
An Estimation Model for Test Execution Effort

Eduardo Aranha1,2

ehsa@cin.ufpe.br

1Informatics Center
Federal University of Pernambuco
PO Box 7851, Recife, PE, Brazil

+55 81 2126-8430

Paulo Borba1

phmb@cin.ufpe.br

2Mobile Devices R&D
Motorola Industrial Ltda

Rod SP 340 - Km 128,7A - 13820 000
Jaguariuna/SP - Brazil

Abstract

Testing is an important activity to ensure software qual-
ity. Big organizations can have several development teams
with their products being tested by overloaded test teams. In
such situations, test team managers must be able to properly
plan their schedules and resources. Also, estimates for the
required test execution effort can be an additional criterion
for test selection, since effort may be restrictive in practice.
Nevertheless, this information is usually not available for
test cases never executed before.

This paper proposes an estimation model for test execu-
tion effort based on the test specifications. For that, we de-
fine and validate a measure of size and execution complexity
of test cases. This measure is obtained from test specifica-
tions written in a controlled natural language. We evalu-
ated the model through an empirical study on the mobile
application domain, which results suggested an accuracy
improvement when compared with estimations based only
on historical test productivity.

1. Introduction

In competitive markets, such as the mobile phone mar-
ket, companies that release products with poor quality may
quickly lose their clients. Consequently, companies should
ensure that their products conform to the clients’ expecta-
tions. A usual activity performed to ensure software quality
is testing.

Software testing is being considered so important that
organizations can assign teams only for test activities. For
example, a big organization may have several development
teams with their products being tested by few test teams. In
such situations, test managers must be able to properly plan
their schedules and resources. They must should be able to

estimate the required effort to execute a given set of tests
(test suite) and to justify requests for more resources or for
extending deadlines.

In addition, Model-based testing (MBT) has become
popular in recent years. MBT is a technique for generat-
ing test cases from system specifications [15]. Using MBT,
a high number of test cases can be automatically generated.
However, it may not be possible to execute all generated test
cases, since test resources are limited. For this reason, test
cases are usually selected using some criteria such as the
coverage metrics [19] [16].

An additional criterion that can be useful for test selec-
tion is the execution effort, since effort may be restrictive in
practice. However, in this case, we need a model that esti-
mates the effort to execute each test case individually, even
for test cases never executed before.

Several software development estimation models have
been proposed over the years. However, these models are
not appropriate to estimate the effort for executing a given
set of test cases, since their estimations are based on soft-
ware size and development complexity, instead of test size
and execution complexity.

In this work, we address the problem of supporting test
managers to plan their schedules and resources. We propose
a test execution effort estimation model that is based on test
specifications. We define and validate a measure of test size
and execution complexity. This measure is obtained from
test specifications written in a controlled natural language.
Also, we want to provide execution effort estimates about
generated test cases as an additional criterion for test selec-
tion.

The rest of this paper is organized as follows. In Sec-
tion 2, we discuss about existent software estimation mod-
els. After, Section 3 introduces a controlled natural lan-
guage used for specifying tests. In Section 4, we propose a
measure of test size and execution complexity and present
a model for estimating test execution effort based on this

First International Symposium on Empirical Software Engineering and Measurement

0-7695-2886-4/07 $20.00 © 2007 IEEE
DOI 10.1109/ESEM.2007.73

107

First International Symposium on Empirical Software Engineering and Measurement

0-7695-2886-4/07 $20.00 © 2007 IEEE
DOI 10.1109/ESEM.2007.73

107

measure. After that, Section 5 presents the results of an
empirical study on the mobile application domain. Then,
we discuss about the cost of using our model in Section 6.
Finally, our conclusions are presented in Section 7.

2. Existing SW effort estimation models

During the last few decades, several models and tech-
niques were created for estimating size, complexity and ef-
fort on software development. The surveys presented in [2],
[12] and [7] summarize the software estimation evolution so
far. Some of the related and renowned software estimation
models are discussed here.

The first model discussed here is Function Points Analy-
sis (FPA) [6]. FPA gives a measure of the size of a system by
measuring the complexity of system functionalities offered
to the user. The size of system is determined in function
points (FP), a unit-of-work measure, and this count is used
for estimating the effort to develop it.

The Use Case Point Analysis (UCP) [11] is an extension
of FPA and estimates the size of a system based on use case
specifications. Both UCP and FPA regard the development
complexity of a system, while our proposed model regards
the size and execution complexity of test cases.

