The prototype tool uses the numbering
convention from the underlying CM system.) The tool also
creates a change description (denoted by “CD” in Fig. 4) that
indicates which constituents have changed and how, using
the change information of atomic CIs in the underlying CM
repository. Note that subsystem version identifiers are
relative in this approach: They depend on the hierarchical
structure chosen (including the nesting of subsystems
within subsystems) and on the baselines reference basis
chosen. For absolute identification of subsystems in this
approach, it is enough to know to which system baseline (or
baselines) the system version corresponds.

The SubCM Tool provides functions for viewing sub-
system configuration and change data in a number of
different formats, including:

. what versions of what artefacts made up the
subsystem at any given time (i.e., for the nominated
baselines),

. what system baselines contain a particular subsys-
tem version,

. what changes were made to a given subsystem
between two baselines on the same development
branch, and

. what changes were made to a given subsystem in a
given release that weren’t made to the “same”
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Fig. 2. Example subsystem hierarchy, with subsystems (square

corners), atomic CIs (rounded corners), and references (arrows).

Fig. 3. Example baselines reference basis, consisting of version identifiers for user-selected system baselines; the form of branching will depend on

the version branching model used by the underlying CM system [34].



subsystem in another given release, possibly on a
different development branch.

The strength of the approach is that it allows subsystems
to be defined retrospectively and their “histories” con-
structed automatically, in hindsight and in abstract (i.e.,
what was this subsystem’s development path with respect
to given system baselines).

3 THE UNDERLYING MODEL

This section defines the underlying model in detail and
introduces the terminology used in the SubCM Tool. It is an
extension of the model published earlier [19], based on
implementing the SubCM Tool and its industrial trial. The
main changes have been additional information to char-
acterize subsystems and change descriptions and the
additional ability to compare variants of subsystems.

A subsystem is a logically coherent collection of software
development artefacts, such as specification documents,
design documents, source code, binaries, user documents,
build and testing resources, build and test reports, require-
ments tracing documents, and release notes. As noted in
Section 1, subsystems occur at many levels of granularity.

The model supports the following three capabilities:

1. characterization of the subsystem configuration, via
Subsystem Configuration Specifications (SCSs),

2. characterization of the change between two con-
secutive versions of a subsystem, via change descrip-
tions, and

3. characterization of the difference of two versions of a
subsystem via a variant comparison.

These are explained in more detail below and illustrated
on an example subsystem, the DNP protocol, that is a
constituent of many products at Invensys.

3.1 Subsystem Configuration Specifications

A Subsystem Configuration Specification (SCS) states which
versions of which objects make up a particular version of a
subsystem: See Fig. 5 for an example. An SCS consists of a
subsystem identifier, which contains a name and a version
identifier, a textual summary of the subsystem (a descrip-
tion of what makes the collection logically coherent), and a
set of constituents. A constituent is a reference to another
subsystem or an atomic CI. Atomic CI is our term for a
configuration item that is managed by external tools, such
as source-code files and documents. Atomic CIs are
identified by a name, a version number, and a location
such as a database identifier. Finally, a type, such as
“subsystem,” “user doc,” or “source code” is associated
with each constituent.

3.2 Change Descriptions

In our approach a change description provides an abstract
description of how the subsystem has changed between two
versions. It consists of the two version identifiers, a textual
description of the change, and a set of change items. A change
item describes a change of a particular constituent. It
consists of a constituent identifier, a change type, which
describes how the constituent has changed, and a set of
associated change references. The model considers the change
types none (the constituent has not changed), added (the
constituent was added between the old and the new
version), deleted (the constituent was deleted from the old
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configuration), and modified (some content of the constituent
has changed and the constituent appears in a different
version in the new subsystem version). A change reference is
a pointer to where details of the change can be found. The
particular nature of change references and the traceability
they provide will be specific to the underlying CM system.
In the prototype described below, they refer to the identifier
of the task that modified the constituent.

Fig. 6 shows a change description for the DNP protocol.
More detail can be obtained by looking into the change
descriptions of the constituents and by looking at the
information that is associated with the change references.
Note that, for each change description, there is an SCS
describing the new configuration and for each SCS that is not
a root version, there is a corresponding change description
describing how it was derived from its parent version.

We also consider change descriptions for two nonadja-
cent versions on a linear version history. For example, a
change description for version 5 with respect to version 3
can be derived by aggregating the change descriptions for
version 5 with respect to version 4 and the change
description for version 4 with respect to version 3. Two
consecutive change descriptions are aggregated by con-
catenating their summaries and, for each constituent,

aggregating the two change items for that constituent.
Two change items of the same constituent are aggregated
by unifying their sets of change references. For example, the
change items

Master–modified (from 2 to 3)–refs 5134, 5135

and

Master–modified (from 3 to 4)–refs 7130, 7132

aggregate to

Master–modified (from 2 to 4)–refs 5134, 5135, 7130, 7132.

3.3 Variant Comparison

In the previous section, we presented the concept of an
aggregated change description, which characterises the
difference between two versions that are related via a chain
of adjacent versions. This concept can also be used to
compare parallel versions (i.e., variants) of a subsystem as
follows: Two variants x and y of a subsystem are related via
a youngest common ancestor version z as shown in Fig. 7.
For each pair ðz; xÞ and ðz; yÞ, there is an aggregated change
description as defined in Section 3.2. The pair of these two
change descriptions constitutes the symmetric variant com-
parison between x and y.
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Fig. 5. SCS for a subsystem with three subsubsystems.

Fig. 6. Change description for version 3 of DNP.



