
The Effects of Over and Under Sampling on Fault-prone Module Detection

Yasutaka Kamei, Akito Monden, Shinsuke Matsumoto,
Takeshi Kakimoto, Ken-ichi Matsumoto

Graduate School of Information Science, Nara Institute of Science and Technology
8916-5 Takayama, Ikoma, Nara 630-0192, Japan

+81 743 72 5312
{yasuta-k, akito-m, shinsuke-m, takesi-k, matumoto}@ is.naist.jp

Abstract

The goal of this paper is to improve the prediction

performance of fault-prone module prediction models
(fault-proneness models) by employing over/under
sampling methods, which are preprocessing
procedures for a fit dataset. The sampling methods
are expected to improve prediction performance when
the fit dataset is imbalanced, i.e. there exists a large
difference between the number of fault-prone modules
and not-fault-prone modules. So far, there has been
no research reporting the effects of applying sampling
methods to fault-proneness models. In this paper, we
experimentally evaluated the effects of four sampling
methods (random over sampling, synthetic minority
over sampling, random under sampling and one-sided
selection) applied to four fault-proneness models
(linear discriminant analysis, logistic regression
analysis, neural network and classification tree) by
using two module sets of industry legacy software. All
four sampling methods improved the prediction
performance of the linear and logistic models, while
neural network and classification tree models did not
benefit from the sampling methods. The improvements
of F1-values in linear and logistic models were 0.078
at minimum, 0.224 at maximum and 0.121 at the mean.

1. Introduction

Identification of fault-prone modules [12] is an
important issue for improving software quality in the
testing and maintenance phases [9]. Various
multivariate modeling techniques, which are
applicable to fault-prone module prediction, have been
proposed, including linear discriminant analysis
[12][13], logistic regression analysis [10], neural
network [2] and classification tree [5]. These models
are built from a fit dataset, which contains product

metrics and fault data of modules of a past software
project.

However, preparing a balanced fit dataset is not
always possible in practical situations. Many module
datasets in the field are actually imbalanced, i.e. there
exists a large difference between the number of fault-
prone modules and not-fault-prone modules; and, this
causes performance degradation of fault-proneness
models [6]. For example, in Khoshgoftaar et al.’s case
[7], the percentage of fault-prone modules to all
modules (Pfp) was about 6% in the maintenance phase.
Also, in NASA IV&V Facility Metrics Data
Program’s case [11], Pfp was below 15% in 8 datasets
out of 15.

So far, an extended classification tree model
suitable for an imbalanced dataset has been proposed
by Khoshgoftaar et al [7]. In conventional fault-prone
models, the prediction accuracy of the minority class
(fault-prone modules) usually becomes worse since the
prediction accuracy of the majority class (not-fault
prone modules) is dominant in satisfying objective
functions of the models [1]. The extended
classification tree model is built based on the
misclassification rate to improve the accuracy of the
minority class. However, the problem here is that the
classification tree is not always the best (most
accurate) model among other models. Gray and
Macdonell showed that the best model among
available models often depends on a dataset being
used [2].

In this paper, we focus on an approach to modify a
fit dataset and not to extend fault-proneness models
themselves. The approach is called sampling methods
that can be applied independent of a fault-prone model.
The sampling methods are classified into two
methods: (1) over sampling that adds fake fault-prone
modules (minority class) to a fit dataset, and (2) under
sampling that reduces not-fault-prone modules

First International Symposium on Empirical Software Engineering and Measurement

0-7695-2886-4/07 $20.00 © 2007 IEEE
DOI 10.1109/ESEM.2007.28

196

First International Symposium on Empirical Software Engineering and Measurement

0-7695-2886-4/07 $20.00 © 2007 IEEE
DOI 10.1109/ESEM.2007.28

196

(majority class) from the fit dataset [1][8]. However, to
our knowledge, no study has reported the effects of
applying sampling methods to fault-proneness models.
Furthermore, it is not clear which sampling methods
are most appropriate for the fault-proneness models.