The Constructive Cost Model (COCOMO) [3] converts
size measures such as FP and SLOC (source lines of code)
into effort estimation for developing systems. Its formula
uses effort multipliers and scale factors, and their values are
defined according to the characteristics of the development
environment, teams and processes used in the project.

Similar to UCP, Test Point Analysis [13] is a method for
estimating the effort required to perform all functional test
activities based on use case points. This model estimates the
effort required for all test activities together, such as defin-
ing, implementing and executing all the tests. For example,
it is not possible to estimate only the effort to execute test
cases that were automatically generated.

3. Test specification language

Tests are usually specified in terms of precondition, pro-
cedure (list of test steps with inputs and expected outputs)
and post-condition [8]. These specifications are commonly
written in natural language, often leading to problems such
as ambiguity, redundancy and lack of writing standard. All
these problems make difficult test understanding and exe-
cution complexity estimation. Nevertheless, they can be
avoided using controlled natural languages.

A controlled natural language (CNL) [17] is a subset of
natural language with restricted grammar and lexicon in or-
der to have sentences written in a more concise and standard
way. This restriction reduces the number of possible ways
to describe an event, action or object.

The test specifications considered by this work are writ-
ten using a CNL described here. In a simplified way, each
sentence (test step) in the specification conforms to the fol-
lowing structure: a main verb and zero or more arguments.
Table 1 shows an example of test procedure written in a con-
trolled natural language defined for the mobile application
domain.

Table 1. Example of a test procedure written
in a controlled natural language.

Step Description Expected Results

1 Start the message cen-
ter.

The phone is in mes-
sage center.

2 Select the new mes-
sage option.

The phone is in mes-
sage composer.

3 Insert a recipient ad-
dress into the recipi-
ents field.

The recipients field is
filled.

4 Insert a SMS content
into the message body.

The message body is
populated.

5 Send the message. The send message
transient is displayed.
The message is sent.

The verb identifies the action of the test step to be per-
formed during the test. The arguments provide additional
information about the action represented by the verb. For
instance, the sentence Start the message center has the verb
start (action of starting an application) and the required ar-
gument the message center (application to be started).

The CNL can have its lexicon and grammar extended
for specific application domains. For example, the list of
possible verbs and arguments may be different between the
mobile and the Web application domains.

The context of this work is related to testing mobile ap-
plications for Motorola Brazil Test Center site at the Infor-
matics Center/UFPE. Hence, in this work, the considered
controlled natural language reflects this domain [18] [9].

4 Test execution effort estimation model

In this section, we present a new test effort estimation
model developed during our research. As illustrated by Fig-
ure 1, the input of our estimation model is a test suite and
the output is the estimated effort in man-hours required to
execute all tests in the suite.

Our test execution effort estimation model works as fol-
lows. First of all, (1) we analyze each test case in the suite.
During this analysis, (2) we assign to each test case a num-
ber of execution points, a unit of measure defined in this

108108

Figure 1. Estimating the effort to execute a
test suite.

work for describing the size and execution complexity of
test cases.

After that, (3) we sum all the execution points measured
from the analyzed test cases. This total describes the size
and execution complexity for the whole test suite. Finally,
(4) we estimate the required effort in man-hours to execute
all tests in the test suite based on the total number of execu-
tion points.

Next, we present the details about this estimation model.

4.1 Test size and execution complexity

Our estimation model is based on the size and execution
complexity of test cases in a test suite. Test size means the
amount of steps required to execute the test. Test execution
complexity is related to the relationship (complexity of in-
teraction) between the tester and the tested product required
during the test. These definitions are adaptations of the idea
of size and development complexity for software products
[14] [4] [5].

Since we are proposing a measure of size and execution
complexity of a test case, it is important to have an intuitive
understanding of this test case attribute. This leads us to the
identification of empirical relations between test cases with
respect to their size and execution complexity:

• The relation bigger than indicates that one test has a
bigger size and execution complexity than another.

• The relation similar to indicates that one test has a sim-
ilar size and execution complexity when compared to
another.

These relations were defined intuitively by analysing
how experts create associations between test cases with re-
spect to their size and execution complexity. We consider

that a test t1 can be bigger than a test t2 only if t1 is not
similar to t2. This assumption reflects the difficult to intu-
itively compare test cases considered similar with respect to
their size and execution complexity.

