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Abstract 
Effort estimation by analogy (EBA) is often 

confronted with missing values. Our former analogy-
based method AUQA is able to tolerate missing 
values in the data set, but it is unclear how the 
percentage of missing values impacts the prediction 
accuracy and if there is an upper bound for how big 
this percentage might become in order to guarantee 
the applicability of AQUA. This paper investigates 
these questions through an impact analysis. 

The impact analysis is conducted for seven data 
sets being of different size and having different initial 
percentages of missing values. The major results are 
that (i) we confirm the intuition that the more missing 
values, the poorer the prediction accuracy of AQUA; 
(ii) there is a quadratic dependency between the 
prediction accuracy and the percentage of missing 
values; and (iii) the upper limit of missing values for 
the applicability of AQUA is determined as 40%.  

These results are obtained in the context of AQUA. 
Further analysis is necessary for other ways of 
applying EBA, such as using different similarity 
measures or analogy adaptation methods from those 
used in AQUA. For that purpose, the experimental 
design in this study can be adapted. 
 
1. Introduction 

 
Software effort estimation by analogy (EBA) [1, 2, 

3] is a data-driven estimation method. It compares the 
project under consideration (target project) with 
similar projects in a historical data set through their 
common attributes, and determines the effort of the 
target project as a function of the known efforts from 
the most similar historical projects. EBA can be used 
for effort estimation for objects at levels of project, 
feature, or requirement, given corresponding 
historical data sets. There are three basic steps for 
EBA for a given object under estimation: 

 
Step 1: Retrieve analogs (or similar objects) of the   

given object from the historical data set 
through a set of common attributes using 
certain similarity measures. 

Step 2: Determine the closest analogs of the given 
object. 

Step 3: Predict the effort of the given object by 
adapting the effort information of the closest 
analogs, which is referred to as analogy 
adaptation. 

 
In practical application, EBA is often confronted 

by the fact of missing values. For traditional EBA 
methods [1, 2, 4] that use distance-based similarity 
measures (e.g. Euclidian distance), the data sets are 
not allowed to contain missing values. Techniques 
that can help get rid of the missing values, such as 
deletion and imputation [5, 6, 7], are necessary for 
the applicability of these EBA methods. In the 
collaborative filtering based EBA method [8], 
similarity calculation just considers the available 
values. A special value NULL is defined to represent 
missing value in [3] together with a set of operations 
such that the missing values can be tolerated in the 
similarity calculation.  

Although techniques dealing with missing values 
can be applied, the impact of the amount of missing 
values in a data set on the eventual prediction 
accuracy is unknown in detail. Intuitively, the 
prediction accuracy of an EBA method is expected to 
decrease when the percentage of missing values 
increases. However, we need empirical evidence to 
support the assertion. Further questions are related to 
the type of dependency and a possible upper bound 
for the percentage of missing values such that the 
prediction is still possible in principle.  

This paper is dedicated to the empirical analysis of 
the impact of missing values on the prediction 

First International Symposium on Empirical Software Engineering and Measurement

0-7695-2886-4/07 $20.00 © 2007 IEEE
DOI 10.1109/ESEM.2007.10

126

First International Symposium on Empirical Software Engineering and Measurement

0-7695-2886-4/07 $20.00 © 2007 IEEE
DOI 10.1109/ESEM.2007.10

126



 

accuracy of an EBA method called AQUA and 
proposed in [3]. Section 2 briefly introduces the 
AQUA method and the way of dealing with missing 
values. The research questions and the related 
hypotheses are formulated in section 3. Section 4 
presents the experimental design that covers the data 
sets, evaluation criteria of prediction accuracy, the 
process of randomly introducing missing values as 
well as the experiment process. The major results are 
presented and discussed in section 5. Threats to 
internal and external validity of this study are 
discussed in section 6. Finally, we present the 
conclusion out of this paper and our future work in 
section 7. 
 