In this paper, we experimentally evaluated the
effects of four sampling methods (random over
sampling, synthetic minority over sampling, random
under sampling and one-sided selection) applied to
four commonly used fault-proneness models (linear
discriminant analysis, logistic regression analysis,
neural network and classification tree) using two
module datasets A and B (each written with different
programming language) of large legacy software of a
Japanese software company. Since all four sampling
methods have the ability to control the number of
modules to add to or delete from a dataset, we also
evaluated the prediction accuracy with different
numbers of additions/deletions. In our experiment, the
fit datasets (of both A and B module sets) were built
from data during the three years prior to a certain
release in a maintenance phase (Pfp are 5.67% and
13.16%), and the test datasets were built from data
during three years after the release (Pfp are 2.15% and
3.36%). The predictor variables of fault-proness
models are 16 complexity metrics and 3 change
history metrics of modules.

In what follows, Section 2 describes the details of
the sampling methods. Section 3 provides the design
of our experiment, and Section 4 gives the results and
discussion. Section 5 summarizes the paper and
presents some future topics of research.

2. Sampling Methods

In this paper, “sampling” means a preprocessing
procedure to correct the imbalance of a given dataset
by increasing or decreasing the cases (modules) in the
dataset before applying it to model building. There are
two types of sampling: over sampling and under
sampling. Over sampling increases minority cases,
while under sampling decreases majority cases of the
dataset.

Generally, the prediction accuracy of the minority
class (fault-prone modules) becomes worse since the
prediction accuracy of the majority class (not-fault
prone modules) is dominant in satisfying objective
functions of the models [1]. By correcting the
imbalance, the prediction accuracy of the minority
case is expected to be improved. One of the concerns
in using sampling methods is that over sampling
might cause over fitting to fake (added) cases. Another

concern is that under sampling might eliminate useful
cases. Therefore, experimental evaluation of sampling
methods is needed.

In this paper, we use the following sampling
methods in the experiment.

2.1. Over Sampling
2.1.1. Random over sampling (ROS)
Random over sampling (ROS) increases the number of
minority cases in a dataset by duplicating minority
cases randomly. ROS repeats until Pfp reaches a
predefined value (e.g. 50%) as follows.

Step 1: Selection of a minority case

One case is selected randomly from a minority class in
a dataset.

Step 2: Duplication of a minority case

A new case is added to the dataset by duplicating the
case selected in step 1.

2.1.2. Synthetic Minority Over sampling Technique
(SMOTE)
Chawla et al. proposed Synthetic Minority Over
sampling Technique (SMOTE) that produces new
cases based on the k-nearest neighbor [1]. SMOTE
repeats steps the following steps 1,…,4 for each case
of minority class.

Step 1: Selection of a minority case

One case (denoted as ma) is selected from a minority
class in a dataset.

Step 2: Identification of k-nearest neighbors

K-nearest neighbors of ma are identified based on the
similarity computation. In this paper, we adopted k=5
as Chawla et al. used [1]. Below describes how to
compute the similarity.

Step 2-1. The normalization of predictor variables
SMOTE requires computing the similarity between
two arbitrary cases in a dataset to identify the k-
nearest neighbors of a case. However, the similarity
calculation based on predictor variables of software
modules requires some normalization, because the
value ranges of the variables widely vary. Hence, we
added a new step, which normalizes predictor
variables so that their value ranges become [0, 1]. The
normalized value norm(vi, j) of variable fj of case mi is
calculated by the following equation:

197197

� � � �
� � � �jj

jji
ji fminfmax

fminv
vnorm

�

�
 ,

,
 ,

where min(fj) and max(fj) denote maximum and
minimum value in variable fj, respectively.

Step 2-2: Similarity calculation
The similarity between ma and all other cases in the
minority class is calculated. In this paper, we used
Euclidian distance, which is widely used as similarity
measure. The similarity sim(ma,mi) between target
case ma and other case mi is calculated by the
following equation:

� � ¦

�
n

j
jijaia vvmmsim

1

2
,,)(, ,

where vi,j denotes a value of variable fj of case mi, and
n denotes the number of predictor variables.

