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AbstractÐThe need for accurate software prediction systems increases as software becomes much larger and more complex. A

variety of techniques have been proposed; however, none has proven consistently accurate and there is still much uncertainty as to

what technique suits which type of prediction problem. We believe that the underlying characteristicsÐsize, number of features, type of

distribution, etc.Ðof the data set influence the choice of the prediction system to be used. For this reason, we would like to control the

characteristics of such data sets in order to systematically explore the relationship between accuracy, choice of prediction system, and

data set characteristic. Also, in previous work, it has proven difficult to obtain significant results over small data sets. Consequently, it

would be useful to have a large validation data set. Our solution is to simulate data allowing both control and the possibility of large

(1,000) validation cases. In this paper, we compared four prediction techniques: regression, rule induction, nearest neighbor (a form of

case-based reasoning), and neural nets. The results suggest that there are significant differences depending upon the characteristics

of the data set. Consequently, researchers should consider prediction context when evaluating competing prediction systems. We also

observed that the more ªmessyº the data and the more complex the relationship with the dependent variable, the more variability in the

results. In the more complex cases, we observed significantly different results depending upon the particular training set that has been

sampled from the underlying data set. This suggests that researchers will need to exercise caution when comparing different

approaches and utilize procedures such as bootstrapping in order to generate multiple samples for training purposes. However, our

most important result is that it is more fruitful to ask which is the best prediction system in a particular context rather than which is the

ªbestº prediction system.

Index TermsÐPrediction system, simulation, machine learning, data set characteristic.

æ

1 INTRODUCTION

THE ability to build prediction systems for software
engineers remains an important but largely unsolved

problem. One area that is proving to be particularly
intractable is project prediction. Here, we would like to
predict aspects such as duration and effort at an early stage
in the development. A wide range of techniques have been
proposed. These include statistical methods, parametric
models, and machine learning (ML) methods. Obviously,
this then raises the question which technique, or techniques,
are ªbest.º Unfortunately, and perhaps unsurprisingly,
there is no simple answer.

The problem of selecting a technique for building predic-

tion systems is well illustrated by the following example. The

authors have been associated with the development of a

technique for building project effort prediction systems based

upon the idea of analogies or case-based reasoning which we

implemented as a software tool known as ANGEL [1]. In

order to evaluate the technique, we compared predictions

derived from ANGEL with those from a regression model

built from a stepwise regression procedure (SWR). Effec-

tively, we treated SWR as a benchmark. We utilized a number

of data sets that were in the public domain and three data sets

that we ourselves collected. Using a Mean Magnitude of

Relative Error (MMRE) accuracy indicator,1 we found that,

for all nine data sets, ANGEL had a better or equal level of

accuracy to the SWR model. Can we therefore conclude that

regression-based approaches should no longer be pursued

and that all estimators should use ANGEL? The answer is no.

There are at least three reasons why this is so.
First, subsequent studies have reported more mixed

experiences. Niessink and van Vliet [2] found similar results

using a different data set. Unfortunately other researchers,

most notably Briand et al. [3] and Mrytveit and Stensrud [4]

obtained conflicting results where the regression model

generated significantly better results than an analogy-based

approach. While there are some differences in approach, in

particular, Briand et al. [3] used a different procedure to

select the best feature subset, due to the fact that the

problem is NP-hard, this does not fully explain differences

in the results.
Second, we have shown elsewhere that the choice of

error indicator can have a significant effect in ranking

candidate prediction systems in order of accuracy [5]. Put

simply, different accuracy indicators conflict. While

MMRE is a widely used indicator with the advantage

that comparisons can be made across data sets, it suffers

from being asymmetric in that under estimates are

bounded while over estimates are not. We believe this

may contributeÐat least in a small measureÐto the

unreliability of comparing different techniques for build-

ing prediction systems.
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Third, the underlying characteristics of the problem data
set is likely to exert a strong influence upon the relative
effectiveness of different prediction systems. For example,
the two data sets Briand et al. used both appear to contain
well-defined hyperplanes such that the regression proce-
dures are able to generate models with good explanatory
power as evidenced by the high R squared values. One
would not expect case-based reasoning (CBR) to perform
well since, instead of interpolating or extrapolating, it
endeavors to draw datapoints to the nearest cluster. Clearly,
this is not an effective strategy where data falls upon or
close to a hyperplane. That is, a linear function exists that
ªexplainsº the relationship between the dependent variable
and the independent variables.