2. EBA method AQUA in a nutshell 

 
2.1 AQUA overview 

 
AQUA is an EBA method that uses historical data 

to predict the effort for a new object that may be 
requirement, feature, or project. In AQUA, the 
historical data set DB is defined as a triple DB = <R, 
P, V>. We use the following notation:  

R is the set of objects R = {r1, r2, …, rn},  
P = A∪ {Effort},  
where A = {a1, a2, …, am} is the set of attributes to 

describe the objects, Effort is a specific attribute 
characterizing the effort necessary to realize the 
respective object; 

Effort(ri) represents the effort to develop object ri, 
V = {aj(rk)} is the domain of attribute values of all 

objects in R, 
aj(rk) represents the value of attribute aj∈P for 

object rk∈R, 
S = {s1, s2, …, st} denotes the set of objects to be 

estimated. S shares the same attributes A with R.  
The problem of effort estimation by analogy is 

then stated as: 
 
Problem-EBA: For all sg∈S, the effort of sg, 

Effort(sg), is to be estimated based on the values of 
Effort from a set of most similar objects ri∈R to sg 
that are retrieved through a common set of attributes 
using certain similarity measures.  

 
The set of most similar objects is called Top-N 

analogs of sg, denoted by RtopN(sg). The estimation 
using effort information from the analogs is also 
known as analogy adaptation.  

In order to get the Top-N similar objects from DB, 
sg is compared with all the objects in R through 
certain similarity measures. Similarity measures 
between two objects over a set of attributes are 

defined in terms of local and global similarity 
measures [9]. Local similarity measure Lsim is 
defined as measuring the similarity between two 
objects related to an individual attribute aj∈A:  

Lsim: Mj×Mj→[0, 1]∪ {NULL}  
where Mj is the type of attribute aj.  
The types of attributes that supported by AQUA 

are defined in [3]. 
The global similarity measure between sg∈S and 

ri∈R is defined as a function of local similarity 
measures: 

Gsim: S×R→[0, 1]∪ {NULL}, and 
Gsim(sg, ri) = f(Lsim(a1(sg,), a1(ri)), Lsim(a2(sg,), 

a2(ri)),  … , Lsim(am(sg,),am(ri))).  
While function f can be defined in many forms, 

weighted mean is used in AQUA: 

1
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2.2 Dealing with missing values in AQUA 

 
In order to tolerate missing values in DB, a special 

value NULL is used to replace a missing value in 
AQUA such that the local and global similarity 
measures can be calculated in the presence of NULL 
values. The following operations on NULL are 
defined for local similarity measure Lsim, global 
similarity measure Gsim, arithmetic addition and 
multiplication: 

where b is the value of a valid type of attribute 
defined in AQUA, w∈[0, 1]; operations "*" and "+" 
are arithmetic multiplication and addition 
respectively. Operations P1, P2, and P3 define that 
Lsim is NULL if and only if either or both of the two 
participating attributes have NULL values. 

(P1) Lsim(b, NULL) = NULL              
(P2) Lsim(NULL, b)= NULL              
(P3) Lsim(NULL, NULL)= NULL      
(P4) w*NULL= NULL*w=NULL  
(P5) w + NULL = NULL+ w = w 
(P6) NULL+ NULL = NULL 
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Operations P4, P5, and P6 define that Gsim, as defined 
in equation (1), is NULL if and only if either or both 
of the participating Lsim are NULL. Effort (sg), as 
defined in equation (2), is set to NULL if and only if 
RtopN(sg)=Ø, which means that sg does not have any 
similar objects in the data set DB. 

It can be seen from the above discussion that the 
effect of the NULL is to ignore the participating 
attributes that have missing values in searching 
similar objects. Therefore, the more NULL in the data 
set, the less number of attributes participating in 
searching analogs through similarity measures. Now 
we are interested to know how the prediction 
accuracy of AQUA is affected by the amount of 
missing values in the data set and what percentage of 
missing values in a data set is acceptable in terms of 
the applicability of AQUA.  

