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Abstract. An over-zealous machine learner can automatically generate large, intricate, the-
ories which can be hard to understand. However, such intricate learning is not necessary in
domains that lack complex relationships. A much simpler learner can suffice in domains with
narrow funnels; i.e. where most domain variables are controlled by a very small subset.

Such a learner is TAR2: a weighted-class minimal contrast-set association rule learner that
utilizes confidence-based pruning, but not support-based pruning. TAR2 learns treatments; i.e.
constraints that can change an agent’s environment. Treatments take two forms. Controller
treatments hold the smallest number of conjunctions that most improve the current state of the
system. Monitor treatments hold the smallest number of conjunctions that best detect future
faulty system behavior. Such treatments tell an agent what to do (apply the controller) and
what to watch for (the monitor conditions) within the current environment.

Because TAR2 generates very small theories, our experience has been that users prefer
its tiny treatments. The success of such a simple learner suggests that many domains lack
complex relationships.

Keywords: Association rules, treatment learning, contrast sets,

”Don’t tell me where I am, tell me where to go.”
- a (very busy) user

1. Introduction

Machine learners generate theories. People read theories. What kind of learn-
ers generate the kind of theories that people want to read?

If the reader is a busy person, then they might not need, or be able to
use, complex theories. Rather, such a busy person might instead just want
to know the least they need to do to achieve the most benefits. It therefore
follows that machine learning for busy people should not strive for (e.g.)
elaborate theories or (e.g.) increasing the expressive power of the language
of the theory. Rather, a better goal might be to find the smallest theory with
the most impact.

For example, Figure 1 and Figure 2 contrasts two theories learnt from
the same data set using the TAR2 system discussed here and the C4.5 de-
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Figure 1. A learnt decision tree from 506 cases in HOUSING example set from the UC Irvine
repository. Classes (right-hand-side), top-to-bottom, are “high”, “medhigh”, “medlow”, and
“low” This indicates median value of owner-occupied homes in $1000’s.
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Figure 2. Treatments learnt in the same domain as Figure 1. This dataset has the class distribu-
tion shown in the bottom table, left-hand-side. KEY: LSTAT= lower status of the population;
NOX= nitric oxides concentration (parts per 10 million); PTRATIO= pupil-teacher ratio by
town; RM= average number of rooms per dwelling; KEY: low; medlow;
medhigh; high.

cision tree learner (Quinlan, 1992). In Figure 1, C4.5 has learnt a elaborate
description of different kinds of houses in Boston. This description is quite
large- its details are barely legible and we’ve had to compress the image in
order to squeeze it onto one page. An automatic process could quickly parse
this tree and use it to automatically make a classification. However, having
worked with domain experts for many years, we assert that Figure 1 contains
a daunting amount of detail for human readers.

Figure 2 shows’ TAR2’s minimal description of the differences between
house types. This description is far shorter than Figure 1 and hence can
quickly be explained to a domain expert. Figure 2 describes these differences
between house types in terms of treatments; i.e. a constraint on controllable
variable that changes the class distribution. The controller treatment (shown
in the middle of Figure 2) is TAR2’s comments on what might most improve
the current situation. This current baseline situation is shown left-hand-side
of Figure 2: the 506 housing examples contain 29% “high” quality houses.
TAR2’s controller treatment asserts that if we focus on houses with seven to
nine rooms in suburbs with parent/teacher ratios of 12.6 to 15.9, then we will
find 38 houses, 97% of which will be of high quality (and 97%�29%).

Similarly, the monitor treatment shown right-hand-side of Figure 2. de-
scribes what could most degrade the current baseline situation. This monitor
treatment asserts that the worst thing we could do in the current situation
would be to focus on houses where the air has nitrous oxides levels be-
tween 0.6 and 1.9 in suburbs where the living standard is between 17.16 and
39.0. The monitor treatment warns that if that worst-case policy is followed,
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then no “high” quality houses will be found. Indeed, it predicts that in that
worst-case scenario, 98% of the houses found will be “low” quality.

Our experience with business users is that they prefer find TAR2’s sim-
pler theories. C4.5’s theory contains more details but TAR2’s theory gives
succinct advice on how to change the current situation. As one user put it
“decision trees just tell you where you are, treatments tell you what to do”.