Returning to our main argument, we can see that it is
proving problematic to establish whether CBR is a useful
technique or not. One possibility is some form of meta-
analysis, such as a simple vote counting procedure. See
Pickard et al. [6] or Miller [7] for a discussion of some of the
issues. Another possibility is try to understand what
conditions favor a particular technique. There is evidence
that this may be a fruitful approach. We therefore believe
that the question, which technique, or techniques, are ªbestº
should be modified to include a notion of context. In other
words, what is the relationship between different properties
of the data set and the accuracy of a prediction system?
Once we can start to answer this question, not only will we
be able to understand why we get conflicting results from
different research teams evaluating the same technique for
building prediction system, but also we will be able to
better advise practitioners.

The idea of artificially generated data with known
properties to explore software engineering data set model-
ling techniques was first proposed by Pickard et al. [8]. This
is an attractive idea for a number of reasons. First, it
provides the researcher with a great deal more control over
the characteristics of a data set. In particular, it enables the
researcher to vary one property at a time, thereby allowing
a more systematic exploration of the relationship between
data set characteristics, type of prediction system, and
accuracy. By contrast, especially with smaller real data sets,
the true properties may not be fully known. For example, it
may be difficult to differentiate between types of distribu-
tion in the presence of extreme outliers. Second, small data
sets necessitate small validation sets. As we have shown
elsewhere [5], this can be extremely problematic if we
would like to show that there are significant differences
between competing prediction systems. Statistical testing is
essential if we would like to argue that the difference in
accuracy between Prediction System A and Prediction
System B is of interest. Otherwise, it is something of a
moot point as to whether a difference between, say
MMRE � x% and MMRE � x� 5%; is important or not.
With simulated data, it is possible to have both a small
training setÐa common real world occurrenceÐand a large
validation set with which to assess our findings.

The remainder of this paper goes onto describe our
experimental procedure to explore the relationship between
data set characteristics and prediction system performance.
We then describe our results from the simulated data sets.

This is followed by a discussion of the relative performance
of the techniques under scrutinyÐstepwise regression, rule
induction, artifical neural nets, and case-based reason-

ingÐand the circumstances that favor each technique. We
then reflect upon our procedure and make some sugges-
tions as to how it might be improved for future investiga-

tions. Lastly, we conclude by considering the need for this
type of research and the importance of our findings.

2 PREDICTION TECHNIQUES

This section describes the four prediction techniques that

were compared in our simulation experiment:

. stepwise regression (SWR),

. rule induction (RI),

. case-based reasoning (CBR), and

. artificial neural nets (ANN).

Our choices were influenced by two factors. First, each
technique adopts a highly contrasting approach to generate
a prediction. Second, they represent areas of significant

research activity by the software metrics community.
Stepwise Regression. This approach uses linear regres-

sion analysis to determine the relationship between two or
more quantitative variables so that one variable (the Y or

dependent variable) can be predicted from the others (the X
or independent variables). The general form of such a
prediction system is Y � �0 � �1X1; . . . ; �nXn. This then

involves finding suitable independent variables and values
for the � coefficients. Many researchers have followed this
approach including [9], [10], [11].

For our analysis, we used SPSS for Windows, version 9.

The procedure we used for the selection of variables to
construct the regression model was stepwise selection
[12]. In stepwise selection, the first independent variable

that is considered for entry into the equation is the one
with the largest positive or negative correlation with the
dependent variable. The F test for the hypothesis that the

coefficient of the entered variable is zero is then
calculated. If the variable passes the criterion (the
probability associated with the F statistics is less than

.05), the second variable is selected based on the highest
partial correlation. If it passes the entry criteria, it also
enters the equation. If the first variable fails to meet entry
requirements, the procedure terminates with no indepen-

dent variables in the equation. After the first variable is
entered, it is examined for removal according to removal
criterion.2 After each step, variables already in the

equation are examined for removal, until none remains
that meets the removal criterion. There is often no unique
subset of the independent variables that best predict the

dependent variable, which is considered one of the
limitations of the stepwise regression search approach
since it seeks to identify just that [13]. However, it is a

widely used regression procedure in software prediction
related research.
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Rule Induction. As the name suggests this approach
derives more general rules from specific cases which form
the training set. The rules are organized into trees, some-
times referred to as regression trees. There are many
different algorithms for achieving this, such as ID3 and
C4.5 [14], [15]. We used the unsupervised learning algo-
rithm C5.0 and implemented in the data mining toolkit
Clementine [16]. An advantage of using Clementine is that
it handles issues such as tree pruning automaticallyÐprun-
ing is important to prevent the rule tree over adapting to the
training set and being unable to effectively generalize to
new problems. Examples of using RI to develop prediction
systems include [17], [18].