We define that the percentage of missing values in 
data set DB is calculated as MisVal%: 

 
MisVal% = #Missing_Values/(nm)  (3.1)
MisVal = MisVal%*100  (3.2)

 
where n is the number of objects in R and m is the 

number of attributes in A; #Missing_Values is the 
number of NULL values in DB. 
 
3. Research objectives 

 
3.1 Research questions 

 
The main goal of this research is to investigate the 

impact of missing value on the accuracy of prediction 
results for EBA method AQUA. In more detail, we 
formulate three research questions and the related 
hypotheses. The research questions are formulated 
using the goal-oriented template [10]: 

 
Research Question 1 
Analyze  
(objects of 
interest) 

Seven data sets of varying size and 
different percentage of missing values

In order to 
(purpose)  

understand the impact of missing 
values  

With respect to 
(focus) Accuracy of prediction  

From the point 
of view of  
(perspective) 

Project manager  

For the 
environment 
(context) 

EBA method AQUA  

 

Research Question 2 
Analyze  
(objects of 
interest) 

Seven data sets of varying size and 
different percentage of missing values

In order to 
(purpose)  

Understand the impact of missing 
values  

With respect to 
(focus) 

Type of the dependency between the 
percentage of missing values and the 
accuracy of prediction 

From the point 
of view of  
(perspective) 

Project manager 

For the 
environment 
(context) 

EBA method AQUA 

Research Question 3 
Analyze  
(objects of 
interest) 

Seven data sets of varying size and 
different percentage of missing value 

In order to 
(purpose)  

Understand the impact of missing 
values 

With respect to 
(focus) 

Applicability of the EBA method 
AQUA in dependence of the 
percentage of missing values. 

From the point 
of view of  
(perspective) 

Project manager 

For the 
environment 
(context) 

EBA method AQUA 

 
3.2 Research hypotheses 

 
We formulate the research hypotheses in 

correspondence to the three research questions stated 
above. Each hypothesis is presented as a pair of 
alternative hypothesis and null hypothesis. The null 
hypothesis is directly tested; while the alternative 
hypothesis asserts the opposite of the null hypothesis. 
The alternative hypothesis is supported if the null 
hypothesis is refuted [11]. 

The hypotheses corresponding to the three 
research questions are referred to as H1, H2, and H3, 
respectively. Their corresponding null hypotheses are 
labeled as H10, H20, and H30. The alternative 
hypotheses are denoted by H11, H21, and H31, 
respectively. 

 
H11 The prediction accuracy of AQUA decreases 

when the percentage of missing values in a data 
set increases. 

H10 The prediction accuracy of AQUA does not 
decrease when the percentage of missing values 
in a data set increases. 
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H21 The dependency of the prediction accuracy of 
AQUA on the percentage of missing values 
follows a form of function approximately. 

H20 The dependency of the prediction accuracy of 
AQUA on the percentage of missing values does 
not follow any form of functions. 

 
If hypothesis H1 is supported, we would like to 

further test hypothesis H3. 
 

H31 In terms of the percentage of missing values, 
there is an upper limit for the applicability of 
AQUA.  

H30 There is not an upper limit of the percentage of 
missing values for the applicability of AQUA. 

 
4. Experimental design 

 
4.1 Data sets 

 
Seven data sets were used for this study. Table 1 

gives the summary of these data sets, where 
"#Objects" represents the number of objects in the 
data set, "#Attributes" represents the number of 
attributes excluding attribute Effort, "%Missing 
values" represents the percentage of missing values, 
and "%Non-Quantitative attributes" represents the 
percentage of non-quantitative attributes. The unit of 
attribute Effort is different in different data sets. 
Since we use relative error, other than absolute error, 
to measure accuracy in this analysis, the units do not 
affect the final analysis results. 