With each of these two change descriptions, there is an
associated set of change references: The set !x of changes
that affect the subsystem between the versions z and x, and
the set !y of changes that affect the subsystem between the
version z and y. A useful characterization of the difference
of the variants is the difference of the changes that are
associated with each version, i.e., we are interested in the
set !x n!y of changes that are included in version x but not
in version y of the subsystem. This difference constitutes the
asymmetric variant comparison of x with respect to y.

Fig. 8 shows an example of an asymmetric variant
comparison. It shows the version identifiers of both
variants, a summary of the references to the changes that
are included in version 1.1.1 but not in version 3, and a list
of which of these changes affect which configuration items.

4 THE TOOL

This section describes tool support for the above model. The
approach is quite general and would work with most
CM systems; we demonstrate it by describing the prototype
that was trialled at Invensys.

The data associated with a subsystem version—its SCS
and change description, and the system baselines with
which it is associated—are stored locally by the SubCM
Tool while atomic CIs are stored and managed by the
underlying CM system. Subsystem version information
can be exported to a data file for reporting purposes. The
tool presents two navigable views onto subsystem version
data: the Configuration View for SCS and baselines

information and the Change View for change descriptions
and for variant comparison. The different views and their
navigation facilities are described in more detail below
and illustrated with hypothetical examples based on
Invensys’s middleware.

4.1 The Underlying CM Repository

The SubCM Tool prototype interfaces to the Telelogic CM
Synergy toolset [28]. CM Synergy is a commercial, task-
based CM tool which works on top of a relational
database. The SubCM Tool prototype is implemented in
Python [23] with use of the graphical toolkit wxPython. It
connects to CM Synergy via CM Synergy’s command-line
interface. By using this command-line interface, the
SubCM Tool extracts all the necessary information about
the atomic CIs, and it then stores and manages all the
subsystem information itself.

CM Synergy has three levels of change management (see
Fig. 9): change requests, tasks, and atomic changes, which are
described in more detail below. Other approaches are
possible and have their own terminology: For example, Eick
et al. [15] use the terms initial modification request and
modification request for essentially the same things as CM
Synergy’s change requests and tasks. We chose to use tasks
as our primary means for change references since this was
the practice at Invensys (and is the practice recommended
by CM Synergy’s distributors).

Under CM Synergy a change request is created when a
defect is reported or the Configuration Control Board
decides to add functionality or otherwise improve a
product. A change request is then broken down into tasks
and each task is assigned to a developer. To enact a task, the
developer checks out atomic CIs, modifies them, and then
checks them back into CM Synergy. (Depending on the
nature of the object and the nature of the task, the developer
may need to perform other activities to complete the task,
such as having the change reviewed and tested.) We use the
term atomic change for the resulting modification to an
atomic CI. Each atomic change belongs to one task. The
relationship between change requests and tasks, and
between tasks and atomic changes is maintained and can
be retrieved from CM Synergy. The different levels of
change management provide different views of the change

680 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 30, NO. 10, OCTOBER 2004

Fig. 7. Two parallel versions x and y, and their youngest common

ancestor z.

Fig. 8. Asymmetric variant comparison for version 1.1.1 with regard to version 3 of DNP.



to different stakeholders: Atomic changes and tasks con-

stitute the view for developers, tasks and change requests

provide the view for development team leaders, while

change requests are the most interesting level for CCB

members and customers.

4.2 The Configuration View

The Configuration View enables navigation of components

of a particular subsystem version. A component can be any

constituent of a subsystem, its constituents, and so on,

down to and including atomic CIs. The user selects a

particular component and the Configuration View will

display configuration information about that component.
Fig. 10 shows a Configuration View for version 7 of the

subsystem DNP3. The main window (on the left) shows the

component hierarchy window, which consists of all the

subsystem components of the root subsystem, displayed

in browsable structure akin to a filesystem tree. The tree

displays the name and the version of each component

subsystem, in the format <name>-<version>. In Fig. 10, the

selected component is DNP_Master_Files; in the subsystem

in question (DNP3-7), version 4 of this component is used.
The other three windows of the Configuration View give

different information about this component:

. the description window (upper right), which contains
a textual description of the component,

. the constituents window (lower right), which displays
version information for the constituents of the
selected component, and

. the baselines window (middle), which displays the
reference baselines in which this component and its
successor versions reside.

The last two of these will be explained in detail below.
The constituents window displays version information

for the constituents of the selected component. Atomic CIs
are identified by giving their name, instance (used by CM
Synergy to distinguish between different objects with the
same name) and location (indicated by the keyword ccm
and the name of the corresponding CM Synergy database).
Constituents which are subsystems are identified by name
and indicated by having the keyword scm in the location
field (indicating that their configuration data is stored by
the SubCM Tool). The list of constituents in the right lower
window can be sorted by name, type, or location.

The baselines window shows the tree of CM Synergy
baselines that contain this particular version of the
component, together with the first subsequent baselines in
which the component version has changed (indicated by
“***”). Thus, Fig. 10 indicates that version 4 of DNP3_Mas-
ter_Files is present in baselines c50_32.12.5.15 and
c50_32.12.5.16, but was replaced by version 5 in baseline
c50_32.12.5.17. The number in parentheses after the baseline
identifier indicates the new version of the component. The
baselines window gives an impression of the stability of the
selected component, in terms of how many baselines it was
included in before it got changed.

The baselines window supports some basic navigation in
the version history. Upon selection of a leaf of the tree,
which is labeled with “***” and, hence, refers to a successor
version, a new configuration view is opened with the
corresponding successor version of the selected SCS. There
are two more navigation functions:

. Each atomic CI can be accessed directly from the
configuration view, i.e., the tool launches the
appropriate viewer.

. For each constituent of the selected SCS, a list of all
subsystems that use this constituent can be produced
and from that list a subsystem can be selected, which
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Fig. 9. Types of change.