Here, we call T as the set of all existing test cases. The
set of all identified empirical relations is called R. Then, we
call (T, R) as the empirical relation system for the attribute
test size and execution complexity [5].

To measure test size and execution complexity that is
characterised by (T, R), we must define a mapping M of (T,
R) into (E, P), in which test cases in T are mapped into num-
bers (called execution points) in E and empirical relations
in R are mapped to numerical relations in P. In this way, we
can validate our measure demonstrating empirically that the
mapping is valid for the attribute size and execution com-
plexity.

The set E of all possible numbers of execution points
consists of the nonnegative integers and the set of numerical
relations P consists of the relations >ep and ≈ep, defined as
follows.

a >ep b =
{

false if a ≈ep b
a > b otherwise

a ≈ep b =
{

true if |a−b|
a ≤ p

100 and |a−b|
b ≤ p

100
false otherwise

As we can see, the expression a >ep b is equivalent to
the expression a > b, except in the case of similar numbers
(≈ep) of execution points a and b. The definition of ≈ep

shows that numbers a and b are considered similar if the
absolute difference between them is less than or equal to p
percent of a and of b. The value of p is discovered empir-
ically, as discussed later in Section 5.3. The relations of R
and P are mapped following the order of their presentations
in this section.

In practice, the execution point count of a test case gives
us a quantitative reference about its size and execution com-
plexity. For instance, a test case rated with 700 execution
points is bigger than others rated with 590 and 350. In ad-
dition, it allows us to better compare test productivity or ca-
pacity. For example, a tester that executed 5 tests rated with
500 execution points each one is faster than another that ex-
ecuted 15 tests rated with 100 execution points during the
same amount of time.

4.2 The measurement method

This section presents how we measure the size and exe-
cution complexity of a test case. All required information is
extracted from the test specification. Although not essential,
we consider in this paper that test specifications are written
in the CNL discussed in Section 3. The CNL simplifies the

109109

Figure 2. Assigning execution points to a test
case.

use of our model and also efficiently supports a high level
of automation of our measurement method.

Figure 2 illustrates how our measurement method works.
First, (a) we individually analyze each test step of the test
specification. This step by step analysis was defined with
the objective to support the method automation. We analyze
each test step according to a list of characteristics (C1 to
Cn).

These characteristics represent some general functional
and non-functional requirements exercised when the test
step is executed. Examples of possible characteristics are
number of navigations between screens, number of pressed
keys and use of network. The list of characteristics may not
be the same for different application domains, as discussed
later in Section 4.4.

Each characteristic considered by the model has an im-
pact in the size and execution complexity of the test and (b)
this impact is rated using an ordinal scale (Low, Average
and High). Later, Section 4.4 presents how to create guide-
lines to help us to objectively choose the more appropriate
impact level for each characteristic.

After that, (c) we assign execution points for each char-
acteristic according to its impact level. The objective here is
to transform the qualitative rate (impact level) into a quan-
titative value.

For instance, a characteristic C1 rated with the Low value
could be assigned to 30 execution points. However, a more
relevant characteristic rated with the same Low value may
be assigned to a higher number of execution points. Section
4.4 also discusses about guidelines provided for assigning
the correct value for each possible characteristic value.

To calculate the total number of execution points of a test

Figure 3. Using execution points and a con-
version factor to calculate test execution ef-
fort.

step, (d) we sum the points assigned for each characteristic.
Then, (e) we measure the size and execution complexity of
a test case by summing the execution points of each one of
its test steps.

4.3. Test effort estimation

The execution point count of a test suite gives us a refer-
ence about its tests size and execution complexity. The es-
timated effort is calculated based on this information and a
conversion factor (CF). The conversion factor represents the
relation between test execution effort and execution points,
which varies according to the productivity of the test team.

The conversion factor is given in seconds per execution
point, indicating the number of seconds required to exe-
cute each execution point of a test case. For calculating
the conversion factor, testers can measure the test size and
execution complexity of several test cases. Then, the exe-
cution time of the tests should be collected from a historical
database (if available) or by executing them.

As illustrated by Figure 3, (f) the conversion factor is
calculated by dividing the total effort by the total number of
execution points. This information is then used for estimat-
ing the execution effort of new test suites, we just need to
(g) multiply its number of execution points by the conver-
sion factor.

For instance, a test manager may verify a conversion fac-
tor of 3.5 seconds per execution point. Using this value, a
new test case with 120 execution points is estimated to be
executed in 7 minutes. Similar approach is used by other
existing estimation models [6] [11] [13] [14].

