Improving IV&V Techniques Through the Analysis of Anomalies

Tim Menzies (Ph.D.) assoc. prof., LCSEE

http://menzies.us

http://menzies.us/pdf/sas07brief.pdf

8/31/07

Problem

Flying Safely to 2020 and beyond means attacking relentlessly all three levels of the risk iceberg!

- Brian O'Connor March 20, 2003

- Mishap recommendations
- Problem solutions
- IFA fixes
- FMEA/Hazard controls
- Close call recommendations
- Ignored close calls?
- · Old cert, new environment?
- Inadvertent excursions out of cert/family?
- Hardware talking...nobody listening?

SAS_07_Anomalies_Menzies: page 3 of 9

Approach (details): count, alert, fix

An incremental discretizer + a Bayes classifier where all inputs are all mono-classified

Track average max likelihood for data processing in "era"'s of X instances

Alert: if new counts different Contrast set learning

Linear time inference. Tiny memory footprint

Very, very fast

- And, it works [Orrego, 2004]
 - F15 simulator data [courtesy B. Cukic]
 - Five flights: a,b,c,d,e
 - each with different off-nominal condition imposed at "time" 15
 - Off-nominal condition not present in prior data
 - In all cases,

massive change detected

SAS 07 Anomalies Menzies: page 4 of 9

Relevance to NASA

- Recent examples of ignored anomalies
- Challenger launch decision

number of o-ring erosion or blowby reports

- More examples of ignored anomalies
- Columbia ice strike:
 - Size: 1200 in³,
 - Speed: 477 mph (relative to vehicle)
- Certified as "safe" by the CRATER micro-meteorite model
 - A typical experiment in CRATER's test database
 - Size: 3 in³ piece of debris
 - Speed: under 150 mph.

- Fast-time vs slow-time monitoring + repair
- Fast time (milliseconds):
 - A generic IVHM, optimized for speed + memory.
 - On-board real-time advisor for ground control, crew
 - Explored elsewhere
- Slow time (days to months):
 - Monitoring software projects
 - E.g. IV&V's thin pipe of data to the project
 - Is anything going on in the project that they haven't told us yet?

Accomplishments

- Core algorithms
 - Much progress (good geek stuff)
- Fast-time:
 - ? Install into JSC's TRICK system
 - Distribute an intelligent advisor with that simulator
 - Explored elsewhere
- Slow-time:
 - To find anomalies in project data...
 - ... we need to find project data.
 - This afternoon: We have good news and we have bad news

- Good news:
 - there exists at least 5 NASA data sources with strong quality indicators
- Bad news:
 - 4 / 5 are now inactive
 - Even those some of that data would be simple, cheap, t collect across the NASA enterprise
 - Q: why does NASA ignore valuable data sources about NASA software?
 - A: ?
- Good news:
 - 1 / 5 still active
 - Can build the anomaly detectors for NASA projects

- Two application areas:
 - Fast time: TRICK / JSC
 - Slow time:IV&V project monitoring
- ◆ To do
 - Hook algorithms into active data sources
 - Assess if we can detect anomalies
 - Assess if we can propose repairs