 
Table 1. Summary of the data sets for analysis 

Name #Objects #Attri-
butes 

%Missing 
values 

%Non-
quantitative 

attributes 
Source 

USP05-FT 121 14 2.54 71 [3] 
USP05-RQ 76 14 6.8 71 [3] 
ISBSG04-1 285 24 27.75 63 [12] 
ISBSG04-2 158 24 27.24 63 [12] 
Mends03 34 6 0 0 [4] 
Kem87 15 5 0 40 [13] 
Desh89 81 10 0.006 20 [14, 15]

 
Because ISGSG04 has 2024 projects, it is difficult 

to run multiple cross validation over the huge data set. 
We divided ISBSG04 into smaller subsets according 
to the range of effort by balancing both the number of 
values and the range of values in the subsets. Due to 
space and time, we selected two subsets as 
representatives of small/medium projects with effort 
between [500, 1000] (ISBSG04-1) and large projects 
with effort between [10,000, 20,000] (ISBSG04-2), 
respectively. Other subsets will be tested in future.  

4.2 Measurement of prediction accuracy 
 
For our purposes, Leave-One-Out Cross-

Validation (LOOCV) [16] is applied on the historical 
data set R in all cases. With LOOCV, one object, say 
sg, is estimated using others as analogs each time, 
until all the objects in R are estimated in the same 
way. After a LOOCV process, each object in R has 
(n-1) analogs and corresponding global similarity 
measures, from which the Top-N analogs, RtopN(sg), 
are chosen to generate Effort (sg).  

MRE (Magnitude of Relative Error) measures the 
prediction accuracy for each object sg; MMRE (Mean 
MRE) and Pred(l) (prediction accuracy at level l) [17] 
are normally used to measure the prediction accuracy 
for one iteration of the LOOCV process.  

Different from other analogy-based effort 
estimation methods that use a fixed number of 
analogs for analogy adaptation, thresholds of both 
global similarity measures (T) and the number of 
analogs (N) used for analogy adaptation are 
considered in AQUA when determining RtopN(sg). 
That means the N analogs in RtopN(sg) must satisfy 

Gsim(ri, sg) ≥ T*, i=1..N.  
For a given pair of values (N*, T*) of N and T, the 

corresponding prediction accuracy Accuracy*of sg is 
obtained from a single run of LOOCV. (N*, T*, 
Accuracy*) is called a Point-wise Accuracy (PAC) in 
the three dimensional space (N, T, Accuracy) when 
conducting LOOCV by varying N and T in certain 
ranges.  

The Accuracy of a PAC is a vector of criteria: 
MMRE, Pred, Strength, and MPSW, which are used 
to measure the prediction accuracy from different 
perspectives and will be defined briefly in what 
follows. For detailed definition and discussion about 
these criteria, readers are directed to [3] and [18]. 

For a given data set DB as defined in section 2.1, 
multiple iterations of LOOCV are applied to R with 
given ranges and steps for varying both N and T. All 
PAC produced from iterations of LOOCV compose 
the accuracy distribution data base, denoted by 
AccuDistr(DB).  

In what follows we provide some key definitions 
used in the analysis of prediction accuracy. 

Definition 1. MRE(rk, N, T) — Magnitude of 
Relative Error [17] 

MRE(rk, N, T)=
( ) ( )

( )
k k

k

Effort r Effort r

Effort r

−
  (4)

for a given object rk∈R under estimation, where 
Effort(rk) is the actual effort and Effort (rk) is the 
predicted effort of object rk. □ 

Definition 2. MMRE(N, T)—Mean Magnitude of 
Relative Error [17] 
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MMRE(N, T) =
1

( )
k

k
r R

MRE r
n ∈
∑  (5)

for a given pair of values of N, T for all the n 
objects in R in a single run of LOOCV. □ 

Definition 3. Pred(α, N, T)—prediction at level l 
[17] 

Pred(α, N, T)= λ
τ                   (6)

where λ is the total number of objects that are 
estimated in a single run of LOOCV with a given pair 
of values of N, T; and τ is the number of  objects with 
MRE less than or equal to l. □  

l=0.25 is normally used for actual evaluation in 
literature and is used in this paper; and Pred(0.25) 
represents Pred(0.25, N, T) when N and T are given 
or not considered. 