TAR2’s succinct theories will miss the complex interrelations that C4.5
might find. We have reasons to believe that many domains lack complex
relationship. Many domains exhibit a curious narrow funnel effect; i.e. a small
number of critical variables control the remaining variables within a system
(the metaphor being that all processing runs down the same narrow fun-
nel (Menzies et al., 1999)). The concept of narrow funnels has been reported
in many domains under a variety of names including:

− Master-variables in scheduling (Crawford and Baker, 1994);

− Prime-implicants in model-based diagnosis (Rymon, 1994) or machine
learning (Rymon, 1993), or fault-tree analysis (Lutz and Woodhouse,
1999).

− Backbones in satisfiability (Parkes, 1999; Singer et al., 2000);

− the dominance filtering used in Pareto optimization of designs (Joseph-
son et al., 1998);

− Minimal environments in the ATMS (DeKleer, 1986);

− The base controversial assumptions of HT4 (Menzies and Compton,
1997).

− The small feature subset selection effect (Kohavi and John, 1997) and
the related 1R effect (Holte, 1993).

Whatever the name, the core intuition in all these terms is the same: what
happens in the total space of a system can be controlled by a small critical
region.

We have argued previously that narrow funnels are very common (Men-
zies and Cukic, 2000b; Menzies et al., 2000; Menzies and Cukic, 2000a; Men-
zies and Singh, 2001). For systems with narrow funnels, the space of options
within a large space reduces to just the range of a few variables within the
narrow funnel. In such a reduced space, variables assignments outside the
funnel are highly correlated to assignments within the funnel. Machine learn-
ing in such domains is very simple: an adequate theory need only comment on
assignments to the variables that are highly correlated to funnel assignments.

This paper uses the TAR2 system to check the merits of assuming narrow
funnels for the purposes of machine learning. TAR2’s distinguishing feature
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is that it performs very well, yet it is seems overly simplistic. The algorithm
outputs only two rules: the best smallest controller and the best smallest
monitor. If domains contain complex relationships, then these two small asso-
ciations will be useless. The algorithm’s runtimes are exponential on the size
of the treatments. Hence, the algorithm makes the following “small treatment
assumption”; i.e. adequate treatments can be built from small treatments.
If the small treatment assumption fails, then TAR2’s exponential runtimes
will make it impractically slow. Also, the algorithm relies on a confidence1
measure which prunes the space of possible associations. The confidence1
measure we describe below has no special merit: it was merely the first one
we could think of. Further, our initial implementation worked without algo-
rithmic or memory management optimizations. Our only explanation for the
surprising success of this simplistic implementation is that the small treatment
assumption holds for the domains we studied.

The rest of this article discusses TAR2. After an introductory example
and a discussion of related work, the TAR2 algorithm is presented. This is
followed by examples and evaluations and an analysis of the general applica-
bility of our approach. Our prior work has only offered high-level descriptions
of treatment learning (e.g. (Menzies and Hu, 2003)). The contribution of this
paper is a detailed discussion of the implementation and generality of treat-
ment learning. In expanding on those details, we show numerous empirical
results that have not previously been published. These studies are described
in sufficient detail that if another author believed they had a better summa-
rization method than treatment learning, then comparative studies could be
conducted.

2. Related Work

If domains lack complex relationships, then it is possible that adequate the-
ories can be learnt from small subsets of the available attributes. Various
researchers have reported that this is indeed the case. For example Holte
wrote a machine learner that was deliberately restricted to learning theo-
ries using a single attribute. Surprisingly, Holte found that learners that use
many attributes such as C4.5 perform only moderately better this 1R algo-
rithm (Holte, 1993). Nevertheless, TAR2 does not use the 1R technique since
our results show that best treatments may require more than one attribute.

In other work, Kohavi and John wrapped their learners in a pre-processor
that used a heuristic search to grow subsets from size 1. At each step in the
growth, a learner was called to find the accuracy of the theory learned from the
current subset. Subset growth was stopped when the addition of new attributes
did not improve the accuracy. As shown in Figure 3, spectacular reductions
in the number of the attributes can be achieved, with only minimal lose of
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number of attributes
before: 10 13 15 180 22 8 25 36 6 6 6

after: 2 2 2 11 2 1 3 12 1 1 2
reduction: 80% 84% 87% 94% 90% 87% 88% 67% 83% 83% 67%

∆accuracy: 0% 6% 5% 4% 2% 1% 0.5% 0% -25% 6% 7%

Figure 3. Feature subset selection using wrappers, hill-climbing, and ID3 (i.e. C4.5 with
pruning disabled). The ∆Accuracy figure is the difference in the accuracies of the theories
found by ID3 the before and after attributes. From (Kohavi and John, 1997).

accuracy (Kohavi and John, 1997). Nevertheless, TAR2 does not use this
technique since relevant feature selection with wrappers can be prohibitively
slow since each step of the heuristic search requires a call to the learning
algorithm.

