
Understanding IV&V in a Safety Critical and Complex
Evolutionary Environment: The NASA Space Shuttle Program1

Marvin V. Zelkowitz
Fraunhofer Center for Experimental

Software Engineering, Maryland
and University of Maryland,

College Park, Maryland, USA
+1-301-403-8935

mvz@fc-md.umd.edu

Ioana Rus
Fraunhofer Center for Experimental

Software Engineering, Maryland
4321 Hartwick Road, Suite 500

College Park, Maryland 20740, USA
+1-301-403-8971

irus@fc-md.umd.edu

1 This work has been performed as NASA Subcontract No. 93-393B-FUSA from the NASA/IVV facility in Fairmont, WV to
the Fraunhofer Center, Maryland.

ABSTRACT
The National Aeronautics and Space Administration is an
internationally recognized leader in space science and
exploration. NASA recognizes the inherent risk associated
with space exploration; however, NASA makes every
reasonable effort to minimize that risk. To that end for the
Space Shuttle program NASA instituted a software
independent verification and validation (IV&V) process in
1988 to ensure that the Shuttle and its crew are not exposed
to any unnecessary risks. Using data provided by both the
Shuttle software developer and the IV&V contractor, in this
paper we describe the overall IV&V process as used on the
Space Shuttle program and provide an analysis of the use of
metrics to document and control this process. Our findings
reaffirm the value of IV&V and show the impact IV&V has
on multiple releases of a large complex software system.

Keywords
Evolutionary software, Life and mission critical software,
Software independent verification and validation, Metrics,
Process characterization, Space Shuttle program, Software
safety and reliability

1 INTRODUCTION
"Defect free software" is a highly sought goal, and the use
of an independent group to provide verification and
validation (IV&V) on a software system is often cited as a
means to ensure a high quality software product.

However, this is an elusive goal.

We present here an overview of a multi-level complex
process for the NASA Space Shuttle software IV&V. The
major results of our study show that:

! In spite of the complexity of the software being
produced, the resulting product is effective and safe.

! IV&V is able to provide an independent means to
certify flight readiness of this software.

! Yet, in spite of the care in developing such software,
defects are still an unavoidable consequence of today’s
software development process.

We learned that for the Space Shuttle program IV&V does
not follow the common model, where an independent group
takes the artifacts developed by another group and applies
verification and validation (V&V) activities to them. It is a
more complex process, where “independence” is more
loosely defined and it is manifested in some, but not all
aspects of the process. The activities performed by the
IV&V contractor span across the whole lifecycle and are
not limited to just product verification and validation; they
also include risk analysis, requirements analysis, issues
tracking, and process evaluation. In our initial attempt to
develop an economic model for the return on investment
for IV&V activities, we discovered that many of the
benefits are qualitative, and therefore cannot be measured
and expressed in dollar figures.

The NASA IV&V program for the Space Shuttle was
instituted in 1988 and in 1997 management for IV&V was
transferred to the NASA/IV&V facility in Fairmont, WV.
The NASA Center Initiative which funds this research,
began in 1999 as a comprehensive look at understanding
the economic impact that the IV&V process has had on the
Shuttle program.

In Section 2 of this paper we look at the classical definition
of IV&V and the existing models that implement IV&V.
Then in Section 3 we present the process model used for
the Shuttle, given the specifics of the system, software, and
development environment and constraints. We will discuss
the purpose of IV&V, the roles, activities, and interactions
with the development environment. The analysis in Section
4 shows that IV&V proved to be successful and beneficial
in the context of this program.

349

2 SOFTWARE INDEPENDENT VERIFICATION
AND VALIDATION PROCESS TYPES
The IEEE Standard for Software Verification and
Validation [9] identifies three parameters that define the
independence of IV&V: technical, managerial, and
financial. Depending on the independence along these three
dimensions, there are many forms of IV&V, most prevalent
being: classical, modified, internal, and embedded.
Classical independence embodies all three parameters.
Modified preserves technical and financial independence,
with some compromise on managerial independence.
Internal and embedded IV&V are performed by personnel
from the developer’s organization. Therefore all three
independence aspects are compromised, the difference
between the two being that for internal, the IV&V team
reports to a different management level than does the
development team.