Definition 4. Strength(N, T) [3] 
Support(N, T) is the number of objects in R that 

can be estimated with a given pair of values of N, T.  
Strength(N, T) is then defined as the ratio of 

Support to the total number of objects in R. □ 
A single criterion to measure the overall accuracy 

of a PAC, called MPSW, is defined by considering 
MMRE, Pred, and Strength that measure different 
aspects of the prediction accuracy. 

Definition 5. MPSW(N, T) [18] 
MPSW(N,T)= η1(1–MMRE_N(N,T)) + 
                       η2Pred(0.25, N, T) + η3Strength(N, T) (7)

Because MMRE may be greater than 1, the 
normalized MMRE, MMRE_N, is used. The 
normalization of MMRE is based on all the PAC 
under consideration. Factors ηi are normalized to 1 as 
well. □ 

Typically, MMRE is the most frequently-used 
criterion for measuring the prediction accuracy. 
Therefore, a stronger weight η1 = 0.4 was given to 
MMRE, while η2 = 0.3 for Pred(0.25) and η3 = 0.3 for 
Strength. 

To compare the overall accuracy across multiple 
data sets, the average of the MPSW of all the 
involved PAC in AccuDistr(DB), called MPSV, is 
used. 

Definition 6. MPSV(DB) [18] 

MPSV(DB) = 
1

1
( , )

p

i
MPSW N Tip

=
∑   (8)

where MPSWi(N, T) is the MPSW of the  ith PAC 
and p is the total number of PAC in AccuDistr(DB). □ 

The greater the MPSW and MPSV, the better the 
prediction accuracy of a PAC and the overall 
AccuDistr(DB).  

Among these criteria, MMRE, Pred, Strength, and 
MPSW constitute the Accuracy vector and measure 
individual PAC, while MPSV measures the overall 
accuracy of AQUA with respect to AccuDistr(DB).  

Because other existing EBA methods are normally 
validated in the case of full support, i.e. Support 
equals to the number of objects in DB, we thus 
consider MPSW at full support, denoted by 
MPSW_FS, as a baseline. There may be more than 
one PAC at full support. MPSW_FS is taken as the 
best MPSW at full support, which is the first PAC at 
full support when AccuDistr(DB) is ordered 
lexicographically by Support (Desc), MPSW (Desc), 
Pred (Desc), T (Asc), N (Asc), MMRE (Asc), where 
Desc and Asc mean descending and ascending order 
respectively.  

 
4.3 Introducing missing values randomly 

 
In order to see how the prediction accuracy of 

AQUA is affected by missing values, we introduce 
missing values in the data set DB randomly with an 
increment of percentage of missing values of the total 
number of attribute values in DB. Following the same 
naming convention in equation (3.1) and (3.2), the 
initial percentage of missing values in the data set is 
denoted by MisValini%, the step of the increment by 
MisValstp%, the maximum percentage of missing 
values by MisValmax%. A percentage of missing 
values MisValinc% in a round of increment inc is 
calculated as MisValinc = MisValinc-1 + MisValstp, 
where MisVal0= MisValini. Starting from 1, inc is 
increased until MisValinc = MisValmax. For all the data 
sets, we set MisValstp=5, and MisValmax=90 in this 
experiment, while MisValini is calculated from the 
given data set DB. If MisValini > 0, MisVal1 is set to 
the MisValstp next to MisValini. 

When introducing percentage of MisValstp missing 
values, firstly, all the cells in a two-dimensional table, 
with objects the rows and attributes the columns, are 
numbered using a positive integer. Secondly, a set of 
random positive integer numbers is generated in 
order to introduce MisValinc% missing values. The 
NULL value is thus assigned to a cell according to the 
random number that represents the location of a value 
in the data set. If there is already a NULL in the cell, 
next random number is used; this process is repeated 
until next non-NULL cell is reached.  