If TAR2 isn’t 1R or wrappers, what is it? This rest of this section expands
on the following definition. TAR2 is a weighted-class minimal contrast-set
association rule learner that uses confidence measures but not support-based
pruning.

TAR2 learns treatments and the general form of a treatment is:

R1 if Attr1 = range1 ∧Attr2 = range2 ∧ ...

then good = more ∧ bad = less

R2 if Attr1 = range1 ∧Attr2 = range2 ∧ ...

then good = less ∧ bad = more

where R1 is the controller rule; R2 is the monitor rule; good and bad are sets
of classes that the agent likes and dislikes respectively; and more and less are
the frequency of these classes, compared against the current situation, which
we call the baseline. The nature of these output rules distinguishes TAR2
from many other learning strategies.

Association rule learning: Classifiers like C4.5 and CART learn rules
with a single attribute pair on the right-hand side; e.g. class= goodHouse. As-
sociation rule learners like APRIORI (Agrawal and Srikant, 1994) and TAR2
generate rules containing multiple attribute pairs on both the left-hand-side
and the right-hand-side of the rules. That is, classifiers have a small number
of pre-defined targets (the classes) while, for association rule learners, the
target is less constrained.

General association rule learners like APRIORI input a set of D transac-
tions of items I and return associations between items of the form LHS ⇒
RHS where LHS ⊂ I and RHS ⊂ I and LHS ∩ RHS = ∅. A common
restriction with classifiers is that they assume the entire example set can fit
into RAM. Learners like APRIORI are designed for data sets that need not
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reside in main memory. For example, Agrawal and Srikant report experiments
with association rule learning using very large data sets with 10,000,000
examples and size 843MB (Agrawal and Srikant, 1994). However, just like
Webb (Webb, 2000), TAR2 makes the “memory-is-cheap assumption”; i.e.
TAR2 loads all it’s examples into RAM.

Specialized association rule learners like CBA (Liu et al., 1998) and TAR2
impose restrictions on the right-hand-side. For example, TAR2’s right-hand-
sides show a prediction of the change in the class distribution if the constraint
in the left-hand-side were applied. The CBA learner finds class association
rules; i.e. association rules where the conclusion is restricted to one classifi-
cation class attribute. That is, CBA acts like a classifier, but can process larger
datasets that (e.g.) C4.5. TAR2 restricts the right-hand-side attributes to just
those containing criteria assessment.

Weighted-learning: Standard classifier algorithms such as C4.5 (Quinlan,
1992) or CART (Breiman et al., 1984) have no concept of class weighting.
That is, these systems have no notion of a good or bad class. Such learners
therefore can’t filter their learnt theories to emphasize the location of the good
classes or bad classes. Association rule learners such as MINWAL (Cai et al.,
1998), TARZAN (Menzies and Sinsel, 2000) and TAR2 explore weighted
learning in which some items are given a higher priority weighting than
others. Such weights can focus the learning onto issues that are of particu-
lar interest to some audience. For example TARZAN (Menzies and Sinsel,
2000) swung through the decision trees generated by C4.5 (Quinlan, 1992)
and 10-way cross-validation. TARZAN returned the smallest treatments that
occurred in most of the ensemble that increased the percentage of branches
leading to some preferred highly weighted classes and decreased the percent-
age of branches leading to lower weighted class. TAR2 was an experiment
with applying TARZAN’s tree pruning strategies directly to the C4.5 example
sets. The resulting system is simpler, fast to execute, and does not require
calling a learner such as C4.5 as a sub-routine.

Contrast sets: Instead of finding rules that describe the current situation,
association rule learners like STUCCO (Bay and Pazzani, 1999) finds rules
that differ meaningfully in their distribution across groups. For example, in
STUCCO, an analyst could ask ”what are the differences between people
with Ph.D. and bachelor degrees?”. TAR2’s variant on the STUCCO strategy
is to combine contrast sets with weighted classes with minimality. That is,
TAR2 treatments can be viewed as the smallest possible contrast sets that
distinguish situations with numerous highly-weighted classes from situations
that contain more lowly-weighted classes.