Step 3: Selection of a neighbor

One case mr was selected randomly from the k-nearest
neighbors.

Step 4: Addition of a minority case

A new case was added in some places along a straight
line between the vertexes of the feature vector of cases
ma and mr. Step 4 was repeated x times, where x = (the
number of additional minority cases) / (the number of
original minority cases).

2.2. Under Sampling
2.2.1. Random under sampling (RUS)
Random under sampling (RUS) decreases the number
of majority cases in a dataset by deleting majority
cases randomly. RUS repeats until Pfp reaches a
predefined value as follows.

Step 1: Selection of a majority case

One case is selected randomly from a majority class in
a dataset.

Step 2: Deletion of a case

The case selected in step 1 is deleted from the dataset.

2.2.2. One-sided selection (ONESS)
Kubat et al. [8] proposed an under sampling method
called one-sided selection (ONESS), which exploits
the concept of Tomek links [15]. Denoted by G (x,y),
the distance between x and y, a pair of cases (x,y) is
called a Tomek link if no case z exists such that G (x,z)
< G (x,y) or G (y,z) < G (y,x) [15]. Kubat et al. proposed
to select x from a minority class and y from a majority
class. In this case, a Tomek link (x,y) can be found
either (1) on the class boundary when both x and y
exist in the right class regions, or (2) inside one of the

Tomek link
Major case

Minority case

Class Boundary

Figure 1. Example of distribution of majority cases

and minority cases (Original fit dataset S)

Tomek link
Major case

Minority case

Class Boundary

R
Figure 2. Set C of cases containing R and all

minority cases (After step 1)

Tomek link
Major case

Minority case

Class Boundary

R
Figure 3. Set C without redundant (majority) cases

(After step 2)

198198

class regions when either x or y exists in the wrong
region (i.e. it is considered noise). Kubat proposed to
delete a majority case in a Tomek link that is believed
to be borderline and/or noisy.
Futhermore, Kubat et al. proposed to remove
redundant (majority) cases based on a 1-nearest
neighbor computation.
Below are the details of one-side selection.

Step 1: Selection of a majority case and initial
samples

Let S be the original fit dataset (Fig. 1). Randomly
select a case R from a majority class in S. Let C be a
set of cases containing R and all minority cases (Fig.
2).

Step 2: Building a sample set having no redundant
majority cases

Classify S with the 1-nearest neighbor rule using cases
in C, and compare the assigned classification labels
(either fault-prone or not-fault prone) with the original
ones. Move all misclassified cases into C, which is

now consistent with S while being smaller. As a result,
redundant (majority) cases do not exist in C (Fig. 3).

Step 3: Deletion of cases in Tomek links

Remove from C all majority cases participating in
Tomek links (Fig. 4). This removes those majority
cases that are believed to be borderline and/or noisy.
All positive examples are retained. The resulting set is
referred to as T (Fig. 5).

Step 4: Repetition

In our pilot experiment, it turned out that the number
of majority cases eliminated depends strongly on R
selected in Step 1 (note that R is randomly selected).
Thus, this paper proposes to repeat steps 1,…,3 until
Pfp reaches a predefined value.

3. Experiment Setting

In this experiment, we experimentally evaluated the
effect of four sampling methods (ROS, SMOTE, RUS,
ONESS) applied to four commonly used fault-
proneness models (linear discriminant analysis (LDA)
[12][13], logistic regression analysis (LRA) [10],
neural network (NN) [2] and classification tree (CT)
[5]).

Since all four sampling methods can control Pfp
(the percentage of fault-prone modules to all modules)
in a sampled dataset, we also evaluated the prediction
accuracy with different Pfp values. Note that Pfp should
be 50% in terms of getting a balanced dataset;
however, as described in section 2, there are two
concerns with sampling (over sampling might cause
over fitting to fake (added) cases, and, under sampling
might eliminate useful cases), Thus, Pfp = 50 might
not be the best choice.