Fig. 10. A Configuration View of the DNP3 subsystem, with configuration detail of the DNP3_Master_Files component shown.



will then be opened in a new configuration view.
Multiple configuration views can be open at a time.

4.3 The Change View

The Change View shows change descriptions of a
subsystem. In our implementation, task identifiers play
the role of the change references described in Section 3.2.
A task identifier allows a user to access information
associated with a task, which is stored in the CM Synergy
repository, such as the developer who has enacted the
task, a description of which problem the task is meant to
solve, etc. From the task identifier other forms of
documentation can be reached, including the detailed
Program Amendment Document that records how the item
has been modified or the System Incident Request that
details the initial cause that required change.

Fig. 11 shows a Change View for version 4 of the
subsystem DNP3_Master_Files. The upper field allows the
user to select two arbitrary versions of the subsystem. If the
first version is an ancestor of the second, the corresponding
(aggregated) change description is displayed. If the versions
are variants of each other, then the change view will show
the variant comparison (see Section 4.4). In Fig. 11, the
change between versions 2 and 4 is shown. The upper part
shows the set of tasks that changed the subsystem from
version 2 to version 4 as well as the textual summary if
there is any. The lower part shows how individual
constituents have changed.

In addition to displaying the change description infor-
mation described in Section 3.2, the Change View shows the
type of each configuration item and how many different
tasks were involved in the change. The list of change items
can be sorted by name, change type, item type, or task. If the
change description for two adjacent versions is shown, the
textual summary can be edited and saved.

The Change View also supports navigation of subsystem
changes. The user can select a change item that refers to a
subsystem, and the tool will open a new Change View
corresponding to this subsystem change. If the user selects a
change item that refers to a text file (e.g., source code), the
tool will open a new window that shows the output of the

UNIX-diff function applied to the old and the new version
of the file. Another function searches for all subsystems that
include the selected change item.

4.4 Variant Comparison

The Change View can also be used to show an asymmetric
variant comparison. Fig. 12 shows a variant comparison
within a Change View. Compared is version 1.1.1 with
respect to version 3 of a subsystem. The upper part shows
the set of tasks that affect the subsystem and that are in
version 1.1.1 but not in version 3 of its configuration. The
lower field shows its configuration in both variants and
which individual constituents are affected by each of the
listed tasks.

5 TOOL USE

This section describes the support provided by the proto-
type tool for setting up a new system hierarchy and
baselines reference basis and discusses ways in which the
tool can be integrated into the software lifecycle.

5.1 Setting Up and Maintaining SCSs

When a subsystem configuration is defined for the first
time, a root version SCS needs to be set up. (Root versions
do not have parent versions, so there is no associated
change description.) The creation of an SCS can be initiated
from the Configuration View. The name and the summary
of the subsystem have to be supplied by the user.
Constituents are added one by one. Atomic CIs stored in
CM Synergy can be specified by name; a list of matching
object versions is then presented, from which the user
selects one. In the prototype, all atomic CIs that are added
to the same hierarchy must be taken from the same user-
selected baseline. We say that the SCS corresponds to that
baseline. Subsubsystems can similarly be specified by name,
in which case a list of versions of the subsystem stored in
the SubCM Tool is presented, from which the user selects
one. Again, each subsubsystem must correspond to the
same user-selected baseline.

Automated support for populating SCSs is provided
with the user selecting a particular baseline and a directory
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within CM Synergy. All the objects in that directory that
exist in the selected baseline are then extracted, and a
reference to the object and its corresponding version is
added to the SCS. This semiautomatic population of a
subsystem can also be applied recursively to subdirectories.

5.2 Selecting Baselines and Generating Change
Descriptions

Two ways of selecting baselines are supported: a single-step
approach and a fully automatic approach. Recall that a
subsystem version corresponds to one or more baselines.

In the single-step approach, the user selects a subsystem
version, a baseline to which that subsystem version
corresponds (the source baseline) and an immediate
successor reference baseline (the target baseline). The
SubCM Tool queries CM Synergy to see if any of the
atomic components of the subsystem have changed since
the source baseline. If so, it checks out new SCSs (with new
version identifiers) for each of the subsystem components
affected by the changes, updates them accordingly, and
creates associated change descriptions (see Fig. 13); the new
SCS corresponds to the target baseline. If the subsystem has
not changed between the source and target baselines, the
target baseline is simply added to the baselines window in
the Configuration View.

In the fully automated approach, the user selects a source
baseline only and the tool automatically updates with
respect to all baselines downstream from the selected source
baseline. This process may take a couple of minutes,
depending on the size of the hierarchy and the number of
downstream baselines. The generated data (SCSs and
change descriptions) is therefore stored locally by the
SubCM Tool to facilitate quick navigation later in the
Configuration and Change Views. Thus, the overhead
incurred by the tool is incurred only once per baseline
and hierarchy.

5.3 Integration into the Software Lifecycle

While all the features discussed above were used in the
evaluation of the SubCM Tool at Invensys (see Section 4),
not all of the features discussed in this section below were
evaluated. This section presents some of the potential uses
that we identified for the tool within the software
development process, and as such a rationale for many of
SubCM Tool’s features. Section 6 discusses which features
have actually been used in practice and Section 7 compares
the features of the SubCM Tool to related research work and
widely used existing CM tools.

5.3.1 Supporting the Build Process

The constituents of subsystems change in the course of
development and maintenance activities. These changes
affect the compiled executable of a product when a new
build is performed, which is done at regular intervals. The
build process is performed by deciding which atomic
changes (represented by completed tasks from CM Sy-
nergy) will be incorporated into the new product version.
This results in the reconfiguration of the product and its
subsystems. The incorporated changes will already have
been tested to some extent.