Support-based pruning: In the terminology of APRIORI, an association
rule has support s if s% of the D contains X ∧ Y ; i.e. s = |X∧Y |

|D| (where
|X ∧ Y | denotes the number of examples containing both X and Y ). The
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confidence c of an association rule is the percent of transactions containing
X which also contain Y ; i.e. c = |X∧Y |

|X| .
Many association rule learners use support-based pruning i.e. when search-

ing for rules with high confidence, sets of items Ii, ...Ik are only be examined
if all its subsets are above some minimum support value. Note that support-
based pruning is not the same as weighted-class learning since the former
assesses a rule according to the amount of evidence in the input data set while
the latter assesses a rule according the amount of emphasis a user has placed
on the class associated with that rule.

Support-based pruning is impossible in weighted association rule learn-
ing since with weighted items, it is not always true that subsets of interest-
ing items (i.e. where the weights are high) are also interesting (Cai et al.,
1998). Another reason to reject support-based pruning is that it can force the
learner to miss features that apply to a small, but interesting subset of the
examples (Wang et al., 2001).

Confidence-based pruning: Without support-based pruning, association
rule learners rely on confidence-based pruning to reject all rules that fall
below a minimal threshold of adequate confidence. TAR2 uses confidence1
pruning.

3. Confidence1 Pruning

TAR2 targets the attribute ranges that “nudge” a system away from undesired
behavior and towards desired behavior. TAR2’s score for each range is the
confidence1 measure. This value is high if a range occurs frequently in de-
sired situations and infrequently in undesired situations. That is, if we were
to impose this range as a constraint, then it would tend to ”nudge” the system
into better behavior.

To find confidence1, we assume that we can access $class; i.e. some nu-
meric value assigned to class. The class with the highest value is the best
class. The lesser classes are the set of all classes, less the best class.

In the following description, some attribute A has a specific setting A.R;
i.e. some member of the range of A is assigned to A. Let O[C]A.R be the
number of occurrences of some attribute range in some class C; i.e.

O[C]A.R = |A.R ∧ class = C ∧D|

Here, D is the set of training examples.
To generate confidence1, we compare the relative frequencies of an at-

tribute range in different classes. This comparison is weighted by the differ-
ence in the scores of the classes, and normalized by the total frequency count
of the attribute range; i.e.

tar2-v2.tex; 7/10/2007; 9:09; p.8



Just Enough Learning 9

Items Criteria
outlook temp(oF) humidity windy? class

sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Figure 4. A log of some golf-playing behavior.

∑
C∈lesser (($best− $C) ∗ (O[best]A.R −O[C]A.R))

|A.R ∧D|

For example, from the golf playing example of Figure 4, let us assume that
the classes have been scored as follows: ”lots”=8, ”some”=4, ”none”=2; i.e.
”lots” is the best class. The range outlook=overcast appears four, zero, and
zero times when playing ”lots”, ”some”, and ”none” golf (respectively). The
confidence1 of outlook=overcast is therefore:

((8− 2) ∗ (4− 0)) + ((8− 4) ∗ (4− 0))
4 + 0 + 0

= 10

Figure 5 shows the range of confidence1 seen in Figure 4. The confidence1
ranges shown in black are outstandingly high; i.e. these are the values which
generate the best control treatments. TAR2 forms its treatments by exploring
subsets of the ranges with outstandingly high confidence1 values.

4. Inside TAR2

TAR2 generates controller and monitor treatments. Monitors are generated
using in same manner as generating controllers. However, before the monitor

tar2-v2.tex; 7/10/2007; 9:09; p.9



10 Tim Menzies, Ying Hu
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Figure 5. Frequency of confidence1 generated from Figure 4. Assumes that numeric ranges
have been divided into 3 bands. Outstandingly high confidence1 values shown are in black.
Y-axis is the number of ranges that have a particular confidence1 value.

input: D The examples.
items Attributes seen in the examples.
best The best combination of criteria.
N Desired size of LHS.
promising Threshold for a useful attribute range.
skew Threshold for acceptable number of best entries in

treated.
bands Number of divisions within continuous ranges.

output: lhs A conjunction of attribute ranges
rhs a change in the class distributions

01. D1 ← discretize(D, bands)
02. temp ← baseline ← frequency(D1)
03. for attribute in items {
04. for R in attribute.ranges {
05. if confidence1(attribute.R) ≥ promising
06. then candidates ← candidates + attribute.R}}
07. for C ⊆ candidates where |C| = N {
08. treated ← C ∧ D1

09. result ← frequency(treated)
10. if result>temp and |best∧D1|/|best∧treated|>skew
11. then {lhs ← C
12. rhs ← compare(baseline,result)
13. temp ← result}}
14. if (lhs 6= ∅ and rhs 6= ∅) then return (lhs, rhs)

15. else return "no treatment"

Figure 6. The TAR2 algorithm.

is generated, the scoring function for the criteria is reversed so TAR2 now
seeks attribute ranges that nudge a system into worse behavior. The rest of
this section discusses how to generate controllers.