110110

In this approach, we assume that the test productivity and
environment conditions are stable over time. For example,
improvements in the test team, tools or environment may
change the test productivity and consequently the conver-
sion factor. In this case, the conversion factor should be
recalculated using data collected after the improvements.

In summary, the conversion factor used in the estima-
tions should properly represent the current situation. In ad-
dition, the conversion factor should be calculated for each
different test team, test type or tested product, since they
may have significant differences in productivity.

4.4 Model configuration

Our proposed test execution effort model should be con-
figured according to the target application domain in order
to maximize the estimation accuracy. This section presents
what, why and how to configure our estimation model.

Controlled natural language

Test specifications written in CNL are the input of our
model. As shown in Section 3, the CNL grammar and
lexicon are defined according to the target application do-
main. For example, on the mobile application domain you
have the verb take that accepts the term picture as argument.
Hence, a possible test step is Take a picture.

The list of verbs and possible arguments can be con-
structed by analysing requirement documents and existing
test specifications. Besides, new verbs and terms may arises
over the time due to the specification of new requirements,
technology changes, etc. The CNL grammar and lexicon is
stored in a database that can be updated whenever neces-
sary.

System characteristics

During the test execution effort estimation, all test steps
are analyzed according to a list of characteristics. These
characteristics represent some general functional and non-
functional requirements exercised when the test step is exe-
cuted. They may depend on the target application domain.

We use the Delphi method [10] for obtaining a consensus
from a group of experts about the list of relevant character-
istics. Examples of possible characteristics are the number
of navigations between screens, the number of pressed keys
and the use of network.

The Delphi panel consists of 3 to 7 experienced testers
invited from different teams for attending two or more
rounds. In each round, they have the opportunity to add
or remove characteristics from the list.

Examples of real test cases are provided as a source for
identifying types of test actions, software configurations,

use of tools or specific hardwares and other characteristics
that may impact the size or the execution complexity of a
test case. All this process is anonymous and, in each round,
a moderator provides the participants with a summary of the
experts’ decisions and their reasons for that.

An alternative technique that can be used to identify rel-
evant characteristics is the survey. When we have several
testers in the organization, we can survey them about the
relevant characteristics using questionnaires or other survey
instrument.

Guidelines

Once the experts have defined the list of characteristics to
be considered by the estimation model, the experts continue
attending the Delphi panels, but with different objectives.

First, they have to define the possible values that each
identified characteristic may have. For example, if the type
of camera is selected as a relevant characteristic for test size
and execution complexity, its possible values would be au-
tomatic shooting, required manual zoom, required use of
flash, etc.

After identifying the possible values of each selected
characteristic, the experts group these values into three im-
pact levels (low, average and high). The choices are made
based on the impact of each value in the test size and ex-
ecution complexity. This part of the guideline will help us
to objectively choose the more appropriate impact level of
a test step according to each characteristic.

Finally, the experts must define for each characteristic
the number of execution points to be assigned for each one
of its impact levels. The experts proceed as follows. Each
characteristic is weighted from 1 to 10. These weights indi-
cate the significance of each characteristic for the test size
and execution complexity.

Then, the experts give a weight from 1 to 10 for the lev-
els Low, Average and High of each characteristic. These
weights indicate the significance of each level for the char-
acteristic. In general, values 3, 5 and 8 are used to weight
the levels Low, Average and High, respectively. After that,
the number of execution points assigned for a level is cal-
culated by multiplying its weight by the weight of its char-
acteristic.

After ending the first version of the model, one or two
experts are enough for updating the guidelines when neces-
sary.

4.5 Model automation

One of the objectives of this work was to develop an es-
timation model that can be automated. This automation is
important for supporting the development of new test gen-
eration and test selection tools.

111111

In practice, companies may not be able to execute all
test cases generated by such tools, since its resources are
limited. For this reason, the test execution effort should be
taken in consideration for test selection. A test generation
tool, for instance, can consider a minimal requirement cov-
erage and a maximum execution effort as its stop criteria.

The use of CNL for specifying tests supports the devel-
opment of an estimation tool that automatically reads and
interprets these specifications. In addition, all the informa-
tion required for using the model, such as the list of charac-
teristics, guidelines and the conversion factor can be stored
in a database. Actually, the CNL grammar and lexicon is
also stored in the database [18].