A completed task is included in the new configuration if
the responsible team leader has reviewed and accepted the
task and a test build has succeeded. The change should then
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Fig. 12. An asymmetric variant comparison shown in the Change View.

Fig. 13. Generation of new SCSs and Change Descriptions (CD) after a

change to an atomic CI.



be documented by updating the SCS and the change
description.

The build manager can be assisted in the selection of
tasks to include in a new release by browsing the variant
comparison of the latest release of that product with respect
to the most recent stable baseline (to find the most recent
versions of each atomic CI).

5.3.2 Release Integrity Checks

An important purpose of CM is to ensure the integrity of a
product release, i.e., that all artefacts in the configuration
are consistent with the changes intended for the release.
Integrity checks may be applied for individual change
requests to ensure that changes have been reviewed and
tested and that all associated tasks are incorporated into the
product release. Conversely, the product release should
incorporate only tasks that are associated with the relevant
change requests. Of course, it is not sufficient to simply
check task status: Manual effort is still needed to check the
technical completeness of each change and to ensure that
functional specifications, user manuals, and test specifica-
tions have been updated in accordance with the details
recorded in the change request. However, the SubCM Tool
simplifies the check by enabling affected artefacts to be
browsed and to compare the task identifiers associated with
a given change request to be checked against those actually
incorporated into the release.

Our approach can also assist with integrity checks
between subsystems. A common example is the check for
consistency after modification of a subsystem interface.
Such a modification affects several dependent subsystems
and may therefore be implemented by different teams. By
using the tool’s facility to impose different subsystem
hierarchies on top of the same physical structure, the tool
may be used to coordinate the modification by sharing
interface items between the dependent subsystems. Any
change to these shared items would be flagged as a change
in each of the dependent subsystems, thereby identifying
areas for review and test activities to verify that the changes
have been integrated into all the systems that share the
interface. Another intersubsystem integrity check arises
where code is replicated between subsystems, for example,
where two variants of a function are used in different
products. In this instance, a change to one of the items
should be applied consistently to all related items. This
activity is supported by enabling creation of a subsystem
consisting of all the related items so that, if one of the items
changes, the reviewer can check that all of the related items
have been changed accordingly.

Additional confidence that the content and characteriza-
tion of a release is correct can be provided by the tool. It can
assist production of the release note that describes the
public artefacts of the revised product and changes that
have occurred since the previous release.

5.3.3 Product Support and Product Management

The SubCM Tool approach also assists with product
support and product management. For example, it can
assist planning of an upgrade path for customers wishing to
correct reported system faults if those faults have already
been corrected in ongoing development. In such situations,

the tool allows the changes between existing and upgrade
releases to be easily characterized to ensure that function-
ality is not lost in the upgrade or, conversely, that no
undesired functionality is included.

The comparison of two arbitrary SCSs by showing the
difference of their configurations is also supported. This
facility can be used to determine whether all existing
products still need to be supported or whether some
products can be merged into a single product to reduce
the complexity of the overall software configuration.

The data maintained by the SubCM Tool can also be used
to collect measures of changes for each product release,
including frequency, scope, and effort of document and
source code changes. This data can be used to:

. predict the effort required on future releases and
tasks,

. determine the extent of changes, that is: do change
requests and tasks affect a small set of co-located
objects or a large, distributed set of objects,

. identify a reasonable focus of verification efforts,
namely, where subsystems have changed frequently
(frequent changes to a part of the code may also
indicate that a reengineering of that part would be
useful), and

. profile source code stability to determine priorities
for regression testing.

6 EXPERIENCE

This section reports experience using the SubCM Tool with
an Invensys SCADA product development group. We give
examples of some of the subsystems to which the tool has
been applied, and how the tool has been used to analyze
patterns of subsystem change. The particular product
examined is software for a Remote Terminal Unit (RTU),
which exchanges digital and analog data with plant
equipment and communicates processed data to a central
control centre through a variety of protocols and media.

6.1 Extracting Change Data

Build managers, who are members of the SCADA V&V
team, used the SubCM Tool to define subsystem hierarchies
for two SCADA software products and to generate
configuration and change data for the hierarchies using
the tool. The products analyzed were two variants of
embedded software performing analog and digital IO, data
processing, and remote communications via multiple
protocols. The CIs included some 300 KLOC of source code
across 385 atomic CIs. Nonsource code CIs were not
included. The subsystem definition resulted in 38 subsys-
tems overall with 29 top-level subsystems defined. The
maximum depth of the subsystem hierarchy was six levels.
The hierarchy was refined through the definition and
analysis process to provide greater insight into large or
complex subsystems.

Configuration and change data was extracted on a
number of product baselines. Fig. 14 shows a section of the
version tree of product baselines used in the investigation.
The Invensys SCADA group follows a baseline model that
is similar to the branching-by-purpose model described by
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Walrad and Strom [34]. Ongoing system development
takes place in the main development path, with tasks
integrated and tested on a regular basis. This is represented
by the baselines c50_32.12.5.1 to c50_32.12.5.29. When all
tasks that are scheduled for a product release are complete,
a new product release is prepared in the product release
branch. This is done by integrating the set of scheduled
tasks from the main development path to a selected
baseline in the product release branch. A main product
branch is maintained for major product releases (as
identified by c50_32.12.6.0 - c50_32.12.6.4). On occasion,
subbranches are created in the product release branch to
accommodate minor releases or variants developed for
particular customers.