The TAR2 algorithm is shown in Figure 6. The frequency function
counts the frequency of examples falling into different criteria. Using this
function, a baseline class distribution is collected from D (this is used later
to contrast different treatments) and copied to a temp variable (this is used to
store the best distribution seen so far). The compare function compares two
frequencies to generate reports like (e.g.) 43% less ”lots” and 5% less ”some”
and 167% more ”none”. When these percentages are greater than 100%, then
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controllerG
if outlook=overcast
then (230% more "lots" and no "some"

and no "none").

monitorG
if 90 <= humidity < 97
then (43% less "lots" and 5% less "some"

and 167% more "none").

Figure 7. Control and monitor rules found from Figure 4. To control outlook, unscrupulous
owners of golf courses could (e.g.) bribe radio announces to lie about the weather report.

the treatment selects from a greater percentage of some class (compared to
the baseline).

The discretize function divides the numeric ranges seen in the ex-
amples into bands number of groups. TAR2 was originally designed using
a very simple discretization policy; i.e. TAR2 sorts the known values and
divides into bandswith (roughly) the same cardinality. It was anticipated that
this policy would be too simplistic and would have to be improved. However,
our empirical results (see below) were so encouraging that we were never
motivated to do so.

Once a treatment is found, it is applied to the example set to create a
treated example set; i.e. all the examples that don’t contradict the proposed
treatment (see line 8). A ”good” treatment includes most of the examples that
have the best criteria (e.g. in the golf example of Figure 4, best= playing
”lots” of golf). The skewparameter is used at line 10 to reject ”bad” treat-
ments; i.e. those that don’t contain enough of the best criteria. For example,
at skew=5, at least 20% of the best criteria must appear in the treatment.

TAR2 explores subsets of the ranges found in a set of examples D (see
line 7). Subset exploration is constrained to just the ranges with an outstand-
ingly large confidence1 score (see line 5). Even with this restriction, there
are still an exponential number of such subsets. Hence, to be practical, TAR2
must seek the minimal possible number of control actions and monitors. Ac-
cordingly, the user of TAR2 constrains its learning to rule conditions of size
N , where N is small (see line 7). Often, effective treatments can be found
using N ≤ 4 which suggests that narrow funnels existed in the datasets used
for our case studies.
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baseline: controllerG: monitorG:

(from Fig-
ure 4)

outlook=
overcast

humid = [90..97)
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Figure 8. Percentage of classes seen in different situations. The left-hand-side histogram is a
report of the class frequencies seen in Figure 4. The middle and right-hand-side histograms
were generated by applying the treatments of Figure 7. KEY: none; some;

lots.

5. Examples and Experiments

5.1. EXAMPLES

The output of TAR2 describes constraints which, if applied to the dataset,
may reject certain examples. For example, the controllerG treatment of
Figure 7 contains the constraint outlook = overcast. If we reject all items
in the golf dataset that contradicts this constraint, then our golfers now play
”lots”, ”some”, and ”none” golf in 100%, 0%, and 0% (respectively) of the
constrained dataset (as shown in the middle histogram of Figure 8).

The monitor rule monitorG of Figure 7 was generated in a similar man-
ner; but with the scoring system reversed; i.e. ”lots”=2, ”some”=4, ”none”=8.
In this case, ”none” is the “best” class and TAR2 will find a treatment that
selects for less golf behavior; i.e. 90 ≤ humidity < 97. After applying this
constraint , the class distribution changes to the right-hand-side histogram of
Figure 8.

5.2. EXPERIMENTS

This section discusses experiments with TAR2 where the leaner was assessed
via two methods:

Xvals: Standard N-way cross-validation studies.

Simulations: Simulations showing how well TAR2’s treatments can control
or monitor some model.