Case-Based Reasoning. Next, we used our in-house
developed CBR shell, ANGEL [1]. CBR is considered to be
fundamentally different from rule induction and regression
approaches in that it utilizes specific knowledge of
previously solved cases to solve future ones, while the
former use generalized knowledge or relationships, respec-
tively. In other words, CBR is model free. The idea of using
analogies as a basis for estimating software project effort is
not new. Boehm [19] suggested the informal use of
analogies as a possible technique almost 20 years ago. The
idea was reiterated by Cowderoy and Jenkins [20] in 1988,
but again, with no formal mechanism for selecting
analogies. The next development was from Vicinanza et al.
[21], [22] who suggested that developments from the
machine learning community in the form of CBR might be
usefully adapted to help make better software project
predictions. Case-based reasoning has four distinct aspects:

. characterization of cases,

. storage of past cases,

. retrieval of similar cases to use as analogies, and

. utilizing the retrieved case to solve the target case
problem, sometimes known as case adaptation.

In the situation of effort prediction, CBR might be
deployed as follows: We have n projects or cases, each of
which needs to be characterized in terms of a set of
p features. In addition, we must also know the feature that
is to be predicted. Features can either be continuous (e.g.,
experience of the project manager), discrete (e.g., the
number of interfaces), or categorical (e.g., development
environment). In practice, many approaches treat discrete
features as if they were continuous. Historical project data is
collected and added to the case base. When a prediction is
required for a new project it is referred to as the target case.
The target case is also characterized in terms of the p
features. Incidentally, this imposes a constraint on the
feature set in that it should only contain features for which
the values will be known at prediction time. The next step is
to measure similarity between the target case and other
cases in the p-dimensional feature space. Possibly, the most
similar cases or projects could then be used, with adaptation
to generate a prediction for the target case. Once the target
case has completed, it can be added to the case base. A more
general account of CBR may be found in [23].

ANGEL is an analogy-based estimation tool that
searches for similarities between a target entity, such as a
proposed software project and a set of historical entities of
the same class. Each entity is characterized by a number of

attributes that are available at the point when estimates are
required. Similarity is measured as Euclidean distance in
p-dimensional space. In this simulation, we used a single
analogy, without adaptation, and utilized the entire feature
set. Effectively, this turns the technique into a nearest
neighbor (NN) method. While it is unlikely that NN would
be the most effective form of CBR it has the merit of being
very straightforward for this analysis.

Artificial Neural Nets. Finally, we looked at ANNs as a
means of predicting. A number of researchers have applied
neural nets to the problem of predicting software effort,
often with good results, see for example [24]. Although
there has been a great deal of work in this area, we focused
on a simple multilayer perceptron with a back propagation
learning algorithm as implemented in the Clementine data
mining tool [16]. This had the advantage of reducing user
interaction in terms of configuring the ANNÐwhich was a
significant factor given the amount of simulation workÐbut
may well have had an impact upon the results, a point that
we will return to later in this paper.

It is apparent from the above discussion that the theoretical
foundation of the four chosen techniques are very different;
however, we could of course extend the list of techniques. We
chose not to do so partly on pragmatic grounds since the
simulation work is quite time consuming. The next section
describes our method for simulating data set characteristics
and analyzing prediction system performance.

3 METHOD

The aim of this investigation was to explore what data set
properties favor which particular techniques for building
prediction systems.

Table 1 summarizes a range of characteristics of a
number of software data sets that are available in the
public domain. The purpose of this is to identify how
these data sets vary and also what data set characteristics
might be considered typical. This is to help inform our
investigation of the relationship between data set char-
acteristics and prediction system performance. The col-
umns in the table list the number of cases in the data set,
total number of features (independent variables), the
number of features that are categorical, and measures
for outliers and collinearity. The first figure in the outliers
columns represents the number of variables with extreme
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TABLE 1
Summary of Software Effort Data Set Characteristics

Note that the Desharnais data set contains four additional cases with
missing values so these are excluded from our analysis.



values out of the total number of variables (including the
dependent), while the other figure is the percentage of
that. The first section of the collinearity column is the
number of variables that exhibit significant correlations
with other independent variables out of the total number
of independent variables. It can be observed that
categorical features are not used very often and outliers
and multicollinearity exists in every single data set.