Configuration change data was extracted from the main

development path using the SubCM Tool’s automatic

extraction utility applied to baselines c50_32.12.5.7 to

c50_32.12.5.29 (for simplicity, these have been named

versions 1 to 23 in Table 1). The resultant data in Table 1

shows the number of tasks applied to each subsystem in

each development baseline.
The data presented in this section was obtained by small

routines inside the SubCM Tool which process the data

stored by the SubCM Tool, i.e., computing the data incurred

negligible overhead. The graphs in the figures in the next

sections were drawn from this automatically generated data

using a standard LaTeX package.
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Fig. 14. Part of the baselines version tree in the CM repository.

TABLE 1
Number of Changes to Top-Level Subsystems between Versions 1 and 23 of Product 1101155,
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6.2 Analysis of Change Data

The change data generated by the SubCM Tool was used to
investigate patterns of change within subsystems and
across development baselines. This process resulted in
two refinements of the subsystem hierarchies. First, a file
containing baseline version information was moved into a
separate top-level subsystem. This was done to distinguish
nonfunctional changes from the remaining software. Sec-
ond, the largest subsystem, DNP3, was decomposed to
further expose the source of changes. While this assisted the
analysis somewhat, a significant number of changes were
traced to individual, quite large, CIs. These were identified
as candidates for refactoring to assist future impact
analysis.

Analysis of change patterns identified baselines with
widespread change associated with changes of common
data structures. It also identified peaks of change in
particular subsystems, subsystems with continual change
as well as subsystems with very few or no recent changes.
This information was a useful validation of staff feelings
about subsystem change frequency and the subsequent
focus of effort that had been in place in impact analysis and
regression testing activities.

Two subsystems were selected for further investigation;
DNP3, with a relatively high continuous pattern of change,
and TCP_IP, with previous stability but more frequent
change in recent history. In this instance, the baselines used
in the analysis were extended back to the full history of the
CM system. The cumulative changes for the subsystems are
shown in Fig. 15. The amount of change on the DNP3
subsystem, represented by the upper graph in Fig. 15,

identified a high-maintenance area of the system. This was
accounted for by a continuous enhancement of the sub-
system functionality to accommodate evolving standards
and usage profiles. Potential actions identified for the
subsystem were to undertake a requirements analysis of
further likely enhancements and undertake them proac-
tively, perform refactoring to lower the maintenance cost
and/or invest further in automated regression testing to
reduce reverification costs. Analysis of changes for the
TCP_IP subsystem, represented by the lower graph in
Fig. 15, identified that recent changes were made to
accommodate an upgrade of hardware platform. Further
monitoring will be performed to confirm that the subsystem
settles into a period of stability again.

6.3 Product Releases

The SubCM Tool’s variant comparison functionality was
used to investigate how product releases related back to the
main development path. We focussed on the DNP3
subsystem in the baselines c50_32.12.6.1 to 6.4 of the
repository, which correspond to versions 3.1 to 3.4 of
DNP3. To do so, we chose the most recent baseline common
to the main development path and the product and used the
tool’s automated facility to populate the subsystem hier-
archy with configuration and change data for all subse-
quent releases—both product releases and development
releases.

The data in Fig. 16 was generated by comparing each
product release with the baselines on the main development
path. The four product releases occurred after development
baselines 5, 12, 12, and 19, respectively—shown as vertical
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lines on the graphs. (Product release 3.2 was a release
candidate that was rejected and followed immediately by a
corrected version that became product release 3.3.) The
graphs indicate that some tasks associated with product
releases were incorporated into the main development path
later or not at all. Analysis of the seeming anomalies
revealed that tasks were incorporated into the release
baseline to correct faults detected during the release testing.
The changes were later integrated into the development
baseline, either directly or indirectly by incorporating
equivalent object changes into other tasks. While there
were no issues with the product release integrity, the
SubCM Tool provided a useful check and allowed the
analysis to be conducted quite easily.

The data in Fig. 17 was generated by comparing the
number of tasks in the development baseline against the
number of released tasks. This comparison shows whether
tasks included in the tested development baseline were not
included in the release. The example shows that a number
of DNP3 tasks were integrated into the development
baseline to facilitate testing, but none of these were included
in the 3.1 release (which occurred after baseline 5). Instead,
they were combined with additional tasks and integrated as
a whole into the 3.2/3.3 release (baseline 12). Since there
was no partial change to the subsystem for the 3.1 release,
no risk to release integrity was posed. The analysis also
identified one task that was not included in the 3.4 release
(baseline 19). Investigation revealed that this task was
related to a change that was not ready for release so was
correctly omitted.

6.4 SubCM Tool Current Use and Enhancements

Although the SubCM tool has influenced policy and
practice at Invensys, the tool is not yet in widespread use
there, for two main reasons. First, software design enhance-
ments carried out subsequent to the tool evaluation have
resulted in the consolidation of product variants into a
single product; product baselines are also managed more
carefully to reduce the effect of any branching. This has
simplified the comparison of product versions for the
purpose of product management and support, and reduced
some of the original motivation for the SubCM Tool.

Second, change management administration has been
improved by the introduction of Telelogic’s Change
Synergy. The tool allows product releases to be character-
ized by a set of change requests, with each change request
managed by a defined lifecycle and approval process.
Change requests are linked via the underlying CM system
to the affected CIs and can be assigned a variety of
attributes, including associated subsystems and releases.