5.2.1. Xval Studies
Figure 9 to Figure 13 shows TAR2 executing over some samples from the
UC Irvine repository (http://www.ics.uci.edu/˜mlearn/). These figures
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Figure 10. Autompg

display the effects of the treatment closest to the average improvement seen
in a 10-way cross-validation study. Each figure show the class distributions
as percentages and the domain classes are shown in a legend. In the legend,
the heuristic worth assigned to each class is, top-to-bottom, worst-to-best.

In Figure 9, TAR2 was told that the worth of each type of flower was
(in increasing order) setosa, virginica, then v.color. TAR2 then learnt that
3.7 ≤ petallength < 4.8 would select for the flower with highest worth (i.e.
v.color).

Similarly, in Figure 10, TAR2 learnt a selector that favored high quality
cars. By restricting engine size to 68 ≤ displacement < 101 and 46 ≤
horsePower < 78, the ratio of high quality cars increased from 26% to
70%. Further, the low and medium low cars have disappeared.

In Figure 11, TAR2 learnt a specialized feature extractor for finding pic-
tures mixed in with text, horizontal lines, vertical lines, and graphics. Accord-
ing to TAR2, a height between 34 to 86, and a mean number of white-black
transitions between 3.9 and 9.5 will locate text blocks, and nothing else.

In the car domain of Figure 12, most of the classes are non-best. The aver-
age best controller seen in the 10-way cross-validation for the car domain was
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Figure 12. Car

buying=low and safety=high. While this controller increases the frequency of
very good cars from 4% to 38%, this controller still leaves us with 31% unac-
ceptable cars. While this controller is weak, the monitor obtained by reversing
the class scoring is very strong. Figure 13 shows that monitor: if we select two
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Figure 13. Car: reversing the class scoring.
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person cars with low safety, then 100% of the cars are unacceptable. That is,
when the best class occurs rarely in the dataset, TAR2 may be better at finding
methods to degrade a system, rather than improve it.

5.2.2. Simulation Studies
Another way to assess TAR2 is to test how well it can control some model.
To perform such an assessment, we (i) generated data sets from some model;
(ii) applied TAR2 to find treatments from those data set; (iii) imposed those
treatments as constraints on the model; (iv) ran the model a second time; (v)
compared the outputs of the second run to the predictions made by TAR2.

In our first two simulations studies, a baseline class distribution was used
by TAR2 to generate a best controller and a prediction of how this best con-
troller would change the class distribution. We call the predicted distribution
the treated distribution. The actual distribution was the class distribution seen
after the best controller was imposed on the model and the model executed
again. In Figure 14 and Figure 15, the treated distribution matches the result
distribution almost exactly; i.e. TAR2 accurately predicted the effects of the
controller treatment.

Figure 14 was generated from a model of software project risk. This risk
model was implemented as part of the COCOMO project. The goal of the CO-
COMO project is to build an open-source software cost estimation model (Abts
et al., 1998). Internally, the model contains a matrix of parameters that should
be tuned to a particular software organization. Using COCOMO-II, the Madachy
risk model can assess the risk of a software cost over-run (Madachy, 1997).
For machine learning purposes, the goal of using the Madachy model is to
find a change to a description of a software project that reduces the likeli-
hood of a poor risk software project (Menzies and Sinsel, 2000; Menzies and
Hu, 2001b). In the experiment shown in Figure 14, the model was executed
30,000 times using randomly selected inputs. When the treatments learnt
from TAR2 treatments were imposed on model inputs, and the model was
executed again, all the high risk projects were removed, the percentage of
medium risk projects was significantly reduced, and the percentage of low
risk projects was tripled.

Figure 15 shows TAR2 controlling a qualitative description of an elec-
trical circuit. A qualitative description of a circuit of 47 wires connecting 9
light bulbs and 16 other components was coded in Prolog. The model was
expressed as a set of constraints; e.g. the sum of the voltages of components
in series is the sum of the voltage drop across each component. The goal
of the circuit was to illuminate a space using the 9 light bulbs. The circuit
is qualitative and qualitative mathematics is nondeterministic; e.g. sum of
a negative and a positive value is unknown. The problem with the circuit
was out-of-control nondeterminism. On backtracking, this circuit generated
35,228 different solutions to the constraints. In many of these solutions, the
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Figure 14. COCOMO key: very high risk; high risk; medium risk;
low risk.

circuit was unacceptably dark: only two bulbs glowing, on average (see the
top histogram of Figure 15) . The goal of the machine learning was hence to
find a minimal set of changes to the circuit to increase the illumination (Men-
zies and Hu, 2001a). Figure 15 shows the distribution of the frequency with
which bulbs glowed in a qualitative circuit description. The behavior of qual-
itative circuits is notoriously hard to predict (Clancy and Kuipers, 1997) but
TAR2 found two actions on the circuit that trebled the average number of
bulbs that glowed (see the treated and actual plot of Figure 15).