Our technique was to artificially generate data sets. This
was done blind so that the researcher building the
prediction systems was unaware of the built in character-
istics of the data set or of the underlying models. As
previously indicated, we used simulated data sets. There
are a number of problems with the real data sets that might
have hindered our analysis. First, it is unclear to what
degree they possess the various characteristics that we are
interested in. For example, it is quite difficult to differentiate
between heteroscedasticity and outliers. This is particularly
acute for small data sets. Second, we cannot control how we
combine the factors we would like to explore. Third, we do
not know what the "true" model is so again assessing
prediction systems on small data sets is fraught with
difficulty. Finally, we could generate large validation sets.
With a real data set, the small number of cases (even using a
jack knife or bootstrap [25]) results in a small validation set
with all kinds of unpredictable consequences.

The following data set characteristicsÐtypical of soft-
ware data setsÐwere considered:

. number of cases in the training set (n)3

- small (n = 20)
- large (n = 100)

. number of features in the training set (p)

- small (p = 4)
- large (p = 15) (deferred)

. distribution of values

- normal
- positive skew
- Gamma (deferred)

. independence of features

- independent
- multicollinearity
- heteroscedasticity (deferred)

. feature type

- categorical (deferred)
- discrete (deferred)
- continuous

Note that some aspects have been deferred for future
investigation. In particular, while we accept that the ability
to deal with categorical and discrete features is a significant
aspect of a prediction system, we focused only upon
continuous features. The number of features in the
simulated data sets were kept to the minimum of p � 4

independent variables. Although increasing the number of
features will be considered for future work but, given the
labor-intensive simulation work requires, it is sufficient to
test our ideas and to provide results representative of small
naturally occurring data sets.

The independent variables were generated as follows:

. normal. The mean was 500 and the standard
deviation was chosen as 25 percent of the mean, in
this case, 125. Values were generated by randomly
sampling from the above Normal probability dis-
tribution. Had negative values been generated we
would have replaced them with 1 however, this
eventuality did not arise.

. outliers. Outliers were generated by positively skew-
ing the distribution. This is achieved by an increas-
ing scaling function that was applied to values
falling above the mean of a normal distribution. We
then tested that the Skewness coefficient (which
measures the degree of asymmetry of the distribu-
tion) exceeded 5.0 for all variables.

. collinearity. This is achieved by ensuring that the
three of the independent variables were functionally
related to the fourth variable, so, Xn � f�X1 � "1�
where n � 2 . . . 4. The functions were randomly
generated using a simple grammar. We then tested
to ensure minimum cross correlation values of
r � 0:7. With hindsight we should have used an
external variable in place of X1.

. outliers plus collinearity. Here, both the outlier and
collinearity procedures were applied.

In addition to the training setÐeither 20 or 100 casesÐwe

also generated a large validation set of 1,000 cases. These

were used to assess the accuracy of the prediction system,

but, of course, are not used to generate it. A large training

set was useful since, especially in the presence of outliers,

small training sets can lead to wildly fluctuating results. We

repeated the process of sampling a training set twice in

order to establish how reliable the results were. In the past,

many researchers, including ourselves, have relied upon a

single partitioning of a data set into training and validation

sets. We wanted to see how safe this procedure was.
Furthermore, we need to consider the ªtrue modelº

which was built into the data set:

. continuous (Y1),

. discontinuous (Y2), and

. random.

The random model was included, as a form of control. We
believe that information about the likelihood of false
positives, that is erroneously believing that we have a
prediction system, also warrants investigation.

The two models were randomly generated using a
simple grammar which enabled models of arbitrary length,
using arbitrary subsets of the available independent
variables X1 . . .Xn and arbitrary operators available from
a spreadsheet package (e.g., arithmetic, trigonometric,
logarithms and decisions). We imposed one restriction,
however, that we wanted a continuous and a discontinuous
model. One reason for this choice is that it is not obvious
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that all data sets contain hyperplanes that form the basis for
useful predictions. Where such a situation is not the case,
one would anticipate this to favor the ML techniques.