These process improvements have partly addressed
some of the advantages that would have been gained by
the SubCM Tool. For example, change data and patterns of
change can be studied by categorizing change requests into
subsystems and releases. This would allow the change
summary data in Table 1 to be extracted for the subsystems
nominated. It would also be possible to trace changes to
particular configuration items, although this would be more
cumbersome. Integrity checks are built into the lifecycle of
each change request to ensure that modifications are
complete, consistent, and correct. Configuration audits
performed for each release ensure that all changes
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scheduled for the release have been incorporated into the

release baseline.
Nevertheless, some advantages of the SubCM tool

remain unrealized. Primarily, these are related to the
configuration view described in Section 4.2, which cannot
easily be replicated by a pure change management system.
This view would be useful for visualizing changes from
the perspective of the product CI structure, particularly
since it offers a richer and more automated representation
of subsystem structure than the manual association of
change requests to subsystem identifiers. For example, the
SubCM Tool would make it easier to define subsystem
hierarchies in order to analyze change at multiple levels of
detail, or define multiple system hierarchies to represent
dependencies between CIs. Since the subsystem hierar-
chies are built from the actual CIs, they would also
provide an accurate representation of change that can be
used for more reliable impact analysis. While this
potential was never fully explored in an industrial context,
it is considered that this would be a valuable extension to
the existing industrial tool set.

The experience of using the tool also identified some
potential enhancements to aid analysis of change data:

1. Record metrics of the size of changes, for example,
by the lines of code added, deleted, or modified.
This would improve analysis of the effort involved
in software maintenance.

2. Record the cause of change, for example, to
distinguish between enhancements, corrections in
response to external fault reports, and rework of

unreleased changes in response to code inspections
or internal testing.

In both cases, the ability to focus on retrospectively
defined subsystems is important, so analysts can investigate
what was actually changed rather than simply what was
planned to be changed.

7 RELATED WORK

This section describes related research on hierarchical CM
and compares the SubCM Tool’s capabilities with those of a
range of widely used CM tools.

7.1 Research

Estublier and Casallas [16] discussed the need for structur-
ing beyond the structuring provided by file systems and
implemented their ideas in the Adele Configuration
Manager. They argued that a software CM system must
provide both an object management system with a power-
ful modeling capability (and its associated complexity), as
well as basic files and directories with limited modeling
power. The authors conclude that a software CM system
should have three components: an object manager control-
ling the repository, a workspace manager controlling the
work areas of developers, and a process manager control-
ling task and activities across the other two components.
Adele was used within industry in the early 1990s as a
foundation for in-house software engineering environ-
ments and process control. The SubCM Tool is motivated
by a similar desire, to see a more powerful mechanism for
modeling CM repositories than that provided by file
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systems and existing tools. However, their approach is
different in that it is based on objects and provides a
different way of approaching CM. Rather than replacing
current CM practices and tools, our approach has been to
provide add-on support to existing tools.

Asklund et al. [1] propose a unified extensional version-
ing model. Traditional CM versioning is done extensionally
at the atomic level and intentionally at the composite level.
In their proposed framework, extensional versioning is
used at both the atomic and the composite level. In the
model, a document is a tree structure consisting of local data,
a composite node (which is a collection of nodes), or a link
node (which is used to represent arbitrary relations between
documents). This model supports our notion of subsystems
as composite nodes and is more general because it allows
arbitrary relationships between documents to be estab-
lished. It also allows fine-grained CM, in that atomic nodes
(which contain just data) can be parts of documents rather
than documents themselves. The model supports and
manages change by creating and closing revisions of
documents, i.e., when an atomic node is updated, this
creates a new version of all the documents that are linked to
it. Changes between documents are not explicitly recorded,
but can always be calculated because all past versions of
documents are available.

The model has been implemented in three tools: COOP/
Orm supports development in distributed groups, CoEd is
a research prototype that supports the writing and editing
of hierarchically structured documents, and Ragnarok is a
software development environment that uses software
architecture as a framework for version and CM. While
Ragnarok has seen industrial usage, COOP/Orm and CoEd
have only been used in a research environment. COOP/
Orm, CoEd, and Ragnarok are discussed in more detail
below. Asklund et al. note that the versioning model does
not support product variants. It is also not clear how their
model can be used retroactively to analyse existing
document and code repositories, and the comparison of
variants is only supported through a recursive “diff” on
atomic nodes as opposed to the more structured compar-
ison supported by the SubCM Tool.

COOP/Orm [20] supports development in distributed
groups and, as such, has support for fine-grained version
control and advanced merge facilities. The motivation for
this work is quite different from our work. It is mainly
aimed at developers working in a collaborative environ-
ment. The creation of subsystems through the binding of
documents would be clumsy for the flexible creation of
subsystems that we are interested in. Moreover, the
integration of the CM facilities in the document editing
environment would have a significant impact on the way
in which developers work, which is something that we
tried to avoid.

CoEd [3] provides support during the cooperative
development of hierarchical documents. The approach
focuses on document units (chapters, sections, etc.) and
the tracking of changes to these during editing. A group of
components can be versioned (called metaversioning) and

documents can be created by selecting different versions of
these units and/or metaversions. The tool is intended to
support the selection of variants of each unit/metaversion
that comprise a specific version of the overall document, but
does not support the reorganization of documents.

Ragnarok [6] is a software development environment
that uses software architecture as a framework for version
and configuration management. Ragnarok has been
applied on three substantial projects, including Ragnarok
itself. Data has been collected on these projects in the
form of open-ended interviews and analysis of the RCM
(the CM module in Ragnarok) logs. The results reported
are that the model feels natural to developers, the
versioned documents become the focus, the model and
tool provide a traceable architectural evolution, and the
intermediate revisions of software components that are
created by the tool are not perceived as a problem. The
emphasis in this model and the tool is on software
architecture, and the tool is mostly intended for devel-
opers. There are no explicit change descriptions, but
architectural differences are supported by allowing
differences between versioned documents to be computed
in a recursive manner.