During the analysis of the first test cases, the estimation
tool will ask the user to rate the characteristics of each test
step. This information is stored in the database. Since the
use of CNL reduces the number of possible ways to describe
a test step, it is reasonable that the same test step (or very
similar ones) occurs many times in the same test case and
in different ones. For this reason, the necessity for manual
assistance during the estimations tends to reduce as much
as you use the tool.

At the moment this paper was written, only an initial pro-
totype was created for validating the model automation ca-
pability.

5. Empirical study

This section presents the empirical study we run using
our test execution effort estimation model on the mobile
application domain. First, we configured our estimation
model for the target domain. After that, we applied the es-
timation model in a controlled experiment. Then, we vali-
dated the test size and complexity measure we proposed.

5.1 Model configuration for the mobile
application domain

The CNL used in this empirical study was defined in
[18], we just needed to reuse its definition. To define the list
of characteristics to use in our estimation model, we invited
6 experienced testers. They identified the relevant charac-
teristics and defined the guidelines in a Delphi panel that
took four hours (two sessions of two hours). The results are
presented in Table 2.

5.2 Experiment

We tested the presented model running an experiment.
The main goal of this study was to analyze the accuracy
of test execution effort estimates when using the estimation
model proposed in this paper. In order to do that, we com-
pared the estimates given by our model with the ones cal-

culated using historical averages of test execution times, a
simple and common estimation method used in practice.

Following the goal-question-metric approach [1], we re-
fined our goal for this empirical study to the questions pre-
sented next:

Q1: Is the average estimation error lower when using our
model rather than using historical execution times?

Q2: Is the average percentage of estimates within 20% of
the actual values higher when using our model rather
than using historical execution times?

The answer for Q1 will indicate if the use of our estima-
tion model results in a small error when regarding all esti-
mates together. In its turn, the answer for Q2 will indicate
if the number of estimates within 20% of the actual values
increased when using our estimation model.

For the study, we selected 33 test cases of a messaging
application feature for mobile phone. These test cases were
written in a controlled natural language and their size and
complexity were measured using our method.

We wanted to compare the precision of estimates made
using historical information with estimates made using our
model. As both approaches require information related to
test productivity, we split the collected execution times into
two sets of data, one for training and other for testing. The
tests were randomly split, where the training set contained
approximately 65% of the tests. All test cases were then
executed by a tester.

The execution times were collected and stored in a
spreadsheet for analysis. We used the test execution times
of the training set to calculate:

• The average test execution time (for the historical data
approach).

• The average time required to execute each execution
point of a test case (the conversion factor for our pro-
posed model).

With this information, we estimated the test execution ef-
fort of the testing set using both approaches. The following
metrics were collected for answering Q1 and Q2.

• Mean magnitude of the relative estimation error.

MMRE =

∑T
t=1 MREt

T

where:

MREt = abs(estimatedt−actualt
actualt

)

T = number of tests

• Average percentage of estimates that were within 20%
of the actual values.

PRED(.20) =

∑T
t=1(1, ifMREt ≤ .20, 0, otherwise)

T

112112

113113

In order to avoid bias, we repeated the process two more
times with different training and testing sets. Table 3 com-
pare the metrics collected from the two analyzed estimation
approaches. In all tests we achieved better or equivalent es-
timation precision. In the first test, for example, the number
of estimates within 20% of the actual values increased by
100%. We also applied t-tests and confirmed the signifi-
cance of the results.

5.3 Test size and complexity measure val-
idation

In Section 4.1, we proposed a measure of the size and
execution complexity attribute of a test case. We can vali-
date this measure demonstrating empirically that the map-
ping between the empirical relation system (T, R) to the nu-
merical relation system (E, P) is valid [5].

During the experiment presented in the previous section,
we mapped several test cases in T into execution points in
E. It is necessary to verify that the mapped relations (in R
and P) is valid considering the collected data.

We used expert judgement and effort information to
identify similar tests and tests bigger than others with re-
spect to their size and execution complexity. We verified
that tests intuitively identified as similar tests had different
measured numbers of execution points. However, the differ-
ences between these measures were within 20% of their val-
ues and this percentage value (p) can be used for identifying
similar test cases from their number of execution points.