The independent variables also all have error terms
associated with them. The independent variables were
generated as follows:

Y1 � f�X1; . . . ; Xn�
Y2 � f�X1; . . . ; Xn�:

However, supplied to the estimator was:

Y1; Y2; X
0
1; . . . ; X0n;

where X01 � X1 � "1; . . .X0n � "n. The error terms were
generated as normally distributed with a mean of zero
and � � 10% of the standard deviation of the sample of Xi.
With the benefit of hindsight, we feel we should have
considered a different distribution such as Gamma.

As already stated, the prediction techniques under
investigation were:

. stepwise regression (SWR),

. rule induction (RI) using the Clementine data
mining package which uses the C5.0 algorithm,

. case-based reasoning (CBR) using ANGEL, and

. artificial neural net (ANN) again using the Clem-
entine data mining package which provides a feed-
forward multilayer perceptron and back propaga-
tion learning algorithm.

The estimator was provided with five unlabeled data sets
each with different properties, e.g., normal, random, etc.
Furthermore the estimator was unaware of the
ªtrue model.º The estimator then developed prediction
systems using the four techniques listed above for the two
dependent variables Y1 and Y2 and then validated them on
the validation set of 1,000 cases for that particular data set.

We compared the accuracy of different prediction
systems and data sets in two ways. First, we computed
the MMRE which allowed comparisons between data sets
and is generally easier to interpret. Second, we computed
the absolute residuals and used these for tests of
significance when we wanted to consider differences
between prediction systems or data set characteristics.
Since the absolute residuals were inevitably heavily
skewedÐconfirmed by the Kolmogorov-Smirnov test for
non-NormalityÐwe used robust tests. This meant the

Kruskal-Wallis test for comparing variance and to
compare the difference in location between two popula-
tions the Wilcoxon Signed Rank test when the data was
naturally paired and the Mann-Whitney U test otherwise.
Given the large number of tests being performed and that
the validation set contained a 1,000 cases, we set our
confidence limit at � � 0:01.

4 RESULTS

We now consider the results from our simulation study.
These are grouped by the type of "true model". We then
address a number of specific research questions.

Tables 2 and 3 provide MMRE percentage accuracy
figures for all four types of data sets, by small and large
training sets using the three types of prediction systems.
Each cell contains two values representing results from the
two different training sets sampled from the data set. The
shaded values indicate the prediction system (SWR, RI,
CBR, or ANN) that yielded the most accurate prediction in
terms of the MMRE indicator. Note that, for statistical
testing, we used absolute residuals which are less vulner-
able to bias than the asymmetric MMRE. Nevertheless, we
provide MMRE in Tables 2, 3, and 4 since it is generally
easier for the reader to interpret and also allows comparison
between data sets. Table 2 contains the results for the
Y1, Table 3 results from the Y2 discontinuous ªtrue model.º
Note also, in Table 3, * denotes a prediction system where
terms would have had to have been forced into the
prediction system procedure since the procedure rejected
all features. We do not provide accuracy figures in such
circumstances.

While of course the true models were artificially
generated, it is striking how much deterioration there was
between the Y1 (Table 2) and Y2 (Table 3) predictions. This
effect tended to be far larger than that between prediction
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Analysis of Accuracy (MMRE) for Continuous Model (Y1)

TABLE 3
Analysis of Accuracy (MMRE) for Discontinuous Model (Y2)

TABLE 4
Predicting with Random Data



systems or other data set characteristics. Such a circum-
stance could arise when dealing with very heterogeneous
data, in which case partitioning the data into smaller more
homogeneous data sets might be an effective strategy.

Table 4 shows the results generated when the data is
random and there is no underlying model. Sampling the
training set was repeated four times for this part of the
analysis since we were particularly interested in random
effects. Clearly, in this case, we did not wish to make
predictions since there was no basis for any prediction.
Asterisks denote when the technique wasÐcorrectlyÐun-
able to build a prediction system. Note that we do not
include CBR since the technique has no means of identify-
ing random data and will always endeavor to predict,
whatever the circumstances. This could be seen as a
disadvantage. More surprising is how vulnerable SWR
was to finding ªmodelsº when none exist. This is
particularly true for the small training set containing only
20 cases.

We now turn to more specific research questions.