Lin and Reiss [18] present a framework for programming
environments that handles versions and configurations
directly in terms of the functions and classes in the source
code. It emphasises system building and version control
issues and discusses how the framework supports these,
focusing on issues in software reuse and cooperative
programming. The model is built around software units,
which are typically software functions or classes, but can be
higher level software artefacts as well. The notion of a
subsystem is also used, but in this case that means all the
software units that are linked from a given software unit,
either directly or transitively. Change management of
software units or subsystems is not discussed.

Their framework is implemented in the prototype
environment POEM (Programmable Object-centered Envir-
onMent), which provides an interface that lets the user view
software units, subsystems, and links between them. It also
provides a number of editors for the interface, implementa-
tion, and documentation of software units. The environ-
ment stores the source code and the links between various
software units itself and, as such, cannot be used to manage
an existing code base (it is aimed at supporting develop-
ment of new programs). It also does not support documents
that do not contain source code, such as requirements or
design documents. POEM does not seem to have been used
in an industrial setting.

Conradi and Westfechtel [9] summarize existing version
models for software configuration models and propose a
framework that, while recognizing problems associated
with hierarchical systems, focuses primarily on new
methods of object-based versioning. This work is based on
the earlier work of Conradi [8] on EPOS (Expert System for
Program and System Development), a software engineering
environment (SEE) with emphasis on process modeling,
CM, and support for cooperative work. In contrast, our
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approach is a lightweight add-on to existing CM techniques.
Given the investment embodied in existing CM repositories
and the effort required to port legacy CM data to new
databases, we believe our lightweight approach is a cost-
effective alternative to the complete redesign that would be
involved in changing CM systems.

Recently, Conradi and Westfechtel [35] have taken a
more component-based approach and are focusing on the
overlap between software architecture and software CM.
They state that, while software architecture and software
CM play different roles within the software life cycle, they
overlap in the product and version spaces and that software
CM tools should take software architecture into considera-
tion, but not be driven by it. As such this is orthogonal to
our work on the SubCM Tool, which while also component-
based, is focused on component understandability, not
component-driven development.

NUCM (Network-Unified CM) [30], [31] is a testbed
rather than a tool that provides basic CM operations in
a distributed environment and allows the separation of
CM repositories from the policies that control them. This
separation is achieved by providing a generic model of a
distributed repository and a programmatic interface to the
repository. In their generic model, they propose a storage
model using atoms and collections. These collections are
equivalent to our subsystems as they provide a mechanism
for structuring that is independent of underlying structure
and can be arbitrarily nested. The work diverges at this
point as van der Hoek et al. are focused on providing a
new approach to CM using a CM-specific distributed
repository and we are focused on improving visibility and
understandability of systems by using subsystems. It
would be possible to implement our system within the
testbed provided by van der Hoek et al. and remove the
localized aspect (restricted within a local CM repository) of
our work.

Our SubCM Tool can aid build managers in deciding
which files, components, etc., are included in a particular
version of the system under CM. The SubCM Tool allows
this process to be separated from the physical structure of
the software repository. The concept of disentangling the
build process from the repository/software structure is
being approached from non-CM directions as well. Source
tree composition [14] achieves this disentanglement by
providing a means of automating the assembly of software
systems from reusable source code components and
involves the integration of source code hierarchies, build
processes, and configuration processes.

Our approach provides a subsystem-based way of
visualizing the changes to a repository. Others provide
different ways of viewing these changes. Eick et al. [15]
describe a range of different ways of visualizing software
changes, and how visualization can support investigation of
the software change process. Our subsystem-based model
could be extended to extract the kind of data used in their
approach (such as who initiates change requests, who
implements particular changes, and how much effort is
involved) and extended to employ their visualization

techniques. Lanza’s “evolution matrix” [17] is a way of
visualizing how OO software evolves, by using a matrix in
which columns represent system versions, rows represent
classes, and cells display a user-specified class metric, such
as number of methods or number of instance variables. The
paper introduces terminology from astronomy to describe
the different ways in which classes evolve, such as pulsar,
for a class that grows and shrinks repeatedly during its
lifetime. Our work has focused on structuring and sub-
systems in particular to help understand change in a large
software-based system. Barkstrom [2] shows how graphs
can be used to understand and investigate large systems, in
this case, scientific satellite data.

7.2 Tools

A selection of existing widely used tools [7] were
investigated and evaluated for their ability to support the
SubCM approach. The focus was on their ability to support
arbitrary levels of subsystems, whether these subsystems
could be defined independently of the physical repository
structure, and how easily the subsystems could be changed.
Furthermore, the versioning of these subsystems was
investigated with specific focus on subsystem histories,
the update and aggregation of these histories, and the
comparison of subsystem versions. While many of the tools
offer some subsystem tracking facilities if the desired
subsystem can be defined in advance, they currently have
little or no capability to extract information when sub-
systems are defined retrospectively. Moreover, versioning
and variant comparison of subsystems is only supported to
a limited extent (typically a recursive diff).

Though not a commercial tool, CVS [12] is heavily used
in industry. CVS has modules that provide some of our
subsystem features. Modules, which can be arbitrarily
nested, define the contents of a view over the repository.
Module definitions typically contain directories, but may
contain other modules and files. Modules give some ability
to have structure different to the stored structure, but to be
viewed, modules of interest must be extracted from the
repository and viewed using external tools. Modules
themselves are not versioned, though it would be possible
to tag (label) all the constituents of a specific release of a
module to achieve a degree of versioning. Comparison of
module versions could likewise be achieved by checking
out the versions of interest (via tags) and then using tools
such as diff.