We also verified that tests identified as bigger than others
had bigger measures for their size and execution complexity
attribute. In summary, we demonstrated empirically that,
for all ta and tb in T:

ta bigger than tb ⇔ ep(ta) >ep ep(tb)

ta similar to tb ⇔ ep(ta) ≈ep ep(tb)

where ep(t) is the number of execution points measured
from t.

6. Discussion

In our empirical study, we observed the cost to use our
proposed model. This cost can be decomposed into the
costs to:

• Define a controlled natural language;

• Identify relevant system characteristics;

• Define guidelines;

• Evaluate the size and execution complexity of test
steps.

The cost to define a controlled natural language depends
on the way we define it. For instance, we can only define
general rules, such as: each test step must be an imperative
sentence giving a direct command to the tester, the main
verb in infinitive form that defines the test action must starts
the sentence, etc. In this case, we do not have a significant
cost.

However, we can also specify the list of all possible verbs
that define test actions, their possible arguments, the vocab-
ulary to be used, etc. In this case, we have to analyze exist-
ing requirement and test documents, a process that can be
done incrementally. We also need support tools to store this
information and to check the conformity of the test cases. In
this way, we maximize the benefits of the controlled natural
language: reduced grammar and lexicon, writing standard,
etc.

In our study, the cost to identify the relevant system char-
acteristics and to define the guidelines was low. We did a
Delphi assessment that took four hours of six experienced
testers. Nevertheless, this cost will increase when consider-
ing a large scope.

Finally, the cost to evaluate the size and execution com-
plexity of test steps is the most significant one. Although it
will usually take less than a minute to evaluate a test step,
there may exist hundreds of test steps to be evaluated. How-
ever, we did not necessarily need to evaluate all test steps,
since it is common to have the same test step occurring sev-
eral times in different test cases or even in the same test.
After evaluating a test step, we just need to assign the same
number of execution points to its other occurrences.

In our experiment, we observed that most of times we
can evaluate a test step based only on the main verb of
its sentence, independently of the verb arguments. For in-
stance, the act of launching an application has the same
complexity for most applications and only the exceptions
need to have a specific evaluation.

Also, we use a controlled natural language that reduces
the vocabulary and consequently increases the use of the
same verb in different test steps that only change the verb

114114

arguments. For this reason, the number of test steps to eval-
uate (and our cost) is even smaller.

Our empirical study suggested the feasibility of our
model regarding the cost of using it. However, more experi-
ments and case studies are required to have more conclusive
results about this cost.

7. Conclusions

This paper presented an estimation model for test execu-
tion complexity based on the size and execution complex-
ity measured from test specifications written in a controlled
natural language. Existing estimation models in the liter-
ature are based on system specifications and they estimate
the effort required to perform more activities than test exe-
cution, such as defining and implementing tests. Actually,
they cannot be used to estimate the execution effort of a
given test case.

Our model does not require historical execution times of
the test cases. This characteristic is extremely important
in several situations, such as when test cases are new and
different from any previous one. It is also important when
you do not have reliable historical data or when you gen-
erate high numbers of test cases using model-based testing
approaches.

The use of a controlled natural language reduces the am-
biguity helping the complexity measurement. Actually, the
number of possible ways to describe the same test step in a
controlled language is minimal, and we also observed that
a small and concise controlled language can support a high
number of different test cases written in a standard way.

Based on the considerations presented in previous sec-
tions, the method for measuring test execution complexity
can be automated and optimized as follows. The complexity
evaluation of test steps are recorded and reused whenever
possible in the complexity evaluation of other test cases.
Over the time, the number of necessary evaluations tends to
decrease.

The evaluations of similar test steps are also reused,
since their execution complexity may be determined only
by its verb. Also, it is possible to automate all steps of the
method, except the evaluation of the first occurrence of each
different test steps. All these optimizations significantly re-
duces the costs for using our model.

For the mobile application domain, we defined the rel-
evant system characteristics exercised by the test cases and
their weights. This definition used intuition and expert judg-
ment through a Delphi panel [10].

We run an empirical study aiming to test the model and
to evaluate its accuracy. In addition, we demonstrated em-
pirically the validity of our test effort and execution mea-
sures assuming a similarity criterion of 20%. Although we
achieved interesting results suggesting accuracy improve-

ments when using our method, we plan to run more exper-
iments and to verify its results (accuracy, relevant charac-
teristics, complexity levels and weights considered in the
model) in other application domains.

We also plan to test the use of other techniques to config-
ure the model, such as surveys for identifying relevant sys-
tem characteristics, clustering algorithms for grouping char-
acteristics values into impact levels and analysis of variance
to define weights and confirm the relevance of the identified
characteristics.