4.1 Do Data Set Characteristics Matter?

The short answer is yes, very much. Even a cursory
inspection of Tables 2 and 3 reveals great disparity of
performance and, more importantly, relative performance
of the four different prediction techniques. Broadly speak-
ing, SWR produced the most accurate predictions for the
Normal and Normal + Outlier data sets, while the
ªmessierº data sets favored the ML techniques. The impact
of the data set characteristic was confirmed using the
Kruskal-Wallis test on the absolute residuals. This enabled
us to confirm that 1) the interaction between data set
characteristic and technique makes a difference for all cases
(� � 0:01) and 2) that the differences between prediction
systems for a given data set are significant. While this is not
surprising, it is important to know that the choice of
prediction system does matter. It also rather undermines
the view of seeking the ªbestº prediction technique. ªBestº
depends upon context or data set characteristics. This
suggests our ultimate research goal is to provide informa-
tion so that an estimator can answer the question: Inasmuch
as I believe my data set is characterized by the following,
what would be the most suitable prediction technique?

4.2 How Repeatable are the Results?

Here, we considered the question of sampling the training
set from the overall data set. Conventionally, researchers,
including ourselves, have partitioned the overall data set
into a training set and validation set often using a two thirds
to one third split. This is done randomly. The question is,
supposing the training set is comprised different cases
would we still obtain the same results; for example, is
Prediction System A still to be preferred over Prediction
System B? We endeavored to answer this question by
performing each prediction twice using different training
sets sampled from the same underlying data set. We then
compared the resulting pairs of predictions using a
Wilcoxon Signed Rank test.

Tables 5 and 6 show where there was a significant
(� � 0:01) difference between the results from the two
training sets. Differences were a frequent occurrence,
especially for small training sets where, as one might
suppose, individual values could exert considerable lever-
age. For the small training set, 27 out 32 tests resulted in
significantly different predictions when the prediction
procedure was repeated. Unfortunately, Table 1 indicates
that small data sets are something of a norm. Encoura-
gingly, the large training sets were far less vulnerable to this
effect with only 14 out of 32 tests resulting in different
values. Nevertheless, from our analysis, these differences
led to a rank reversal problemÐwhere the order of
preferment was changedÐon five occasions. It is note-
worthy that the ANN technique was particularly vulnerable
to changes in training set. As a consequence, researchers
need to be extremely careful that their results are not an
artifact of a particular training set sample. We therefore
recommend that several training sets are sampled from a
data set whenever researchers wish to compare different
prediction techniques.

4.3 How Much Does Training Set Size Matter?

Here, we investigate the effect of using larger training
sets. Do they always improve prediction accuracy and
under what circumstances is it most influential? To
answer this question, we compared the absolute residuals
of predictions made using the small (20 cases) with the
large (100 cases) training set. We tested for differences
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Significantly Different Results Using Two Training Sets

for the Continuous Model (Y1)

TABLE 6
Significantly Different Results Using Two Training Sets

for the Discontinuous Model (Y2)



using the Wilcoxon Signed Rank test once again setting
the confidence limit at � � 0:01.

Table 7 shows the circumstances in which a larger
training set size significantly reduced prediction errors
measured as absolute residuals. Note that increasing the
training set never had a detrimental effect. Interestingly,
SWR benefited least from a larger training set, particularly,
for the better behaved data sets and the continuous true
model. The probable reason was that, in such circum-
stances, SWR could identify a useful hyperplane in the data
even with only 20 datapoints. By contrast, the ML
approaches always benefited from having larger training
sets. Extra cases were most valuable where there was a
complex ªcostº function (Y2) and/or the data sets were
ªmessierº (outliers and outliers + collinearity). For well
behaved data with a near linear ªcostº function (Y1) 20 or
100 cases makes little difference for SWR in particular. The
availability of data could therefore be an influential factor
when choosing a prediction technique.

4.4 Which Prediction Technique is ªBest?º

Here, we turn back to Tables 2 and 3. SWR tended to do best
with the continuous ªcostº function (Y1), while the
ML approaches performed better when the ªcostº function
was discontinuous (Y2).

Table 8 contains counts of when a technique yielded the
most accurate predictions. For example, SWR was the most
accurate technique on a total of 10 occasions. On the basis of
this data, if you had no other information, this analysis
would favor CBR since it appeared to be the best all round
predictor by a small margin. On the other hand, if you
believed the ªcostº function to be approximately contin-
uous, even if not linear, then SWR would be a better
candidate. By contrast, RI only produced the most accurate
predictions for the Y2 data and even then was out-
performed by CBR.