Figure 16 shows a third simulation study with TAR2. Analysts at the
NASA Jet Propulsion Laboratory debate satellite design by building a seman-
tic network connecting design decisions to satellite requirements (Feather
et al., 2000). Each edge is annotated with the numeric cost and benefits of
taking some action. Some of these nodes represent base decisions within the
project (e.g. selection of a particular type of power supply). Each set of deci-
sions has an associated cost. The net can be executed by selecting actions and
seeing what benefits results. One such network included 90 possible actions;
i.e. 299 ≈ 1030 combinations of actions. Note the black line, top-left, of

baseline: 0
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20
40
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Figure 15. Circuit. X-axis denotes number of bulbs glowing in the circuit.
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Figure 16. Results from the satellite domain. The dots below the line show the initial output
of the model: note the very large spread in the costs and benefits. The dots above the line show
the final outputs of the model after 5 iterations of TAR2 learning.

Figure 16. All the dots below this line were generated via 10,000 random
selections of the decisions, and the collection of their associated costs and
benefits. All the dots above this line represent high benefit, low cost projects
found by TAR2 (Feather and Menzies, 2002). In this application, TAR2 was
used as a knowledge acquisition tool. After each run of TAR2, the proposed
best controller was debated with the analysts. Each run, and its associated
debate, resulted in a new set of constraints for the semantic net. The new con-
straints were then imposed on the model before the next run. After five runs,
TAR2 found 30 decisions (out of 99) that crucially effected the cost/benefit of
the satellite. Note that this means TAR2 also found 99-30=67 decisions that
could be safely ignored.

For comparison purposes, a genetic algorithm (GA) was also applied to the
Figure 16 domain (Feather and Menzies, 2002). The GA also found decisions
that generated high benefit, low cost projects. However, each such GA solu-
tion commented on every possible decisions and there was no apparent way
to ascertain which of these are the most critical decisions. The TAR2 solution
was deemed superior to the GA solution by the domain experts, since the
TAR2 solution required just 30 actions rather than the 99 demanded by the
GA.

Note that the Figure 16 case study is not a counter example to our thesis
that many domains have narrow funnels. That study adopted the incremen-
tal approach for reasons of convenience. JPL’s semantic net simulator was
too slow to generate enough examples at one run. Hence, an incremental
generate-and-constrain approach was taken.
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Attributes treatment runtime
source:domain # examples #continuous #discrete #classes size (secs)

UCI:iris 150 4 0 3 1 <1

UCI:wine 178 13 0 3 2 <1

UCI:car 1,728 0 6 4 2 <1

UCI:autompg 398 6 1 4 2 1

UCI:housing 506 13 0 4 2 1

UCI:page blocks 5,473 10 0 5 2 2

here:circuit 35,228 0 18 10 4 4

here:COCOMO 30,000 0 23 4 1 2

here:satellite 30,000 0 99 9 5 86

other:reachness 25,000 4 9 4 2 3
: 250,000 4 9 4 1 23

Figure 17. Runtimes for TAR2 on different domains (on a 333MHz Windows machine with
200MB of ram). “UCI” denotes data sets from the machine learning repository at UC Irvine.
“Here” denotes data sets taken from this article. ‘ The text discusses experiments with 10,000
examples from the satellite domain. This table shows a larger case study of 30,000 examples.
‘Other” denotes a data set taken from (Menzies and Hu, 2002).

6. Generality

This section is an algorithmic assessment of TAR2. Such an algorithm assess-
ment comments on TAR2’s ability to scale to larger domains.

Figure 17 reports TAR2 runtimes on data sets of different sizes. Figure 18
shows three studies where the size of the treatments (N , from line 7 in Fig-
ure 6) was held constant, and the size of the dataset was increased. Figure 19
shows one study were the size of the dataset was held constant and the size
of the treatments was increased. Note that:

1. TAR2 can handle small to medium sized datasets. For example, the algo-
rithm learnt effective treatments in 23 seconds from a dataset containing
size 250,000 examples: see the reachness domain in Figure 17.