According to the definition given by the NASA Safety and
Mission Quality Office, IV&V is “a process whereby the
products of the software development life cycle phases are
independently reviewed, verified, and validated by an
organization that is neither the developer nor the acquirer
of the software, IV&V differs from V&V only in that it is
performed by an independent organization." [10]

Customer

“Prime Integrator”

Software

development

contractor(s)

IV& V

contractor

Close relationship betw een

developers and IV &V

Figure 1. Modified IV&V

For the Space Shuttle software, IV&V is a modified type.
Figure 1 shows the modified model of IV&V. The prime
integrator (i.e., NASA) manages the entire software
development. Development and IV&V are performed by
separate companies that report to the prime integrator at the
same level. The IV&V personnel is collocated with the
developers and they have both informal and formal
communication.

For the Shuttle software there is one more level of IV&V,
an internal IV&V, used by the development contractors,
who have their V&V groups separate and managerially
independent from the development groups. In the current
study we do not address this aspect. Our goal is to
understand the impact that financially-independent IV&V
has on Shuttle software development.

3 IV&V FOR SPACE SHUTTLE SOFTWARE

Space Shuttle Software Characteristics
The NASA Space Shuttle program uses four orbiter
spacecraft. Software releases, called operational increments
(OIs), are used for repeated missions on all four orbiters.
There have been over 22 operational increments developed
between 1981 and 1999.

Software OIs enjoy reuse across all four orbiters as well as
repeated use for each orbiter. The core functionality of
Shuttle software (common for all OIs) consists of 765
software modules with a total of 450K DSLOC (Delivered
Source Line of Code). Each new release requires on
average 18K DSLOC in modified mission-specific
functionality and 26K DSLOC of new or modified core
functionality. This represents an average of approximately
4% of new or modified system code (core functionality)
with each release, thus providing for a stable base software
system [1] [7] [8].

This is not a simple example of staged product evolution,
where each new version of the product completely replaces
the previous version. Rather there is a base system of core
functionality that is reused and enhanced by extensions that
differ from mission to mission. The Shuttle software could
be viewed as a horizontal product line as it primarily enjoys
forward interoperability of the software, but has been also
applied with backward interoperability on a limited basis
(e.g., an earlier increment could be used instead of a newer
one in a coming mission).

Mission safety and reliability are the most important
criteria for all missions and for each new software release.
Because of this, changes to either the software or hardware
are made with great care, such that they do not alter the
achieved safety and the architectural integrity of the
system.

The software is written in High-order Software Language
for Shuttle (HAL/S), and executes on legacy hardware with
limited memory: General Purpose Computers (GPCs) with
a semiconductor memory of 256K 32-bit words. For each
OI, new functionality is carefully weighed against the
memory requirements of the existing functionality.

The Shuttle has two main flight control subsystems: the
Primary Avionics Software System (PASS) and the Back-
up Flight System (BFS), which provides backup
capabilities for the critical phases of a mission. PASS and
BFS have been developed independently by different
contractors. A third contractor built the Space Shuttle Main
Engine Controller (SSMEC), but that system was outside of
the scope of our study.

The Shuttle uses five on-board computers - four running
the PASS software for redundancy and one running the
BFS version. However, the n-version risk mitigation
strategy does not work as well for software failures as with
hardware failures since a software failure in one computer

350

is likely to fail in the others as well (e.g., the Ariane 5
failure in 1996 [4]).

In this complex environment, IV&V acts as a pair of extra
eyes, to objectively ensure that the required functionality is
implemented, given inherent hardware constraints, with
minimum risk, preserving the architectural integrity and
safety of this life and mission critical software.

Shuttle Development Process
NASA uses a complex development process, with
numerous verification checks, to assure reliable
development of each new OI. For the purposes of this
paper, this is briefly described in Figure 2. More complete
descriptions of this process are given in [2] and [3]. Briefly,
the overall process is as follows:

Figure 2. Overview of Shuttle software development

In the figure, rectangles represent the various processes for
building a new OI, whereas ovals represent the main data
that tracks the development. A fourth data item, the Issues
Tracking Report, is used by the IV&V contractor to
monitor this development and will be discussed later. The
shaded rectangles refer to the major IV&V activities.