So, first, as a pilot experiment, the best Pfp value
for each sampling method was identified by using a fit
dataset only (based on the cross-validation technique).
Then, fault-proneness models were built after
sampling methods were applied to a fit dataset with
the best Pfp value. Finally, using a test dataset, the
prediction performance of the fault-proneness models
was compared to that of naïve fault-pronenesses
models built without sampling methods.

Since all four sampling methods include some sort
of randomness in their procedures, we repeated five
times the above sampling, model building and
performance evaluation and used the average
performance values (recall, precision and F1-value).

Tomek link
Major case

Minority case

Class Boundary

R
Figure 4. Tomek links in set C

Tomek link
Major case

Minority case

Class Boundary

R
Figure 5. Resulting set T (After step 4)

199199

In this experiment, we used the data mining toolkit
SPSS Clementine to build all four fault-proneness
models. We applied step-wise variable selection to
LDA and LRA.

Regarding the neural network model, five types of
three-layer neural networks were constructed in the
pilot experiment, each having one of the following
numbers of learnings: 10,000; 20,000; 30,000; 50,000;
100,000. The best number identified in the pilot
experiment was used in the main experiment. To
determine the link weights, the error back propagation
algorithm [14] is commonly used as a learning
algorithm.

Also, as a classification tree model, we used the
classification and regression trees (CART) algorithm
[5] for model construction.

3.1. Dataset

The target is MIS (Management Information
System) [4] software working on a mainframe
machine. This software has been maintained for about
twenty years and modified and expanded many times
during that period. It was mainly written in two very
old programming languages. The total size is about
1,000 KSLOC. Each language part consists of about
2000 modules (source files). Each module contains
several procedures (subroutines).

In addition to fault data collected during
maintenance, we measured 19 metrics for each module
(Table 1). We used these 19 metrics as predictor
variables. Fit datasets were built from data during
three years prior to a certain release, and test datasets
were built from data during three years after the
release.

We separated modules into two sets A and B
according to the programming language used. We
label a fit dataset of language A, Afit and language B,
Bfit. Similarly, we label a test dataset of language A,
Atest and language B, Btest. Original Pfp values of these
datasets are shown in Table 2. The number of modules
varies between fit datasets and test datasets due to the
addition of new modules in the release.

3.2. Evaluation Criteria

We used three commonly used criteria, recall,
precision and F1-value [3], to evaluate the prediction
performance of built models. Recall is the ratio of
correctly predicted fault-prone modules to actual fault-
prone modules and precision is the ratio of actual
fault-prone modules to the modules predicted as fault-
prone. F1-value is a harmonic mean of recall and
precision, formally defined as follows

PrecisionRecall
PrecisionRecallF

�
uu

2

1
.

3.3. Evaluation Procedure
3.3.1. Finding appropriate percentage of fault-

Table 1. Collected metrics

 Metrics
m1 Source lines of code
m2 Commented lines per SLOC
m3 The number of procedures per SLOC
m4 The number of unique operators
m5 The number of unique operands
m6 Total number of operators per SLOC
m7 Total number of operands per SLOC
m8 Halstead volume
m9 Halstead difficulty
m10 Maximum of nest level
m11 Cyclomatic number per SLOC
m12 Nest level per SLOC
m13 The number of jump nodes per SLOC

m14
The number of external referred variables per
SLOC

m15 The number of inner calls per SLOC
m16 The number of external module calls SLOC
m17 Revision number

m18 The number of days from the date each module
is developed to the present

m19 The number of days from the date each module
is developed to the last release date

Table 2. Statistics summary

 # of fault-prone modules # of not fault-prone modules % of fault-prone modules
Afit 103 1815 5.67
Atest 42 1950 2.15
Bfit 210 1596 13.16
Btest 61 1815 3.36

200200

prone modules (pilot experiment)
The goal of the pilot experiment is to identify the
appropriate Pft for each of 16 combinations of four
sampling methods (ROS, SMOTE, RUS, ONESS) and
four models (LDA, LRA, NN ,CT) by using a fit
dataset. For each of 16 combinations, the following
procedure was conducted.