 
4.4 Experiment process 

 
After introducing a percentage of missing values 

in the data set DB, multiple LOOCV by varying N 
and T are then conducted to see the prediction 
accuracy of AQUA. Consequently, a series of 
accuracy measures, i.e. vector Accuracy and MPSV, 
of AUQA are obtained after each increment of 
missing values are tested. As a measure of the overall 
prediction accuracy of AQUA, MPSV will be used 
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for each increment of missing values to see how the 
overall accuracy will be influenced by the increasing 
percentage of missing values. In addition, MPSW_FS 
will be used as an auxiliary measure of the overall 
prediction accuracy. 

MMRE_N in equation (7) is normalized across 
increments of missing values so that they are still 
comparable.  

The experiment process is then described in the 
following pseudo code. Scatter plots of MPSV and 
MPSW_FS versus MisVal over the seven data sets in 
Table 1 will be analyzed in next section respectively. 

 
Data set DB; 
Nmax = minimum(Card(DB), 50); --Maximum threshold of N 
Calculate MisValini in DB; 
FOR MisVal=MisValini STEP BY MisValstp TO MisValmax DO 
         Introduce MisValstp% missing values into DB randomly; 
         FOR N=1 STEP BY 1 TO Nmax DO 
                  FOR T=0 STEP BY 0.1 TO 0.9 DO 
                            DO LOOCV for DB; 
                            Obtain the following variables:  
                            MMRE(N, T), Pred(N, T), Support(N, T), 
                            Strength(N, T), MPSW(N, T) 
                  END FOR; --T 
         END FOR; --N 
         MPSV(MisVal) = Average of MPSW(N, T); 
         Find the best MPSW(N, T) at full support:  
               MPSW_FS(MisVal); 
END FOR; --MisVal 
 

5. Experiment results 
 

5.1 Testing of hypothesis H1  
 
In order to study hypothesis H1, scatter plots of 

the aggregated criterion MPSV versus MisVal, the 
percentage of missing values in a data set, are 
presented in (a) to (g) of Figure 1 for all the seven 
data sets under investigation. 

We can see from Figure 1 the general trends that 
accuracy is decreasing as MisVal increases. There is a 
small increase at one point over data set USP05-FT in 
(a). This increase of MPSV can be explained in terms 
of attribute selection in that a subset of attribute may 
produce better prediction accuracy than the whole set 
of attributes [18], because NULL values lead to the 
omission of the attributes that contains the NULL 
values in the calculation of global similarity measure 
Gsim in equation (1) according to operations (P1) to 
(P3). Nevertheless, this increase takes place only for a 
few subsets of attributes in a specific data set. In 
summary of the results from all the seven data sets, 
MPSV decreases as MisVal increases. Therefore, null 
hypothesis H10 is refuted and consequently H11 is 
supported. 

 
(a) 

 
(b) 
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(g) 

Figure 1. Scatter plots of MPSV vs. MisVal over seven 
data sets. 

 
5.2 Testing of hypothesis H2  

 
When testing hypothesis H2, regression is used to 

generate the fitted functions of the scatter plots in 
Figure 1. All the scatter plots are tested using linear, 
quadratic, and cubic regressions. Because of the 
consistent testing results from all the data sets, only 
the results of data set USP05-RQ are presented as a 
representative in Figure 2, in which (a) is the linear 
and (b) is the quadratic fitted functions of the fitted 
line plots respectively. In the fitted line plots, S 
represents the estimated standard deviation of the 
error in the model. The smaller the S, the better the 
fitted function is. R-Sq represents Coefficient of 
determination; indicates how much variation in the 
response is explained by the model. The greater the 
R-Sq, the better fitted the function.  

In summary of the fitted functions over the seven 
data sets, the best fitted function is quadratic, because 
all the scatter plots are better fitted by quadratic 
functions than the linear functions in terms of smaller 
S and greater R-Sq. This is demonstrated by the 
comparison of the values about S and R-Sq between 
(a) and (b) over data set USP05-RQ. Meanwhile, 
there are not cubic functions generated due to the fact 
that the coefficients of the cubic terms are always 
zero.  