• Flight Software Needs come from NASA headquarters,
the flight software community and from issues raised
by the development and IV&V teams on previous OIs.
Each new requirement generally has a champion, who
is seeking to add or change that functionality to the
existing software base.

• The flight software community, including the IV&V
contractor, perform an analysis and a risk assessment
on the new requirements such that a set of
requirements for a new software release is developed.
Multiple releases (i.e., operational increments) are
often under consideration at one time, and proposed
changes are often strung out across several OIs to

minimize disruption of the software and schedule
changes to be most advantageous to NASA.

• The Shuttle Avionics Software Control Board
(SASCB) approves these requirements and a new
operational increment is scheduled.

• The developer of the Shuttle software uses these
requirements and upgrades a previous Shuttle software
release to meet the new requirements. This typically
takes about 8 months for initial development. Defects
(e.g., Discrepancy Reports [DRs] and Change Requests
[CRs]) detected by the developer are tracked once each
new module becomes part of a software build. If
critical, the CR or DR is implemented as part of the
current OI; if not critical it is added to the list of new
requirements to be evaluated for a further OI.

• After the developer adds all new functionality to the
base software, the milestone called the FACI (First
Article Configuration Inspection) is reached. The
developer performs verification and validation testing,
and the IV&V contractor begins to analyze these tests.

• At the Configuration Inspection (CI) milestone the
software is released, where it undergoes further
evaluation before the software is ready for use on a
mission. At this time additional performance and
functionality testing occurs by NASA, the software
developer, and other groups to assure that all
performance, reliability, and safety criteria are met.
The CI milestone is called the release date for the
software, even though the process can take another
year before the software actually flies on the shuttle.

• After passing these evaluation criteria, the software is
certified for flight on the planned Shuttle mission at the
Software Readiness Review (SRR) milestone.

A new OI is released about once a year. Since a single OI
can take up to 28 months to build, several OIs are under
simultaneous development, and the IV&V process needs to
keep track of potential problems that can cross OI
boundaries. This is significant as CRs and DRs are
intentionally delayed for implementation across multiple
releases until a more advantageous time.

Shuttle IV&V Process
Depending on the NASA program goals, there are different
goals for IV&V as well. For Shuttle the main objectives are
safety, reliability, and mission completion. Therefore, the
Shuttle IV&V program has four major goals:

1. Demonstrate the technical correctness of critical flight
software, including safety and security concerns;

2. Assess the overall quality of the system and software
products;

3. Ensure compliance with the development process
standards;

351

4. Provide written evidence and traceability of this
correctness so that software can be certified as flight
ready.

An IV&V process requires that the evaluation group (the
IV&V team) have technical, financial and managerial
independence from the development group. Within the
Shuttle program this is accomplished as follows:

1. Technical – IV&V prioritizes its own efforts and has
its own (proprietary) set of analysis tools to determine
which components to study;

2. Financial – The IV&V budget is independent from the
developer's budget, although both are part of the
overall Shuttle program budget.

3. Managerial – IV&V is performed by a different
organization from the development organization. There
is an independent reporting route to NASA program
management. The IV&V independently decides:

! Which areas of the system to analyze

! What techniques to use for IV&V

! The schedule of IV&V activities to be performed

The three shaded areas in Figure 2 represent IV&V
activities. These activities occur during three phases in the
development process:

! Requirement analysis: Risk analysis and risk
reduction activities such as Hazard analysis, and
Change impact analysis for safety, hardware and
development resources lead to problem detection in the
early development phases. The IV&V team represents
a historical record (in terms of previous issues raised
from earlier OIs) in judging the impact of any
proposed change.

! Product evaluation: The IV&V team analyzes the
implemented code and evaluates the tests conducted by
the developer and proposes changes where warranted.
This may involve informal negotiations in resolving
issues, uncovering new issues that need to be resolved,
and formal decision making. The IV&V team
generally does not test the software, although it does in
certain situations. Most of its activity is in evaluating
the results of the developer's own testing process.

! Flight certification: IV&V has to sign-off at the end
of the process to ensure traceability and disposition of
all critical issues that were uncovered during
development of that OI.

Process-oriented IV&V in any phase means process audit
and improvement. The IV&V contractor interacts with
Shuttle software development in four distinct ways:

1. Issues tracking. All open issues generated by IV&V
are tracked by the Issue Tracking Reports (ITRs)

discussed below.