The test execution effort estimation is a complex activity,
where changes in environment conditions, team experience,
use of tools, reuse of test setups and other factors should be
considered.

These situations can be modeled by risk factors. A risk
factor for test execution represents some characteristic of
the test execution process that affects the final effort to ex-
ecute tests. For instance, FPA and COCOMO are examples
of existing models that regard risk factors for software de-
velopment. We believe that is possible to extend our model
in order to regard risk factors.

8. Acknowledges

We would like to thank all anonymous reviewers who
have helped us to improve this paper. The first author is
partially supported by Motorola, grant BCT-0021-1.03/05,
through the Motorola Brazil Test Center Research Project.
The second author is partially supported by CNPq, grant
306196/2004-2.

References

[1] V. Basili, G. Caldiera, and D. Rombach. The goal ques-
tion metric approach. Encyclopedia of Software Engineer-
ing, 1:528–532, 1994.

[2] B. Boehm, C. Abts, and S. Chulani. Software development
cost estimation approaches - a survey. Ann. Software Eng.,
10:177–205, 2000.

[3] B. Boehm, E. Horowitz, R. Madachy, D. Reifer, B. Clark,
B. Steece, W. Brown, S. Chulani, and C. Abts. Software
Cost Estimation with COCOMO II. Prentice Hall, 2000.

[4] L. Briand, K. E. Emam, and S. Morasca. On the application
of measurement theory in software engineering. Empirical
Software Engineering: An International Journal, 1(1):61–
88, 1996.

[5] N. Fenton. Software measurement: A necessary scien-
tific basis. IEEE Transactions on Software Engineering,
20(3):199–206, 1994.

[6] D. Garmus and D. Herron. Function Point Analysis, Mea-
surement Practices for Successful Software Projects. Addi-
son Wesley, 2001.

[7] M. Jorgensen and M. Shepperd. A systematic review of soft-
ware development cost estimation studies. IEEE Transac-
tions on Software Engineering, 2006.

115115

[8] P. Jorgensen. Software Testing, A Craftsmans Approach.
CRC Press, second edition, 2002.

[9] D. Leitao. Translating natural language descriptions into for-
mal test case specifications. Master’s thesis, Federal Univer-
sity of Pernambuco/UFPE, 2006.

[10] H. Linstone and M. Turoff. The Delphi Method: Techniques
and Applications. http://is.njit.edu/pubs/delphibook, 2002.

[11] P. Mohagheghi, B. Anda, and R. Conradi. Effort estimation
of use cases for incremental large-scale software develop-
ment. In Proceedings of the 27th international conference
on Software engineering (ICSE05), pages 303–311. ACM
Press, 2005.

[12] K. Molokken and M. Jorgensen. A review of surveys on
software effort estimation. In ISESE ’03: Proceedings of
the 2003 International Symposium on Empirical Software
Engineering, page 223. IEEE Computer Society, 2003.

[13] S. Nageswaran. Test effort estimation using use case points.
In 14th International Internet Software Quality Week 2001,
June 2001.

[14] C. Pandian. Software Metrics: A Guide to Planning, Analy-
sis, and Application. CRC Press, Inc., 2003.

[15] A. Pretschner. Model-based testing. In ICSE ’05: Proceed-
ings of the 27th international conference on Software engi-
neering, pages 722–723, 2005.

[16] A. Rajan. Coverage metrics to measure adequacy of black-
box test suites. In ASE ’06: Proceedings of the 21st IEEE In-
ternational Conference on Automated Software Engineering
(ASE’06), pages 335–338. IEEE Computer Society, 2006.

[17] R. Schwitter. English as a formal specification lan-
guage. In Proceedings of the 13th International Workshop
on Database and Expert Systems Applications (DEXA02),
pages 228–232, 2002.

[18] D. Torres, D. Leitao, and F. Barros. Motorola specnl: A hy-
brid system to generate nl descriptions from test case speci-
fications. Sixth International Conference on Hybrid Intelli-
gent Systems (HIS’06), page 45, 2006.

[19] M. Whalen, A. Rajan, M. Heimdahl, and S. Miller. Coverage
metrics for requirements-based testing. In ISSTA ’06: Pro-
ceedings of the 2006 international symposium on Software
testing and analysis, pages 25–36. ACM Press, 2006.

116116