Based on the results of the fitness testing that are 
illustrated in Figure 2, null hypothesis H20 is refuted, 
H21 is thus supported. The most fitted function is in 
quadratic form. 

 
(a) 

 
(b) 

Figure 2. Fitted line plots of data set USP05-RQ 
 
 

5.3 Testing of hypothesis H3 
 
Based on the testing results of hypotheses H1 and 

H2, our concern now is about hypothesis H3: whether 
there is an approximate upper limit of the percentage 
of missing values, based on which we can decide if 
AQUA is still applicable or not in terms of overall 
prediction accuracy.  

In addition to the scatter plots about MPSV in 
Figure 1, scatter plots about MPSW_FS are also 
observed, as presented in (a) to (g) of Figure 3. 

It can be seen from Figure 3, the general tendency 
of MPSW_FS in dependence of MisVal is decrease, 
which also confirms the testing results of H1 and H2 
using MPSV. The short increases in (a) to (g) are 
explained in the same way of that about MPSV in 
section 5.1 in terms of attribute selection. 

Besides, we observe a sharp decrease of 
MPSW_FS in every data set. This sharp change is 
caused by the fact that MPSW_FS does not exist after 
a certain percentage of missing values is introduced. 
In this case, only some of the objects can be 
estimated, the applicability of AQUA is thus 
considered quite limited. Based on this fact, we 
determine the sharp change as a turn point— AQUA 
is not applicable beyond the MisVal of the turn point. 
Therefore, H30 is refuted and H31 is thus supported. 
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Figure 3. Scatter plots of MPSW_FS 
 
In summary of all the scatter plots in Figure 3, the 

turn points in terms of MisVal are distributed 
between 45 and 75, while MPSV values distribute 
from 0.07 to 0.24 correspondingly, which means 
relative low values of MPSV. Because 45 is the 
earliest turn point for all the data sets, we determine 
that 40 is the upper limit in terms of MisVal in order 
for AQUA to be applicable for any data set, i.e. 
MisVal% ≤ 40%. 

 
5.4 Further observation 

 
From the scatter plots in Figure 1 and Figure 3, we 

also observe: the more number of attributes (m), as 
well as objects (n), in a data set, the better the overall 
prediction accuracy of AQUA as MisVal increases. A 
better prediction accuracy here means a latened sharp 
change in the scatter plot of MPSW_FS, and a greater 
value of MPSV in the scatter plot at a given turn point.  

This can be seen from ISBSG04-1 and ISBSG04-2, 
which contain much more attributes and objects than 
other data sets, but have the latest sharp change. As 
for MPSV, if the turn point of the sharp change of 
ISBSG04-1 is taken as a reference, i.e. MisVal=70, 
the corresponding MPSV values of all the data sets 
are summarized in Table 2. 

Among the seven data sets, ISBSG04-1 and 
ISBSG04-2 have the latest sharp change and they 
have the greatest MPSV values when considering 
MisVal=70. Better MPSV values are obtained for 
ISBSG04-1 and ISBSG04-2 if MisVal=75 from the 
turn point of ISBSG04-2 is taken as a reference.  
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We conclude from this observation that the more 
attributes, as well as objects, in a data set, the more 
applicable AQUA could be as the percentage of 
missing values increases.  

 
Table 2. Data set size vs. MisVal vs. MPSV  

Data set Size 
(m*n) 

MisVal of 
turn point 

MPSV at 
MisVal=70 

USP05-FT 14*121 60 0.06 
USP05-RQ 14*76 45 0.05 
ISBSG04-1 24*285 70 0.13 
ISBSG04-2 24*158 75 0.08 
Mends03 6*34 55 0.07 
Kem87 5*15 45 0.03 
Desh89 10*81 50 0.06 

 
6. Threats to validity 

 
6.1 Internal validity 

 
This study assumes and tests a causal relationship 

between the prediction accuracy of AQUA and the 
percentage of missing values in the data set used by 
AQUA. Threat to internal validity mainly comes 
from the measurement criteria of the prediction 
accuracy of AQUA.  