2. Flight software readiness assessments, which
evaluate critical software changes prior to the flight
readiness review. The IV&V Certification of Flight
Readiness statement is integral to the Shuttle
Program’s process for verifying that the upcoming
mission can be safely and successfully executed.

3. Special studies investigate specific core functionality
changes to the flight software (e.g. the Global
Positioning System (GPS) receiver/processor, the
Multifunctional Electronic Display System (MEDS) -
“glass cockpit”).

4. Facilitates channels of communication with the
NASA Office of Safety and Mission Assurance
(OSMA) by providing copies of status information and
IV&V presentations.

Due to cost limitations, not all Shuttle software is subject to
IV&V. Subsystems deemed mission critical are candidates
for IV&V, and there are varying levels of IV&V effort for
these subsystems. The IV&V contractor concentrates on
software used during the most critical phases of flight, e.g.,
ascent and descent. Depending upon the criticality and risk
of software changes that have been made, and the allocated
budget and available resources, the contractor determines
the level of IV&V effort needed on a component [5];
comprehensive (eleven activities), focused (a subset of nine
out of the eleven activities), or limited (five out of the
eleven activities).

As part of this evaluation process, IV&V issues are tracked
by the IV&V contractor in both informal interactions with
the developer and in a series of formal reports called Issues
Tracking Reports (ITRs). During requirements analysis for
an OI and thereafter (Figure 2), the ITRs are used by IV&V
to track any further IV&V issues. Issue Tracking Reports
(ITRs) are IV&V contractor documents for keeping track of
all the actual and potential issues (anomalies) associated
with any CRs and DRs within the scope of IV&V, across
OIs. By tracking their progress, and certifying their
disposition, the IV&V contractor provides a mechanism for
NASA to certify the OI as being safe and flight ready. At
the end of each OI all CRs and DRs are reviewed to ensure
that there are no open issues relevant to safety and also that
the changes did not activate issues in dormant code. This
has proved to be a successful mechanism for allowing
software to evolve safely across OIs. From 1988 through
mid-1999 there were almost 800 such ITRs.

Once discovered, an issue is tracked until it is resolved and
the ITR is closed. Issues can be dispositioned in several
ways:

• After a discussion between the developer and the
IV&V team, the issue is deemed not to be an error and
the ITR is closed with no subsequent action. In some
cases the source code implements a correct, but

352

different, algorithm than what has been specified, and
a decision is made to accept what has been developed.

• If the problem is serious (e.g., mission safety is at
risk), a discrepancy report (DR) is created. At this
point the ITR is closed and the developer’s DR tracking
mechanism assures that the problem will be fixed.

• For a relatively minor error that will not affect the
safety of the current mission, a change request (CR) is
generated. CRs will be scheduled for implementation
for a subsequent OI. This represents almost half of the
ITRs that have been generated. With multiple OIs
under concurrent development, an ITR will often cause
a change to the requirements of the following OI in the
schedule. Such changes are delayed until a later OI
because of the danger of spurious changes. Since all
such changes need extensive testing for all changed
modules, such non-critical changes are not made until
needed at a later date.

Approximately one third of the ITRs represent
documentation errors, i.e., the implemented software and
the documentation do not agree. As with minor errors,
documentation changes are not made to the software until
the module in question is later changed due to new
functional requirements. In such cases the ITR is kept open
until the module is later modified.

4 CHARACTERIZING SHUTTLE IV&V DATA
Much of the value of IV&V resides in the various risk
mitigation tasks performed during the definition phase of an
OI. The first issue tracking report is dated 1988, and by
mid-1999 a total of 777 ITRs were collected. The IV&V
team rates ITRs in severity from 1 to 5 with the following
meaning:

Severity 1. A problem can cause loss of control,
explosion, or other hazardous effect.

Severity 2. A problem can cause inability to achieve
mission objectives, e.g., launch, mission duration,
payload deployment.

Severity 3. A problem is visible to the user (crew), which
is not a safety or mission issue. It is usually waived
and a CR for a later OI is opened.

Severity 4. A problem is not visible to the user (crew). It
is an insignificant violation of the requirements. This
includes documentation and paperwork errors (e.g.
typo’s), intent of requirements met, insignificant
waivers.

