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Abstract 

 
Human-based estimation remains the predominant 

methodology of choice [1]. Understanding the human 
estimator is critical for improving the effort estimation 
process. Every human estimator draws upon their 
background in terms of domain knowledge, technical 
knowledge, experience, and education in formulating 
an estimate. This research uses estimator demographic 
information to construct over 4000 classifiers which 
distinguish between the best and worst types of 
estimators. Various attribute techniques are applied to 
determine most significant demographics. Best case 
models produce accuracy rates ranging from 74 to 80 
percent. Some of the best case models are presented 
for gaining insight into how demographics impact 
effort estimation. 
 
 
1. Introduction 
 

Rather than build more predictor models based on 
effort estimates, or refine current algorithmic models, 
why don’t empirical software engineer researchers 
focus on the humans making the estimates? 

Of all the effort estimation techniques available, 
human-based estimation remains the most popular due 
to its simplicity and flexibility in estimating input and 
time spent on producing estimates. Various studies 
compiled by Jorgenson [1], show that human-based 
estimation is the preferred technique over algorithmic 
or machine-learning approaches about 77.4% of the 
time. Furthermore, there is no substantial evidence 
supporting any claim that any algorithmic or machine-
learning method guarantees better estimates than 
humans make [2]. 

Algorithmic-based estimation approaches are based 
on human subjectivity. The post-architecture 
intermediate COCOMO model has 23 parameters 
which includes 5 scale factors and 17 effort multipliers 
that require the modeler to discriminate between 
classes and to weigh or consolidate different sub-terms 

within one parameter. For example, the Process 
Maturity scale factor is a consolidation of 18 key 
process areas. Finally, the COCOMO model relies 
upon an accurate size estimate. This size metric may be 
based on a source lines of code (SLOC) estimate, or a 
Function Point estimate. Deriving Function Points 
requires the user to assign values for the 14 Global 
System Characteristics. 

Defining all the factors and coming up with the 
estimate using the model does not conclude the 
estimating effort. The estimator must calibrate the 
results from estimating models to current projects and 
organization environments in order to achieve 
potentially accurate results [3]. Even Function Point 
Analysis is highly subjective in that judgments are 
made on the General System Characteristics terms. 
Thus, algorithmic techniques depend heavily upon 
human, preferably expert, intervention. It seems that 
human-based estimation is unavoidable. 

Machine Learning (ML) based estimation requires 
many human decisions in terms of which metrics to 
collect, number of samples to collect, which learner to 
apply, and how to interpret the results. The black box 
nature of some ML, such as neural networks, 
introduces an additional learning curve that might 
discourage estimators from using it, until they have 
successfully tried it several times in order to build their 
confidence in it. 

A challenge that exists in human estimation 
revolves around nature of human life. Assume a person 
starts working in the software field at the age of 24 and 
retires at the age of 65. The typical length of a software 
project is two years. On average, a person would 
encounter approximately 21 projects during their 
career. This implies that there are relatively few 
benchmark points on which to base current estimates. 
Furthermore, as software development increases in 
complexity and spans over more complex and dynamic 
domains, it becomes harder to apply historical domain 
knowledge in the current domains with newer 
technologies. 



There has been a continuous effort to enhance 
algorithmic models by calibrating them in order to 
measure the impact of various inputs on the accuracy 
of outputs received from the algorithmic models [4]. At 
the PROMISE 2006 workshop [5], the authors 
developed a series of machine learners using Genetic 
Programs along with statistical models which associate 
human demographics with their estimation ability. This 
paper extends that research in several ways: 

• Larger sample set. The 2007 PROMISE 
dataset contains 56 more samples than the 
earlier dataset for a total of 178 samples. This 
offers the luxury of eliminating outliers and 
noisy data.  

• Many learners. This paper conducts 4142 
experimental trials using 51 different classifiers.  

• Attribute analysis.  Various attribute 
techniques are applied in multiple experimental 
contexts to determine which demographic 
attributes contribute to effective estimation. 

• Simpler models. This research focuses 
primarily on classifiers. The intent is to produce 
more human readable models than the previous 
research. 

This current research examines the influence of 
different human demographics on the estimation 
process to determine the impact of demographics in the 
estimation process. To assess human estimators, a 
survey is developed which gathers user demographic 
and requests the respondent to estimate the time 
needed to complete 28 separate components. 178 
samples are collected. 