The criterion used in this study for measuring the 
overall prediction accuracy of AQUA is MPSV, 
which is the weighted average of MPSW that is an 
aggregation of normalized MMRE, Pred, and 
Strength. While using a single criterion to measure 
the overall prediction accuracy, the influence from 
each individual criterion may be neutralized by 
others' with the aggregation, and further the 
averaging. This situation degrades the usability of 
MPSV when it is used alone.  

In fact, we have considered other criteria as well 
for this analysis, such as the total number of objects 
that can be estimated (sum of Support) and the total 
number of estimates (MPSY [18]) that satisfy the 
acceptable thresholds of MMRE and Pred (i.e. 
MMRE≤25% and Pred(0.25)≥75% as proposed by 
Conte et al. in [17]). The results from these criteria 
also support the alternative hypotheses. The threat of 
using a single criterion MPSV to the internal validity 
can be alleviated if these criteria are used along with 
MPSV. However, the results of these criteria are not 
presented in this paper due to space limitation.  

 
6.2 External validity 

 
We discuss the threat to the external validity of 

this study in terms of the generalization of the 
experiment results and the design of the experiment. 

As formulated in the research questions, the 
context of this study includes (i) the data sets; (ii) the 
EBA method; and (iii) the way of dealing with 
missing values. 

For hypothesis testing based on inferential 
statistics, the sampling space must be randomly 
selected. The seven data sets for this study are 
considered randomly selected and sufficiently 
representative based on the following observations: (i) 
they are collected at different periods of time by 
different organizations over the world; (ii) they are 
software projects in different application domains; 
(iii) they have different sizes in terms of number of 
attributes and objects; (iv) they have different 
percentages of missing values; (v) they have different 
types of attributes in terms quantitative and non-
quantitative metrics. 

However, the number of data sets used is only 
seven, which is quite small in terms of statistical 
inference based on which we draw the conclusions. A 
small size sampling space may cause bias in the 
results. 

The EBA method used for testing the hypotheses 
is AQUA, in which equal weights of attributes and 
only one type of similarity measure for each attribute 
type are used. Other options of attribute weighting 
and selection, similarity measures, and adaptation 
strategies are not tested.  

The NULL value and corresponding operations are 
defined in AQUA, hence, are used in this study. 
Other techniques dealing with missing values are not 
tested either. 

Therefore, the results of this study are obtained in 
the context of EBA method AQUA. Changes to the 
context may lead to different results. 

Nevertheless, the design of this study can be used 
to test the dependency of the prediction accuracy of 
other EBA methods on the missing values when other 
techniques are used to handle issues such as missing 
values, attribute weighting and selection, and 
similarity measures.  

 
7. Conclusions and future work 

 
This study provides new insights into EBA 

method AQUA with knowledge about the prediction 
accuracy of AQUA in dependence of the percentage 
of missing values in the data set. The following 
results were obtained: 

(1) The tendency of the overall prediction 
accuracy of AQUA decreases as the percentage of 
missing values in a data set increases. This tendency 
follows a quadratic form of function. 

(2) The upper limit of missing values for any data 
set in general is determined as 40%, in terms of the 
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applicability of AQUA. 
(3) The more attributes, as well as objects, in a 

data set, the better applicability of AQUA could be as 
the percentage of missing values increases. 

The experiment method of this study can be used 
for impact analysis of missing values for 
organizations that grow their data set periodically by 
adding new data that may contain missing values. 
The fitted quadratic functions can help predict the 
overall prediction accuracy of AQUA given a certain 
percentage of missing values. On the other hand, if 
missing values are reduced in some way, the 
quadratic functions can also help analyze how the 
prediction accuracy of AQUA might be improved 
over a given data set. 

Our future research on this topic will be directed 
to the analysis of other techniques dealing with 
missing values, such as imputation, and compare with 
the use of NULL. Other EBA methods will also be 
explored over more data sets. 
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