Severity 5. An issue is not visible to user (crew) and is
not a flight, training, simulation or ground issue. This
includes programming standards, maintenance issues,
and philosophical issues (e.g. improper HAL/S
parameter name prefix, inefficient code that meets
requirements).

Severity 1 and 2 ITRs are the most critical and need to be
addressed during the development of that OI. Severity 3
ITRs, if workarounds are possible, are often resolved as
change requests (CRs) for a later OI and are not changed or
are documented as user notes. Many severity 3 ITRs
represent issues that are not safety related that are present
in that OI or could appear in a later OI. CRs are written to
ensure that the later OI does not develop any problems.
Severity 4 and 5 ITRs are generally CRs that will be
corrected when the appropriate documents are updated.

Some of the severity 1 and 2 ITRs represent issues that are
outside of the operating environment, of the software so
cannot occur, even though theoretically possible. That is,
the condition that can cause the software failure cannot
occur in practice. Such errors are classified as 1N or 2N
and are generally grouped with the severity 3 errors.

A Characterization of the ITRs

Severity 1 2 1N,2N,3 4 5 Total
PASS 7 6 85 219 142 459
Both 3 0 13 43 20 79
BFS 8 1 41 115 70 235
Unknown 0 0 0 3 1 4
SUM 18 7 139 380 233 777

Table 1. Summary of ITRs collected

Table 1 summarizes the set of ITRs that have been
collected. Both refers to issues that affect both the BFS and
PASS software. For four severity 4 and 5 ITRs it was
difficult to determine which system they affected. Although
the PASS was the primary avionics system (538 ITRs or
69.2%), 314 ITRs (40.4% of the ITRs) concern the BFS.
About 10% concern both systems.

Severity 1 2 1N,2N,3 4 5 Total
OPEN 2 0 59 138 113 312
PASS or both 0 0 44 104 84 232
BFS 2 0 15 34 29 80
CLOSED 16 7 80 239 119 461
PASS or both 10 6 54 158 78 306
BFS 6 1 26 81 41 155

Table 2. Open and closed ITRs

As shown in Table 2, of the 773 ITRs for which we have a
disposition2, 461 (59.6%) of the ITRs are closed and 312
(or 40.3%) of the ITRs are still open in mid-1999. Although
40% of the ITRs are still open, all of the severity 1 and 2
PASS ITRs are closed and only two of the severity 1 BFS
ITRs were still open at the time of our initial analysis. In

2 We do not have details on the four severity 4 and 5
“unknown” ITRs from Table 1

353

both open ITR cases, which date from the early 1990s, the
BFS requirements differ from the PASS requirements in the
instance of aborting a mission. Those were not specified in
BFS requirements and so were implemented differently in
both the PASS and BFS systems. The ITRs indicate a
possible resolution to the problems, but the ITRs have not
been marked closed by the time of our analysis. [We just
found out from the IV&V leader that they have now been
closed.]

For the following analysis we limited our study to the
severity 1, 2, and 3 ITRs, since severity 4 and 5 ITRs are of
lesser impact and do not affect mission performance. There
were 164 severity 1 through 3 ITRs. We classified these
ITRs into one of the following categories:

• No change – ITR was resolved as not being a defect.
The ITR is closed with no corrective action. This
happens when the description of a requirement,
software module, or module test case is incomplete,
but the artifact is developed correctly. However, the
reason for no action is recorded.

• Change – A software defect was found and corrected.
In some cases, a formal discrepancy report (DR) is
created indicating a problem to be fixed by the
developer. The ITR is closed when the code is changed
if no DR was created.

• CR – A change to the software for later
implementation is planned. This may involve creation
of a change request (CR) document for later SASCB
approval.

• Process – The ITR reflects verification and validation
activity of the developer that is unclear, e.g., a certain
condition in the requirements is not part of the given
test case. In such cases either the test is performed or
the developer explains that the condition is actually
tested.

No chg Chg CR Process Total
Severity 1 8 2 7 1 18
Severity 2 2 4 1 0 7
Sev. 1N,2N,3 54 19 47 19 139
Total 64 25 55 20 164

Table 3. Disposition of ITRs

In Table 3 we present the disposition of severity 1, 2, and 3
ITRs. Of the 164, 64 were closed with no action and 20
process ITRs required the developer to reconsider certain
tests. Thus 64+20 = 84 of 164 ITRs or 51.2% of the ITRs
represent no changes to the developed software, whereas
48.8% (80 ITRs) do reflect changes proposed by the IV&V
process.