Continuus Change Management [11], [10] uses projects
and directories to structure its repository. More recently,
CM Synergy [28] (now a Telelogic company) has added
subprojects. The difference between projects and directories
is subtle and the main point is that projects can contain
subprojects and directories, but directories cannot contain
projects or subprojects and subprojects cannot contain
projects. Further, projects are intended to model complete
systems, subprojects to model logical components, and
directories are used for further structuring. The projects/
subproject combination give arbitrary depth of subsystems
and can be changed with ease. All projects and directories
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are versioned, but no other information is stored or visible
at the subsystem level and only directories can be
compared.

Razor [32] predominately uses folders, which are
directories and not versioned, for structuring. Razor does
support the concept of threads which are a build manage-
ment tool. Files and/or folders are allocated to a thread and
as such give different views over the repository. These
views are not to arbitrary depths as standard threads cannot
contain other threads, but there does exist a special thread
called “Project” that can contain a collection of standard
threads, but not other configuration items. Within this two-
level structure, threads are easily changeable. Threads are
versioned and a brief message describing the version can be
recorded, but no summary of how constituents (simple
items, folders, or threads) change is available. Thread
versions can be compared, but only by recursively showing
all the differences of every file in every subsystem (folder
and/or thread), similar to a recursive diff.

Rational’s ClearCase [24], [25], [26] is similar to Razor in
its handling of subsystem structuring. ClearCase has a
restricted subsystem-based approach. The top level consists
of a project, which can contain components, and compo-
nents can contain ordinary directory structures. Projects
and components are versioned by explicitly associating a
baseline with a component, where a baseline is a collection
of files (and the version of interest). Projects are flexible and
can be added easily with shared constituents, but have
limited depth as with Razor. ClearCase is more restrictive
as projects can only contain components, and components
must map to directories and everything within that
directory belongs to the component. Components are
versioned, but no other history is explicitly stored about
the component. Project and component comparisons are
similar to those available in Razor.

Microsoft’s Visual SourceSafe [21] provides a subsystem-
ing mechanism that goes beyond that of the other tools.
Visual SourceSafe uses projects which can be nested to a
depth of 15 (no reason for this restriction is given); however,
there is a special root project. All directories are auto-
matically projects, but projects can be added that do not
map directly to directories and objects can be shared
between projects, supporting differing views on the same
repository. Projects are versioned, but a project’s version
increments every time a constituent is added, deleted,
changed, etc. Label-based (or tags using CVS terminology)
versioning of projects is also supported. The version history
for a project simply records the sequence, but not details of
how constituents changed. Projects can be compared using
either version numbers or labels, but due to the fine-
granularity of version numbers, label-based comparisons
are more effective. All comparisons are flat comparisons as
already described for Razor and ClearCase.

The tools evaluated do provide some of the functionality
of the SubCM Tool, especially some form of intermediate
structuring. However the versioning of these subsystems
with specific focus on subsystem histories, the update and
aggregation of these histories and the comparison of
subsystem versions is limited or nonexistent. It would be

possible to integrate our tool with all of the tools evaluated,
except for Microsoft’s Visual SourceSafe, and provide this
more powerful and sophisticated approach to managing
subsystems. The integration would be achieved using the
command-line interface provided by these tools in much
the same way that the SubCM Tool currently integrates
with CM Synergy. Microsoft’s Visual SourceSafe does not
provide this type of command-line interface.

8 CONCLUSIONS

In summary, this paper introduced a generic lightweight
tool to enable flexible configuration management (CM) of
hierarchies of subsystems, designed to be used on top of
more traditional file-based CM systems. The focus was on
configuration identification and change tracking for user-
defined subsystems, by automated extraction of configura-
tion and change data from an underlying CM repository.
The SubCM approach is lightweight because it requires no
changes to be made to the system or repository structure,
nor to existing CM practices. Furthermore, this lightweight
approach is flexible as the cost of changing subsystem
structure is minimized. A prototype instantiation of the tool
was built to interface with Telelogic’s CM Synergy tool and
evaluated within a software development unit of Invensys.
The SubCM Tool was compared with a range of existing
CM tools and found to offer a more powerful and
sophisticated approach to managing subsystems. While
most existing tools provide some support for tracking
development histories of subsystems, they all require that
the subsystem be defined in advance; by contrast, the
SubCM approach provides the “benefit of hindsight” by
enabling subsystems to be defined retrospectively and their
histories to be generated for selected points in their system’s
history. This approach could be usefully combined with
advanced ways of visualising software changes [15].

The paper argues that the lightweight nature of the tool
and the visibility it gives to subsystem configuration and
change data enables a range of new process improvement
capabilities.

The approach enables a range of product quality metrics
to be tracked on a subsystem-by-subsystem basis. For
example, the change history of a user-defined subsystem
can be extracted automatically to reveal how often the
subsystem changed and by how much. In the example,
change data could be extracted at product level (in terms of
numbers of atomic changes), at project level (number of
tasks), or at “customer” level (number of change requests).
Such data can reveal problem areas and hot spots, and
suggest areas where redesign could usefully take place.

The approach also offers significant potential benefits for
V&V teams. Although not yet currently implemented in
SubCM Tool, the approach enables CM data to be
integrated across multiple CM repositories. For example,
documentation can be associated with the source code files
to which it relates, and their status can be tracked jointly as
a subsystem: If one changes without the other, this will
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become immediately obvious from the change history for

that subsystem.
Another potential benefit is more efficient integrity

checking for product releases. A subsystem can be estab-

lished for a particular product, and a product release

candidate can then be compared against an earlier product

release (e.g., the last version that was released to a

particular customer) to check whether the implemented

changes actually agree with the planned changes, change

request by change request.
Finally, the approach enables review and testing to be

more focused, for example, by revealing which subsystems
have changed and supporting the analysis of the impact of
change requests.
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