Table 9 is similar to Table 8 except the counts are
organized by data set characteristics. We see for example, if
it is believed that the data set is approximately Normal,
then SWR is to be preferred while, if it has outliers and
collinearity, CBR is strongly to be preferred.

We believe this type of systematic exploration of the
relationship between prediction system accuracy and data
set characteristics will lead to a better understanding of
when to use a particular technique for deriving a prediction
system and that this is to be preferred to rather naive
debates of which technique is ªbest.º However, to make
progress, many more experiments will be required.

5 DISCUSSION AND FUTURE IMPROVEMENTS

This paper has described the use of simulation to generate

data sets with which to evaluate different techniques for

building prediction systems. This builds on the ideas of

Pickard et al. [8] who first proposed the use of simulated

data for evaluating software models. We have argued that

this is very important if we are to systematically explore the

impact of different data set characteristics upon predictions.

An analysis of six publicly available data sets indicated that

salient characteristics include the presence of outliers and

collinearity. Moreover, the majority of data sets were small

severely restricting the size of training set and validation

sets. Using this information, we tried to simulate ªrealistic,º

or naturally occurring, data.
Our procedure involved separating the data generation

from evaluation so that the analysis was conducted blind.

This was to try to eliminate possible bias. While the work

was extremely time consuming, we were still able to

compare four contrasting techniquesÐstepwise regression,

rule induction, a form of case-based reasoning, and neural

netsÐon four data sets with differing characteristics and a

fifth control data set which was random. We also explored

the impact of training set size and the type of ªcostº

function. Finally, all tests were repeated with different

training sets being sampled from the underlying data set.
While this work is still at an early stage, many important

lessons have emerged and we would encourage other

researchers to further explore this area. We believe there to

be three important lessons.
The first lesson was that there was a strong relationship

between the success of a particular technique and char-

acteristics of the prediction problem, such as training set

size, nature of the ªcostº function, and general character-

istics of the data set (e.g., presence of outliers). While this
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may not seem surprising, it very much militates against the

idea of seeking the ªbestº prediction technique. For

example, on a simple vote counting basis, we might argue

that CBR was the best technique since it outperformed the

other techniques on the most occasions (11 out of 32).

However, if one adopted this perspectiveÐon our data

aloneÐthis would lead to choosing the wrong prediction

system two thirds of the time. In particular, if the data was

characterized by near normality or a continuous ªcostº

function this would actually favor SWR which would then

be a much better choice than CBR. We believe researchers

should instead consider the question of what conditions

most favor or inhibit various prediction techniques.
The second lesson has more to do with validation

procedure. Elsewhere, [5] we have argued that it is

necessary to statistically test the significance of perceived

differences in accuracy between competing prediction

systems. However, in this simulation study, we have found

even that may not be enough since the results frequently

differ between the pairs of training sets that have been

sampled from the underlying data set. On five occasions,

this resulted in a ranking reversal so that the preferred

prediction system changed. This problem was most acute

when the data was most ªmessyº and the ªcostº function

most complex. Clearly, the solution is that researchers will

need to repeat their sampling and validation procedures a

number of times in order to gain confidence in their results.
The third lesson relates to false positives or finding a

model when none exists. We considered this problem by

means of randomly generated data sets. Our results

highlight a problem with all four techniques. Clearly, CBR

is most vulnerable, as it is model free and, therefore, has no

simple means of detecting when a prediction should not be

made. However, the other two ML approaches (RI and

ANN) were also consistently deceived and even the SWR

technique can make Type I errors in finding model

coefficients significantly different from zero when that is

not the case. This area has not been given much considera-

tion, yet we believe it is almost as important to consider the

ability of a technique to determine when it should be

trusted as its ability to give accurate results.
In addition, our results have started to provide informa-

tion upon what circumstances favor which prediction

technique. For example, a small training set, a Normal

distribution with outliers, and an approximately continuous

ªcostº function could lead to the conclusion that SWR was a

strong candidate for prediction purposes. At present, we

feel our conclusions in this area must remain quite tentative

as they depend upon various arbitrary decisions such as the

random generation of ªcostº functions, etc..

As we have indicated there is also need for much

additional work. We would like to explore a richer set of

distributions than merely the Normal distribution, for

instance, the Gamma distribution which is quite prevalent

in software data sets. We also need to explore other types

of ªcostº functions. Finally, there is a need to ensure that

this type of work can be tied back to the ªreal worldº by

further research into the characteristics of naturally

occurring data sets.
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