It is often stated that the earlier a defect is found, the easier
it is to repair. Looking at the creation dates for each ITR
sheds light on this. In Table 4 we divide the ITRs into those
found during the requirements and development phases
(Early ITRs) and those found after software release (CI

milestone) (Late ITRs)3. More than half (83 of 159) of the
issues were discovered prior to release of the new OI.

Early ITRs Late ITRs
Severity 1 9 8
Severity 2 6 1
Severity 1N, 2N,3 68 67
Total 83 76

Table 4. Early ITRs

Table 4 represents all ITRs, including those resolved with
no change to the software. By looking at only the 80 ITRs
from Table 3 that represent proposed changes (the CR and
Chg columns), the data from Table 4 is reduced to that
shown in Table 5. About 62% of the severity 1 and 2 issues
(8 out of 13) were found during the requirements and
development phases and 59% of all major defects (47 out
of 80) were found during these early phases. In addition,
five severity 1 defects were detected in the OI software
after the CI milestone, thus representing a real risk of a
later mission failure if the defects were not found.

Early ITRs Late ITRs
Severity 1 3 5
Severity 2 5 0
Severity 1N,2N,3 39 28
Total 47 33

Table 5. ITRs representing proposed changes

OI 1-2
E

1-2
L

3
E

3
L

1-3
E

1-3
L

DR
E

DR
L

I 2 2 32 13
J 1 1 139 52
K 3 2 5 110 25
L 2 2 2 2 133 32
M 1 1 114 10
N 2 2 81 11
O 5 5 5 5 89 28
P 1 6 7 60 17
Q 1 5 3 6 3 67 12
R 1 2 7 2 8 61 9

Total 2 4 22 23 24 27 886 209

Table 6. Defects found by OI

Table 6 gives the distribution of 51 severity 1 through 3
ITRs that were identified with a particular OI. We limited
this table to those OIs that were fully evaluated by IV&V
after 1988. Each pair of columns in the table represents the
early (E) and late (L) ITRs for that severity level. The
rightmost two columns in the table represent the 1095 early
and late DRs (defects) found by the developer of the PASS
subsystem for each OI.

3 Five of the ITRs were not identified with a specific OI, so
the phase of discovery could not be determined.

354

5 IV&V EFFECTIVENESS

The previous set of tables provides one set of quantified
measures of the benefits of the IV&V process. However,
we are interested in understanding the overall value of
IV&V in this complex environment. A more operational
measure of IV&V effectiveness is determining if any
critical errors have been present on Shuttle missions. This
is summarized in Figure 3.

A total of 17 severity 1 errors have been found in released
Shuttle software (as specified in Section 3, for the Shuttle
program, released software dates from the CI milestone,
that is over a year prior to launch). Of these, 10 defects
have flown on missions. However, of these, 9 flew on pre-
IV&V software, where 3 were in dormant code that did not
execute. Since IV&V was instituted, only three severity 1
errors have been found on released software, and only one
of these was on an actual mission. In this one case, it was in

dormant code that did not execute. In Figure 4 we show the
occurrence of severity 1 errors by year. The drop in such
errors since 1990 is quite apparent from this figure.

A measure of defect detection that is often used needs to be
reexamined in the light of the space Shuttle experience. The
number of days a problem report remains open is a measure
of the effectiveness of the defect detection process. From
the 103 closed serious ITRs (severity 1 through 3) from
Table 2, we computed the number of days that each
remained open. This is displayed as Figure 5. The average
number of days an ITR was open was 284, and ranged from
1 to 3049. The closure rate was fairly constant between 10
and 180 days. 24% of the ITRs were closed in 10 days or
less (25 out of 103) and slightly more than 25% (29 out of
103) took more than 420 days.