Step 1. Dividing a fit dataset into two datasets

The fit data was divided into two datasets (denoted as
a and b).

Step 2. Appling sampling methods

Apply a sampling method to dataset a to have Pft =
20% (0.25 : 1.00), 33% (0.50 : 1:00), 50% (1.00:
1.00), 60% (1.50: 1.00) and 67% (2.00 : 1.00) in
resultant datasets. Each new (resultant) dataset is
referred to as a1, …a5; and, a dataset without sampling
is reffered to as a0.

Step 3. Building fault-proneness models

Build six fault-proneness models using datasets a0,
…a5.

Step 4. Evaluation of the prediction performance

Evaluate the prediction performance (F1-value) of six
fault-prone models by using dataset b.

Step 5. Finding appropriate Pfp

Select the best performing model to identify the best
Pfp.

3.3.2. Evaluation of effect of sampling methods
(main experiment)
In the main experiment, we built fault-proneness
models after sampling methods were applied to a fit
dataset with the best Pfp value and evaluated their
prediction performance.

Step 1. Applying sampling methods to fit datasets

Apply sampling methods to fit datasets Afit and Bfit
with the best Pft value.

Step 2. Building fault-proneness models

Build four fault-proneness models (LDA, LRA,
NN ,CT) based on each resultant dataset of Step 1.

Naïve models are also built based on Afit and Bfit
without applying sampling methods.

Step 3. Evaluation of the prediction performance

Evaluate the prediction performance (F1-value) of
fault-prone models by using test datasets Atest and Btest.

4. Results and Discussion
4.1. Pilot Experiment

The prediction performance of fault-proneness
models for different Pfp values are shown in Fig. 6.
The vertical axis shows the F1-value and horizontal
axis shows Pfp. The best Pfp values for datasets A and
B are shown in Table 3 and Table 4.

As shown in Fig. 6, Table 3 and Table 4, it was
revealed that the best Pfp values were not 50% in most
models. Interestingly, this indicates that building a
fully balanced fit dataset via sampling methods is not
necessarily relevant. The following characteristics
were found for each model.

LDA: The prediction performances got better as Pfp
increased. The best Pfp values were 60%-67%. This
indicates that sampling methods should be deeply
applied so that minority cases (fault-prone modules)
become majority cases in resultant fit datasets.

LRA: The result was totally different from LDA’s.
The best Pfp values were 20%-33%. This means that
the sampling methods should be applied slightly.

NN: The result showed a somewhat similar tendency
as LRA’s. The best Pfp values were 20%-33% or
without sampling. Notably, even slight sampling (Pfp
= 20%) can cause performance degradation.

CT: There was no clear relationship seen between Pft
and the prediction performance.

4.2. Main Experiment

The result of the main experiment is shown in
Tables 5 and 6. In the tables, “-” indicates a case
where “no sampling” was the best in the pilot
experiment; and, bold letters indicate performance
improvements to naïve models.

201201

RUS ONESS

LRA – Dataset A

CT – Dataset A

SMOTEROS

CT – Dataset B

NN – Dataset A NN – Dataset B

LRA – Dataset B

LDA – Dataset A LDA – Dataset B

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F
1
-
va

lu
e

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F
1
-
va

lu
e

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F1
-
va

lu
e

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F
1-

va
lu

e

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F
1
-
va

lu
e

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F
1
-
va

lu
e

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F
1
-
va

lu
e

0.00

0.10

0.20

0.30

0.40

0.50

no samp. 20.0 33.0 50.0 60.0 67.0

Percentage of fault-prone modules

F
1
-
va

lu
e

Figure 6. Prediction performance of fault-proneness models for different Pfp values

202202

Comparison of fault-proneness models: The results
showed that all four sampling methods improved the
prediction performance of the LDA and LRA models.