Two types of experiments are conducted. The first 
compares the worst under-estimators with the best 
estimators using 51 different classifiers. The second 
experiment repeats the process, but compares the worst 
over-estimators with the best estimators. The best 
models from each experiment serve as evaluators in 
reducing the number of original attributes. The best 
reduced attribute models produce accuracy rates 
ranging from 74 to 80 percent accuracy. 

There are significant reasons for addressing this 
topic. The knowledge of the programmers’ 
demographics can be used to identify the best and 
worst estimators.  
 
2. Related Research 
 

There have been a relatively few studies on expert 
estimation. Gray [6] examines a set of expert-derived 
estimates for the effort required to develop a collection 
of modules from a large health-care system. Statistical 
tests suggest a clear relationship between the screen or 
report type and characteristics of modules and the 

likelihood of the associated development effort being 
underestimated, approximately correct, or over-
estimated. 

Connolly [7] compares Decomposed versus Holistic 
Estimates of Effort Required for Software Writing 
Tasks. He reports that the actual effort used to solve 
programming tasks falls inside the 98% confidence 
effort prediction intervals for only 60% of the tasks. 
Explicit attention to training in establishing good 
minimum and maximum effort values increases the 
proportion inside the prediction interval to about 70%. 
He suggests that expert estimates get more accurate 
when including risk analysis in the estimation process. 

Jorgensen [8] randomly selected 109 maintenance 
tasks and assigns them to people with varying 
experiences after providing details regarding task 
specifications. The study reports no clear correlation 
between length of experience and prediction accuracy 
of own work among software maintainers. 

Studies from other domains indicate several 
interesting characteristics of expert judgment that can 
probably be relevant to software effort estimation. 
Hoch [9] in his study on decision support systems 
suggests that experts performed better than models in a 
highly predictable environment, but worse in a less 
predictive environment. MacGregor’s [10] study on 
aids for quantitative estimation suggests that 
decomposition of a task for estimation purposes could 
activate too much information processing and lead the 
expert estimator astray. Braun [11] compares expert 
judgment with model forecasts suggests that experts 
outperformed models in shorter-term business 
forecasting, whereas models outperformed experts in 
long term forecasting. The application and relation of 
these characteristics in software effort estimation have 
not been found.  

 
3. Survey-Based Empirical Data 
 

A Web-based survey serves as the data collection 
mechanism. This survey consists of four sections. The 
first section describes the software project that the 
respondents are assessing. The second section gathers 
demographic information about the respondent. In the 
third section, the respondent assesses the amount of 
effort, in hours, for a set of 28 modules. The fourth 
section provides statistical feedback to the respondent. 
This survey in its entirety is available at: 
http://nas.cl.uh.edu/boetticher/EffortEstimationSurvey.
html 



The survey was marketed to several Yahoo Groups 
related to software engineering; to a mailing list of 
about 800 members of the Project Management 
Institute; and to graduate students enrolled in a 
software metrics course over several semesters. About 
one third of the survey was completed by graduate 
students. 
 
3.1. Project Description 
 

In order to provide a background foundation for 
the survey, the first section describes the project’s 
software requirements in a narrative format. This 
description also talks about the environment in which 
the actual project was created. 
 
3.2. Demographic Information 
 

Participant demographics include: Year Of Birth, 
Gender, Nationality, Highest Academic Degree 
Achieved, The Number of Courses taken at the 
Undergraduate and Graduate level such as Computer 
Science, Computer Information Systems, Computer 
Hardware, or Management Information Systems. The 
Number of Workshops and Conference in the areas of 
Computer Science, Computer Information Systems, 
Computer Hardware, Management Information 

Systems, Project Management, Project Metrics,  or 
Software Engineering. The Number of Years of 
Industrial Experience for a specific programming 
language. The respondent is asked to consider 18 
different programming languages. The Years of Work 
Experience in Hardware and Software Industry, Years 
of Experience as a Project Manager in Hardware and 
Software Industry, Number of Projects estimated in 
Hardware and Software Industry, and Average Size of 
Software Projects estimated. 
 
3.3. Component Analysis 
 

In the third phase the respondent must provide 
effort estimates for a set of 28 different modules. These 
modules originated in an eCommerce project 
developed by one of the authors (Boetticher) in the late 
1990s. Rigorous effort estimation data was logged per 
module during the development process.  To insure the 
survey could be completed within a reasonable amount 
of time, a representative sample of modules from the 
project are included in the survey. 

The survey provides extensive help in the form of 
an overall description of the whole project along with 
context sensitive help per module. Figure 1 illustrates 
one of the modules from the survey. 