In a traditional development, an average days-open time of
284 days would be seen as a poor defect removal process.
However, the goal of defect tracking in the Shuttle is to
certify flight readiness of a future OI where for safety
concerns changes are only made in software where
necessary. A major benefit of the IV&V process is that the
ITRs keep track of multiple issues over several operational
increments. Non-critical issues may not be resolved for
several years until that section of the software is modified.
The number of days an ITR remains open is not of critical
importance, but the fact that the process can keep track of
all of these over a span of some 3000 days is vital to the
success of the activity.

A final indirect measure of IV&V effectiveness can be
implied by looking at the Early Detection rate (EDR) of
each OI. The EDR is reported to NASA as a measure of
how early all software defects are discovered for each OI. It
is computed simply as (# Early errors) / (#Total number of
errors). Thus it starts at 1.00 and drops below 1 as later
testing errors are found.

NASA uses a date of 400 days (about 1 year) before release
(CI milestone) as the date for early errors. Plotting the EDR
for a typical OI results in a graph much like Figure 6.

0

5

10

15

20

25

30

35

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

Days ITR is open

Nu
m

be
r I

TR
s

Figure 0. Days an ITR remained openFigure 5. Days an ITR remained open

14

3

9

1

3

0
0

2

4

6

8

10

12

14

16

Pre-1988 Post-1988

Released severity 1 errors
Flown severity 1 errors
Exposed severity 1 errors

Figure 3. Severity 1 defects

Figure 4. Released severity 1 errors by year

355

Figure 6. Early Detection Rate

The final value of the EDR for the OIs analyzed here are
given by Table 7. The overall EDR rate for all OIs is .81
(Meaning 81% of all defects were found more than 400
days before software release). While the earlier four have
EDRs of about .7 to .8, the last 4 have EDRs that ranged
from about .75 to almost .9. While many things go into the
error detection process, IV&V has had an impact.

OI EDR
I 0.71
J 0.73
K 0.81
L 0.81
M 0.92
N 0.88
O 0.77
P 0.78
Q 0.86
R 0.87

Total 0.81
Table 7. Composite EDR for multiple OIs

6 CONCLUSIONS
In this paper we present an overview of NASA Space
Shuttle software IV&V process and an analysis of the
issues tracking reports (ITRs) produced during the IV&V
process.

In our analysis we found that an ITR does not necessarily
reflect a single issue in the development of that OI. Some
represent a single discrepancy in one of the artifacts,
whereas others may represent the results of an inspection
reflecting 10 to 20 such issues. This study is only a first
approximation in our study of IV&V for this program.

Our original goal was to develop an economic model on the

value of IV&V in terms of a return on investment to NASA
based upon the expenditures for the IV&V process. The
annual budget for IV&V the last three years has been
approximately $3-3.5 million, which is approximately 1/30
of the budget allocated annually for the complete software
development and assurance process. In our attempt to
develop this model for the return on investment of IV&V,
we discovered that many of the benefits are qualitative and
cannot be measured and expressed simply in dollar figures.
Since many of the benefits of IV&V are in discovering
issues early (e.g., 24 of 51 severity 1 through 3 errors from
Table 6), it is hard to quantify money not spent on defect
detection and correction at a later stage.

The value of the IV&V interaction with the rest of the
software community and the domain expertise brought in
by the IV&V personnel, manifested throughout the
development of an OI and also across multiple OIs is hard
to quantify. Not to mention that in case a critical defect
manifests the mission could be compromised, or the orbiter
lost. The cost of losing an orbiter is about $2 billion [3], not
to mention the loss of life that cannot be estimated.

Therefore, our basic findings are the following:

• There is a demonstrated value of IV&V to the NASA
Space Shuttle program. From Table 5 there were 80
serious issues which were found by the IV&V process
on Shuttle software over a 10-year period, including 13
possible defects that if not resolved, could endanger a
mission.

• Many of these defects were found during the
requirements analysis phase. Almost one half (24 out
of 51 from Table 6) of the serious issues were found
during requirements and development. We also cannot
determine the additional savings that resulted from the
risk mitigation strategy employed during definition and
requirements analysis that prevented defects from even
surfacing. We can only guess at the quantitative
savings that resulted from this early detection of
defects.

• The IV&V process uncovered some additional
shortcomings in the overall testing process. Many of
the 29 ITRs (the 20 of Table 3 plus nine severity 4
ITRs) indicated insufficient testing of various modules.
These could have resulted in additional defects on later
OIs had they not been discovered.