On the other hand, the prediction performances of NN
and CT were not improved in more than half of the
cases. In addition, no sampling method could improve
the performance for both datasets A and B in each
model. This indicates sampling methods should not be
applied to NN and CT models.

LRA showed the best prediction performance among
the models for dataset A, and LDA was the best for
dataset B. This result is consistent with Gray and
Macdonells’ result such that the best model among
available models often depends on the dataset being
used [2].

Comparison of sampling methods: The best
performing sampling method was different among
models and datasets. For example, for dataset A, a

combination of SMOTE and LRA was the best (F1
value = 0.382) while for dataset B, a combination of
RUS and LDA was the best (F1 value = 0.324).

With respect to LDA and LRA, the average prediction
performance (F1-value) for each sampling method was
nearly equal (ROS=0.276, SMOTE=0.287,
RUS=0.293, ONESS=0.273). This suggests that we
could use any of these four sampling methods for LDA
and LRA. All in all, the improvements of F1-values
were 0.078 at minimum, 0.224 at maximum and 0.121
at the mean.

5. Conclusion

In this paper, we experimentally evaluated the
effects of four sampling methods (ROS, SMOTE, RUS,
ONESS) applied to four fault-proneness models (LDA,
LRA, NN, CT) by using two module sets of industry
legacy software. Our major findings include the
following:

Table 3. Best Pft values for dataset A

 LDA LRA NN CT
ROS 67 20 33 67

SMOT
E 67 20 20 50

RUS 60 20 20 No samp.
ONESS 60 20 No samp. No samp.

Table 4. Best Pft values for dataset B

 LDA LRA NN CT
ROS 67 20 20 67

SMOT
E 67 33 No samp. 67

RUS 67 33 20 33
ONESS 67 20 20 20

Table 5. Prediction performance of models

for dataset A
 LDA LRA NN CT

No samp. 0.857 0.238 0.333 0.762
ROS 0.752 0.629 0.419 0.648

SMOTE 0.791 0.595 0.443 0.733
RUS 0.833 0.624 0.538 -

Recall

ONESS 0.795 0.629 - -
No samp. 0.057 0.357 0.233 0.062

ROS 0.146 0.266 0.142 0.094
SMOTE 0.137 0.282 0.168 0.080

RUS 0.117 0.257 0.136 -

Precision

ONESS 0.128 0.269 - -
No samp. 0.106 0.286 0.275 0.115

ROS 0.244 0.374 0.212 0.162
SMOTE 0.233 0.382 0.243 0.143

RUS 0.205 0.364 0.217 -
F1-Value

ONESS 0.220 0.375 - -

Table 6. Prediction performance of models

for dataset B
 LDA LRA NN CT

No samp. 0.590 0.033 0.098 0.393
ROS 0.420 0.138 0.069 0.325

SMOTE 0.443 0.220 - 0.220
RUS 0.482 0.328 0.105 0.377

Recall

ONESS 0.505 0.177 0.177 0.603
No samp. 0.118 0.200 0.200 0.068

ROS 0.234 0.299 0.099 0.061
SMOTE 0.249 0.210 - 0.043

RUS 0.244 0.246 0.098 0.052

Precision

ONESS 0.194 0.277 0.144 0.060
No samp. 0.196 0.056 0.132 0.116

ROS 0.300 0.187 0.081 0.101
SMOTE 0.319 0.215 - 0.072

RUS 0.324 0.280 0.100 0.090
F1-Value

ONESS 0.280 0.216 0.156 0.108

203203

z All four sampling methods improved the
prediction performance of the LDA and LRA
models while they could not always improve the
performance of the NN and CT models. We
recommend not using sampling methods for NN
and CT models.

z The most appropriate sampling level varied
among the models. For LDA models, the
resultant fit dataset after applying a sampling
method should have Pft = 60%-67%. On the
other hand, for LRA models, the resultant fit
dataset should have Pft = 20%-33%.

z With respect to the LDA and LRA models, the
average prediction performance (F1-value) for
each sampling method was nearly equal
(ROS=0.276, SMOTE=0.287, RUS=0.293,
ONESS=0.273). This suggests that we could use
any of these four sampling methods for LDA and
LRA. All in all, the improvements of F1-values
were 0.078 at minimum, 0.224 at maximum and
0.121 at the mean.