 

 
Figure 1: Screenshot of one of the modules 

 



This section closes with questions regarding the 
respondent’s domain experience in the procurement 
and process industry. 
 
3.3. Survey Results 
 

After assessing the 28 modules, the respondent 
receives feedback regarding their estimates. Figure 2 
shows a graph from a survey where the results are 
sorted by effort. Ideally, a respondent’s estimates 
would overlap the actual values. This graph also 
provides a Pred(25) count, which represents the 
number of estimates within 25% of the actual values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Estimates Sorted by Actual Values 
 

The survey also provides project-based feedback to 
the respondent in terms of how their accumulative 
estimates compare to previous participants. Figure 3 
shows the Mean Absolute Relative Error (MARE) of 
all the participants plotted in ascending order. In this 
example, the participant was in the top 80% profile. 
 

 
Figure 3. Respondent’s Estimates Relative to Other 

Participants in terms of MARE. 
 

The module and project feedback offer immense 
value and serves to motivate the user to complete the 
survey 
 
4. Data Demographics 
 

The data set consists of 178 samples that were 
collected from 2001 through 2005. The average age is 
31.43. There are 148 male and 30 female respondents. 
Academically, in terms of highest degree held, 1% held 
a Ph.D., 24% held a Master’s 72% held a Bachelor’s 
degree, and 5% held a High School degree. Citizens 
from 25 different countries completed the survey with 
42% from India, 32% from the United States, 6% from 
Romania, and 4% from Vietnam. Table 1 summarizes 
each participant’s work, estimation, and domain 
experience. 

 
Table 1: Summary of Experience of Participants 

 Ave. 
Years Max. Std. 

Dev. 
Years of Experience as a    
      Hardware Proj. Mgr. 1.0169 25 3.0633 
      Software Proj. Mgr. 1.6967 15 2.4757 
No. of Projects estimated    
     Hardware Projects 1.4382 25 4.4390 
     Soft. Projects 3.6692 28 5.3856 
Domain Experience    
     Procurement & Billing 1.4382 25 4.4391 
     Process Industry  3.6629 28 5.3856 

 
5. Experiments 
 

Prior to conducting any experiment, outliers are 
removed from the data set. In this case, anyone who 
over-(under-) estimates by a factor of 10x or greater, is 
removed. Three groups of 25 samples are extracted 
from the remaining 163 tuples. These groups are the 25 
worst under-estimators; the 25 best estimators, and the 
25 worst over-estimators. Extracting the best and worst 
samples seeks to eliminate noisy data in the form of 
average estimators. 

Two sets of experiments are conducted. The first 
compares the under-estimators to the best estimators. 
The second experiment assesses the worst over-
estimators to the best group. The intent is to identify 
distinguishing characteristics between each of the two 
groups. 

The data is assessed using the Waikato 
Environment for Knowledge Analysis (WEKA) tool. 
WEKA is an open-source, Java-based application that 
contains very many classifier, clustering, association, 
and data analysis algorithms.  It is developed by the 
University of Waikato in New Zealand and is available 
at: http://www.cs.waikato.ac.nz/~ml/weka/ 
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Each experiment initially runs 51 sub-experiments 
with a different classifier each time. There are 4 trials 
per sub-experiment using a random seed values of 1, 
10, 20, and 40 per trial. Those classifiers which 
produce the best results serve as the evaluator classifier 
for reducing the number of attributes. After reducing 
the number of attributes, the next phase conducts 
another set of sub-experiments against the classifiers 
using 4 trials per sub-experiment. All sub-experiments 
use a 10-fold cross validation with the default settings 
of each classifier. 

 
5.1. Under-Estimators versus Best-Estimators 
 

The average accuracy for the 51 classifiers 
described above is 48.22 percent. Table 2 lists the 
classifiers with the best results. 

 
Table 2: Best Classifiers 

Classifier Accuracy 
PART 76% 
J48 68% 
Logistic 64% 
ThresholdSelector 64% 
VFI 64% 

 
In an effort to improve accuracy and reduce 

complexity, the Wrapper attribute reduction algorithm 
is applied with a threshold of 0.30. Classifiers from 
Table 2 serve as the evaluators in the Wrapper 
algorithm. All 5 cases use the Exhaustive search. 
 