• Only 1 severity 1 defect has flown on a Shuttle flight
since IV&V was instituted, and that error was in
dormant code that did not execute. This contrasts to 9
severity 1 errors on Shuttle flights prior to the IV&V
process.

Final Comments
It is important to state that this analysis is not meant to be a
criticism of either the developer or the IV&V team. The
precise reading of documentation by the IV&V contractor

COMPOSITE EARLY DETECTION
VERSUS TIME

356

led to numerous issues that could affect the current or
future Shuttle missions. Many requirements problems were
discovered via this route. The dual product and process
evaluation by the developer and the IV&V team allows for
increased safety and reliability of the product. It clearly
shows in some cases (e.g., the 64 ITRs that were resolved
with no changes) that a fresh look at the software (via the
IV&V process) demonstrated that the documentation was
unclear and a restatement of the specification resolved the
issue. The independence of the 2 groups shows those
different approaches to evaluating software leads to an
increased defect discovery process.

It is clear from data, such as that presented in Figure 3, that
elimination of all defects is still beyond the realm of current
software practices. Although some defects still manage to
slip by, NASA’s IV&V process clearly shows a vast
improvement in defect avoidance and the production of
robust software since 1988. The NASA IV&V process is
definitely complex, but appears to be thorough.

The question to be asked is how well can organizations do
who do not have the resources of an agency like NASA?
The danger of someone reading this paper is that they may
deem IV&V as too complex or too expensive to install. The
real danger is that they do not install such a process, and a
correspondingly important system later fails.

This analysis is helpful to other organizations outsourcing
software (especially critical software), where IV&V can
balance stakeholders’ interests, mitigate risks, improve
communication and visibility, track changes and anomalies,
and provide QA for both product and contractor’s process.

Most IV&V processes have been organized around
developing a correct system – from requirements to
delivery. However, as this paper demonstrates, the NASA
space Shuttle program is a multi-year ongoing development
where IV&V is an integral part of a multi-release process.
Understanding the interactions among developers and
evaluation teams for such large complex systems is
important for achieving reliability in such large critical
systems in the future.

ACKNOWLEDGEMENTS
We would like to acknowledge the cooperation of the
NASA IVV Center in Fairmont, WV, AverStar, Inc., and
United Space Alliance for their support in providing the
data that was used in this analysis.

REFERENCES
1. Eickelmann, Nancy, I. Rus, and M. Zelkowitz,
Preliminary Case Study Findings of the Space Shuttle
Software Evolution as a Product Line Process, ISAW-4
workshop at ICSE 2000, Limerick Ireland, June 2000.

2. Florac, William, A. Carlson, and J. Barnard, Statistical

process control: Analyzing a space Shuttle onboard
software process, IEEE Software (July, 2000) 97-106.

3. Leveson, Nancy et al., An Assessment of the Space
Shuttle Flight Software Development Process, National
Academy Press, Washington DC, 1993.

4. Lions, J.L. et al. Report by the Inquiry Board on the
Ariane 5 Flight 501 Failure, <http://www.esrin.esa.it/htdocs
/tidc/Press/Press96/ariane5rep.html>, 1996.

5. McCaugherty, Dan, The criticality and risk assessment
(CARA) method, NASA Workshop on Risk Management,
Farmington, PA, October, 1998.

6. NASA, Business plan for the effective utilization of
independent verification and validation to reduce risk in
NASA missions, NASA Goddard Space Flight Center, May
31, 2000.

7. Schneidewind, Norman F., How to evaluate legacy
system maintenance, IEEE Software, (July 1998) 34-42.

8. Schneidewind, Norman F., Measuring and evaluating
maintenance process using reliability, risk, and test metrics,
IEEE Trans. on Software Engineering 25, No. 6, (1999)
769-781.

9. IEEE Standard for Software Verification and Validation,
Std.1012-1998, Annex C.

10. NASA headquarters Safety and Mission Quality Office
(Code Q) letter of 13 January 1992; Clarification of
NASA’s Independent Verification and Validation (IV&V)
Perspective.

11. Zelkowitz, M. V., Yeh R. T., Hamlet R. G., Gannon J.
D., Basili V. R., Software engineering practices in the
United States and Japan, IEEE Computer 17, No. 6 (1984)
57-66.

357