2. TAR2 has the potential to scale to large datasets. Assuming constant
treatment size, TAR2’s runtimes are linear on dataset size: see Figure 18.

3. However, the algorithm is exponential on treatment size: see the marked
increase in the runtimes between N=2 and N=3 in Figure 18 and the log-
linear plot of Figure 19.
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Figure 18. Increasing size of dataset and size of treatments. Datasets generated from the
COCOMO model.
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Figure 19. For different treatment sizes N , Increasing size of treatments, keeping data set size
constant (3MB). Dataset generated from the COCOMO model.

The exponential impact of increasing treatment size is not necessarily a
reason to reject TAR2. Firstly, if very large treatments are required, then a
incremental treatment learning approach, such as used in the satellite case
study of Figure 16, may suffice.

Secondly, recent experiments with a stochastic treatment learner, TAR3,
suggest that linear-time treatment learning may be possible. TAR3 uses the
confidence1 distribution as a probability distribution. Treatments are built at
random by selecting from attribute ranges at random according to that distri-
bution (so attribute ranges with high confidence1 values tend to get selected
more often). Preliminary results with that method are most encouraging (Hu,
2003).

Thirdly, if most domains don’t need large treatments, then this exponential
impact will not be seen in practice. Elsewhere (Menzies and Singh, 2003), we
have made an average case mathematical analysis of the ratio of the odds of a
domain narrow funnels to the odds of larger funnels. Under a wide variety of
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Figure 20. A hypothetical confidence1 frequency distribution with a large left tail that is
inconsistent with narrow funnels. Note: yet to be observed in any example set.
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Figure 21. Confidence1 distributions seen in eight domains. Y-axis is the number of times
a particular confidence1 was seen. Top row comes from datasets taken from the UC Irvine
repository. Bottom row were generated from other domains discussed in this article.

assumptions, the same effect holds: the odds of narrower funnels are millions
of times more likely that wider funnels (Menzies and Singh, 2001). Such a
statistical analysis represents an average case result and may not apply to a
particular domain. What would be useful would be some kind of assessment
tool that checks if this average case statistical result applies to a particular
domain.

The confidence1 distribution can be used to test for narrow funnels. Do-
mains that contain such funnels would exhibit the following property: a small
number of variables within the funnel exert a disproportionately large influ-
ence on the overall behavior of the system. A test for such variables is to
check for small right tails in the confidence1 distributions. Figure 8 has such
a small right tail; i.e. the bulk of the distribution lies away from the maximum
value. Distributions with a large right tail such as Figure 20 are not consistent
with narrow funnels. Figure 21 shows the confidence1 distributions seen in
eight example sets: four from the UC Irvine repository and some of the other
domains described above. Note that in all cases, the distribution has a small
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right tail; i.e. a small number of variables exert a disproportionately large
influence on the overall behavior of the system. In all, we have applied TAR2
to 20 domains: the ones discussed in this paper and others not shown for space
reasons. In none of those domains have we observed a large right tail.

7. Conclusion

The minimal theories of TAR2 will be inadequate if domains contain com-
plex relationships. Domains with narrow funnels are not complex: the key
controllers for the whole space are merely the few variables in the funnel.

The TAR2 association rule learner is both a test and an application of
funnel theory. TAR2 offers two tests for narrow funnels. Firstly, a confidence1
distribution with a small right tail is consistent with a domain containing
narrow funnels. Secondly, if a domain contains narrow funnels, then TAR2
should be able to generate adequate controllers and monitors for that domain.
All the domains we have seen to date have these two features.

The open issue is how many other domains lack complex relationships.
Based on around 20 case studies with TAR2 (some of which were reported
above), Holte’s prior work with 1R, and the wrapper studies of Kohavi and
John, we have some empirical reasons to believe that many domains are
not complex. Also, we have theoretical reasons for believing that narrow
funnels are common enough (Menzies and Cukic, 2000b; Menzies et al.,
2000; Menzies and Cukic, 2000a; Menzies and Singh, 2001) that TAR2 will
often suffice.

The success of such a simple algorithm such as TAR2 suggests that it
can be fruitful to first try lightweight methods before exploring heavyweight
methods. We hence advocate using TAR2 as a preprocessor to other, more
elaborate schemes.

To download and compile a treatment learner, see http://unbox.
org/wisp/tags/tar/.
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