Table 3: Attribute. reduction by class. (Thresh. = 0.30) 
 Evaluator Classifier 

Demographic J48 Logistic PART Thresh. VFI
Domain Experience Y   Y Y 
Hardware Project 
Management Experience Y Y Y Y  
Mgmt Grad. Courses  Y    
Mgmt Undergrad Courses Y  Y  Y 
# of Hardware Proj. Est. Y Y Y Y  
Level of College  Y Y   
Software Proj. Mgmt 
Exp.  Y   Y 
Tech Undergrad Courses  Y    
Total Conferences     Y 
Total Workshops  Y  Y Y 
Total Lang Experience  Y  Y Y 

 
Table 3 shows the results of reducing attributes. A 

‘Y’ signifies that the Wrapper attribute algorithm 
reduced to the specified demographic feature. For 
example, the Wrapper algorithm using the J48 
evaluator reduces the attribute set from 15 down to 4 
attributes: Domain Experience, Hardware Project 
Management Experience, Mgmt Grad. Courses, Mgmt 

Undergrad Courses, and # of Hardware Proj. 
Estimated. 

The reduced set of attributes is applied to each of 
the 51 classifiers with 4 trials per classifier. Table 4 
shows the best models for each of the reduced sets of 
attributes. 

 
Table 4: Best models from reduced attrib. (Thresh=0.3) 

Classifier Evaluator Accuracy 
ADTree PART 78% 
ThresholdSelector ThresholdSelector 76% 
Bagging J48 74% 
LogitBoost J48 74% 
J48 J48 74% 
PART J48 74% 
VFI VFI 70% 
Logistic Logistic 68% 
 
A second Wrapper attribute reduction algorithm is 

applied, but   with a threshold of 0.01. The classifiers 
from table 2 are used as the evaluators in conjunction 
with the Wrapper algorithm. All 5 cases use the 
Exhaustive search. 

Table 5 shows the results of reducing attributes. A 
‘Y’ signifies that the Wrapper attribute algorithm 
reduced to the specified demographic feature.  

 
Table 5: Attribute reduction by class. (Thresh. = 0.30) 
 Evaluator Classifier 

Demographic J48 Logistic PART Thresh. VFI

Domain Experience Y  Y Y Y 
Hardware Project 
Management Experience Y Y Y Y  
Mgmt Grad. Courses Y Y   Y 
Mgmt Undergrad Courses Y  Y Y  
# of Hardware Proj. Est. Y Y Y Y  
# of Software Proj. Est.     Y 
Level of College  Y  Y Y 
Software Proj. Mgmt 
Exp.  Y   Y 
Tech Undergrad Courses  Y Y   
Total Conferences   Y  Y 
Total Workshops  Y   Y 
Total Lang Experience  Y   Y 

 
The reduced set of attributes is applied to each of 

the 51 classifiers with 4 trials per classifier. Table 6 
shows the best models for each of the reduced sets of 
attributes.



Table 6: Best models from reduced attrib (Thres=0.01) 
Classifier Evaluator Accuracy 

ADTree ThresholdSelector 76% 
J48 PART 74% 
PART PART 74% 
ADTree J48 74% 
PART J48 74% 
VFI VFI 70% 
Logistic Logistic 68% 
 
The PART and J48 models are presented. The 

ADTree is omitted since it is much more complex in 
structure than the PART and J48 models. 

The PART algorithm, 74% accuracy, generates the 
following four rules for distinguishing between the 
best, Class A, and under, Class F, estimators:  
1) Domain Exp <= 3 AND, 

Hardware Proj Mgmt Exp <= 1 AND 
# Of Hardware Proj Estimated <= 4 AND 
MgmtUGCourses <= 0: A (23.0/8.0) 

If a human estimator satisfies the conditions posed 
in rule 1, then there is about a 35 percent chance (8/23) 
of being classified as a best estimator. 
2) Domain Exp <= 3 AND,   

Hard. Proj Mgmt Exp <= 1: F (14.0/1.0) 

The second rule repeats the first two clauses of the 
first rule. Now there are no restrictions on number of 
projects estimated and the number of undergraduate 
management courses. Those respondents that satisfy 
rule 2, but not rule one, have about 93 (13/14) percent 
of being a very good estimator. 
3) # Of Hard Proj Estimated <= 4: A (8.0) 

Those respondents that do not satisfy rules one and 
two, but satisfy the third rule, are classified as under-
estimators 100 percent of the time.  This rule does not 
claim that a person has more than one year experience 
since it is possible to have 0 years of hardware project 
management experience and more than 3 years of 
domain experience. 
4) F (5.0/1.0) 

The remaining individuals are considered under-
estimators 17 percent of the time (1/6). 