The major limitation of this paper is that we used

only two datasets. Our future work is to confirm our
results using other datasets.

6. Acknowledgments

This work was partially supported by the EASE
(Empirical Approach to Software Engineering) project,
which is part of the Comprehensive Development of e-
Society Foundation Software program of the Ministry
of Education, Culture, Sports, Science and Technology
of Japan.

References
[1] Chawla, N. V., Bowyer, K. W., Hall, L. O. and

Kegelmeyer, W. P.: SMOTE: Synthetic Minority Over-
sampling Technique, Journal of Artificial Intelligence
Research, Vol. 16, pp. 321-357 (2002).

[2] Gray, A. R. and MacDonell, S. G.: Software Metrics
Data Analysis. Exploring the Relative Performance of
Some Commonly Used Modeling Techniques,
Empirical Software Engineering, Vol. 4, No. 4, pp.
297-316 (1999).

[3] Herlocker, J. L., Konstan, J. A., Terveen, L. G. and
Riedl, J. T.: Evaluating Collaborative Filtering
Recommender Systems, ACM Trans. Information
Systems, Vol. 22, No. 1, pp. 5-53 (2004).

[4] Jones, C.: Applied Software Measurement, Second
Edition, p. 861, McGraw-Hill, New York (1996).

[5] Khoshgoftaar, T. M. and Allen, E. B.: Modeling
Software Quality with Classification Trees, Recent

Advances in Reliability and Quality Engineering,
World Scientific, pp. 247-270, Singapore (1999).

[6] Khoshgoftaar, T. M., Gao, K. and Szabo, R. M.: An
Application of Zero-inflated Poisson Regression for
Software Fault Prediction, Proc. 12th Int’l Symposium
on Software Reliability Engineering (ISSRE’01), pp.
66-73, Hong Kong, China (2001).

[7] Khoshgoftaar, T. M., Yuan, X. and Allen, E. B.:
Balancing Misclassification Rates in Classification-Tree
Models of Software Quality, Empirical Software
Engineering, Vol. 5, No. 4, pp. 313-330 (2000).

[8] Kubat, M. and Matwin, S.: Addressing the Curse of
Imbalanced Training Sets: One-Sided Selection, Proc.
14th Int’l Conf. on Machine Learning (ICML’97), pp.
179-186, Nashville, USA (1997).

[9] Li, P. L., Herbsleb, J., Shaw, M. and Robinson, B.:
Experiences and Results from Initiating Field Defect
Prediction and Product Test Prioritization Efforts at
ABB Inc, Proc. 28th Int’l Conf. on Software
Engineering (ICSE’06), pp. 413-422, Shanghai, China
(2006).

[10] Munson, J. C. and Khoshgoftaar, T. M.: The detection
of fault-prone programs, IEEE Trans. Software
Engineering, Vol. 18, No. 5, pp. 423-433 (1992).

[11] NASA IV&V Facility.: Metrics Data Program,
http://mdp.ivv.nasa.gov/

[12] Ohlsson, N. and Alberg, H.: Predicting Fault-Prone
Software Modules in Telephone Switches, IEEE Trans.
Software Engineering, Vol. 22, No. 12, pp. 886-894
(1996).

[13] Pighin, M. and Zamolo, R.: A Predictive Metric Based
on Discriminant Statistical Analysis, Proc. 19th Int’l
Conf. on Software Engineering (ICSE ’97), pp. 262-
270, Boston, USA (1997).

[14] Rumelhart, D. E., Hinton, G. E. and Williams, R. J.:
Learning Representations by Back-propagating Errors,
Nature, Vol. 323, pp. 533-536 (1986).

[15] Tomek, I.: Two Modifications of CNN, IEEE Trans.
Systems, Man and Cybernetics, SMC.6, pp. 769-772
(1976).

204204