The J48 algorithm, 74% accuracy, generates: 
 
Domain Exp <= 3 
| No Of Hardware Proj Estimated <= 4 
| | Hardware Proj Mgmt Exp <= 1 
| | | MgmtUGCourses <= 0: A (23.0/8.0) 
| | | MgmtUGCourses > 0: F (13.0/1.0) 
| | Hard. Proj Mgmt Exp > 1: A (5.0) 
| No Of Hard. Proj Est. > 4: F (5.0) 
Domain Exp > 3: A (4.0) 

 

This rule is almost functionally equivalent to the 
PART rule described above. The confusion matrix for 
both rules is as follows: 

 
  A  F   <-- classified as 
 21  4 |  A  
  9 16 |  F 

The confusion matrix means that best estimators are 
correctly classified 84 percent (21/25) of the time and 
under-estimators are correctly classified 64 percent 
(16/25) of the time. 
 
5.2. Over-Estimators versus Best-Estimators 
 

The next set of sub-experiments compares the 25 
best estimators with the 25 poorest over-estimators 
where estimate is less than 10X. The average accuracy 
for the 51 classifiers described above is 42.86 percent. 
Table 7 lists the classifiers with the best results. 

 
Table 7: Best Classifiers 

Classifier Accuracy 
RandomTree 66% 
Decorate 62% 
RandomCommittee 60% 
ThresholdSelector 60% 
Ridor 60% 

 

Apply the Wrapper attribute reduction algorithm as 
in section 5.1 with a threshold of 0.30 and an 
Exhaustive search reduces the attributes as shown in 
Table 8. The Decorate algorithm is not included since 
it did not eliminate any attributes. Also, RandomTree 
eliminated all the attributes. 

 
Table 8: Attribute reduction by class. (Thresh.= 0.30) 

Demographic 
Random 

Committee Ridor Threshold
Selector 

Hardware Project 
Management Experience Y Y Y 
Mgmt Grad. Courses Y Y Y 
Mgmt Undergrad Courses   Y 
# of Software Proj. Est.   Y 
Software Proj. Mgmt 
Exp. Y  Y 
Tech Undergrad Courses   Y 
Total Conferences Y  Y 
Total Workshops  Y  
Total Lang Experience Y  Y 
 
Applying the reduced set of attributes from Table 8 

to each of the 51 classifiers with 4 trials per classifier 
yields the following best models as depicted in Table 
9. 



 
Table 9: Best models from reduced attrib. (Thrsh=0.30) 

Classifier Evaluator Accuracy 
IB1 (Instance Base Learner) Ridor 80% 
Random Committee RandomCommittee 72% 
ThresholdSelector ThresholdSelector 66% 
ADTree ThresholdSelector 62% 

 
Since several of the learners eliminated all the 

attributes during the reduction process. The experiment 
is repeated, with a threshold of 0.01 instead of 0.30. 
Table 10 shows the results. Once again, the 
RandomTree classifier eliminated all the attributes. 

 
Table 10: Attribute reduction by class (Thresh.= 0.01) 

Demographic Decorate 
Random 
Comm. Ridor Thresh.

Domain Experience    Y 
Hardware Project 
Management Experience Y Y  Y 

Mgmt Grad. Courses Y    
Mgmt Undergrad Courses Y  Y  
# of Hardware Proj. Est.  Y   
Level of College  Y   
Procurement Industry 
Exp   Y Y 
Software Proj. Mgmt 
Exp.   Y  

Tech Grad Courses   Y Y 
Tech Undergrad Courses  Y   
Total Workshops   Y  
Total Lang Experience Y  Y Y 

 
 
Applying the reduced set of attributes from Table 

10 to each of the 51 classifiers with 4 trials per 
classifier yields the following best models as depicted 
in Table 11. 

 
Table 11: Best models from reduced attrib.(Thrsh=0.01) 

Classifier Evaluator Accuracy 
RandomCommittee RandomCommittee 80% 
RandomTree RandomCommittee 80% 
IB1 (Instance Base Learner) Decorate 74% 
IBk Decorate 74% 
RandomForest Decorate 74% 
RandomCommittee Decorate 72% 
NNge Decorate 72% 
PART Decorate 72% 
NNge ThresholdSelector 66% 
ThresholdSelector Ridor 64% 
Ridor ThresholdSelector 62% 
Ridor Ridor 62% 

The next column shows the rule for the random 
committee which has an accuracy of 80 percent. The 
confusion matrix for this rule is: 

 
  A  F   <-- classified as 
 23  2 |  A  
  8 17 |  F 

Thus, best-estimators are correctly classified 92 
percent (23/25) of the time and over-estimators are 
correctly classified 68 percent (17/25) of the time.  

 
TechUGCourses < 45.5 
| Hardware Proj Mgmt Exp < 6 
| | No Of Hardware Proj Estimated < 4.5 
| | | No Of Hardware Proj Estimated < 3 
| | | | TechUGCourses < 23 
| | | | | Hardware Proj Mgmt Exp < 0.75 
| | | | | | TechUGCourses < 18 
| | | | | | | Hardware Proj Mgmt Exp < 0.13 
| | | | | | | | TechUGCourses < 0.5 
| | | | | | | | | TechUGCourses < -1 : F (1/0) 
| | | | | | | | | TechUGCourses >= -1 
| | | | | | | | | | Degree < 3.5 : A (4/0) 
| | | | | | | | | | Degree >= 3.5 : A (5/2) 
| | | | | | | | TechUGCourses >= 0.5 
| | | | | | | | | TechUGCourses < 5.5 
| | | | | | | | | | Degree < 3.5 : F (5/0) 
| | | | | | | | | | Degree >= 3.5 
| | | | | | | | | | | TechUGCrses < 2 : A (1/0) 
| | | | | | | | | | | TechUGCrses >= 2 : F (1/0) 
| | | | | | | | | TechUGCrses >= 5.5 
| | | | | | | | | | Degree < 3.5 
| | | | | | | | | | | TechUGCrs < 10.5 : A (3/0) 
| | | | | | | | | | | TechUGCrses >= 10.5 
| | | | | | | | | | | | TechUGCrs<12.5 : F (3/0) 
| | | | | | | | | | | | TechUGCrses >= 12.5 
| | | | | | | | | | | | | TechUGCrs<16: A (2/0) 
| | | | | | | | | | | | | TechUGCrs>15 : A (2/1) 
| | | | | | | | | | Degree >= 3.5 : F (1/0) 
| | | | | | | HardProjMgmt Exp >= 0.13 : A (2/0) 
| | | | | | TechUGCourses >= 18 : A (2/0) 
| | | | | Hard Proj Mgmt Exp >= 0.75 : F (1/0) 
| | | | TechUGCourses >= 23 : F (5/0) 
| | | No Of Hardware Proj Est >= 3 : F (1/0) 
| | No Of Hardware Proj Est >= 4.5 : A (5/0) 
| Hardware Proj Mgmt Exp >= 6 : F (4/0) 
TechUGCrses >= 45.5 : A (2/0) 

 
6. Discussion 
 

It is interesting that hardware, not software; project 
management experience appears most often in the 
reduced attribute sets and appears in most of the rules 
presented in section 5.1.  Perhaps the fact that 
hardware had higher standard deviations for the 
demographic attributes, as depicted in Table 1, may be 
the reason in that there is a wider range of values for 
distinguishing between two groups. 

The last rule generated in section 5.2, although 
accurate, is quite complex. However, it was able to 
create many pure leaf nodes. Attempts to simplify the 
tree by reducing the height led to drops in accuracy. 
So, this strategy was abandoned. 

Comparing the rules generated from sections 5.1 
and 5.2 hardware project management experience is 



the only attribute that occurs frequently in both sets of 
rules. The rules in section 5.1 use Domain Experience 
and Undergraduate Management Courses some and 
the rule in section 5.2 rule makes extensive use of 
Technical Undergrad Courses and Degree. Further 
research may shed more light on this observation. 
 
7.  Conclusions 
 

Traditionally, issues like model-based versus 
expert-based effort estimation have served to divide the 
software engineering discipline into two camps, the 
expert-based versus the model-based, which, for the 
most part, ignore each other. This paper shows why 
this division is artificial and therefore should be 
rejected. 

Thousands of classification models are constructed 
which result in watermark accuracy rates ranging from 
72 to 80 percent. This paper presents some of more 
human-readable rules from these accurate models and 
offers some corresponding observations. 
 
8. Future Directions 
 

As time permits, an additional set of experiments 
will be conducted that combine both worst cases and 
compares them to the best case. 

One of the challenges in reducing features in order 
to characterize good estimators is to produce consistent 
a consistent set of features for various learners. Adding 
more samples might be a method for reducing the 
variability in features when reducing the number of 
attribute. 

It is worth noting that all 28 modules in this study 
come from one project.  It is entirely possible that 
some of the worst under-estimators (over-estimators) 
might be the best estimators on a different project 
data.  Thus, it would be desirable to conduct further 
studies with different projects. 
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