
“What is an Agent and Why Should I Care?”

Tim Menzies1, Adrian Pearce2, Clinton Heinze3, Simon Goss3

1 Lane Department of Computer Science, West Virginia University,
PO Box 6109, Morgantown, WV, 26506-6109, USA, tim@menzies.com

2 Department of Computer Science and Software Engineering The University of Melbourne,
Victoria, 3010, Australia, pearce@cs.mu.oz.au

3 Air Operations Division, Aeronautical & Maritime Research Laboratory, Melbourne, Australia,
{clinton.heinze|Simon.Goss}@dsto.defence.gov.au

Abstract. A range of agent implementation technologies are reviewed according to five user-based
criteria and via a comparison with object-oriented programming. The comparison with OO shows that
some parts of object technology are a candidate implementation technique for some parts of agent
systems. However, many other non-object-based implementation techniques may be just as useful. Also,
for agents with mentalistic attitudes, the high-level specification of agent behavior requires numerous
concepts outside the object paradigm; e.g. plans, communication, intentions, roles, and teams.
KEYWORDS: evaluation, agent-oriented, object-oriented.

1 Introduction

Is there anything really new in agent-oriented software? Are agents a bold step forward into the future of
software? Or is agency just “new wine in old bottles”?

Our users demand answers to these questions, and others. One gruff user always asked “what are agents
and why should I care?”. To such users, the issue in italics is the key question. Agent technologies are
interesting to users only if those technologies address issues of interest to the users.

After explaining agents to this gruff user, this users next comment was “this sounds just like OO to me;
what’s new here?”. Such comments motivate this article. Our response to these comments is in three parts:

1. We carefully define the core concepts of agent-oriented software and object-oriented software.
2. Next, we review the diverse range of software labelled “agents”.
3. This software is then assessed these concepts with respect to certain user-oriented issues.

The user issues used in this article come from the AustralianWorkshops on Agent-Based systems. Those
workshops have debated the relative merits of the agent implementation technologies shown in Figure 1.
In those debates, the technologies were assessed with respect to the problem of building agents for the Air
Operations Division (AOD) of the Australian Defense Science Technology Division.

For several years, the Australian Defense Forces have been using agent-oriented software to assess po-
tential new hardware purchases. Buying planes and helicopters for the Air Force implies a major commit-
ment to a particular platform. AOD uses operational simulation for answering specific questions about very
expensive equipment requisitions, component capabilities and rehearsing dangerous tactical operations.
0 Second NASAGoddardWorkshop on Formal Approaches to Agent-Based Systems ”FAABS II”, October 2830, 2002
Greenbelt, Maryland, USA. http://fmw.gsfc.nasa.gov. Date April 14, 2003. Wp ref: 00/**agnt/umlagent.
Url: http://tim.menzies.com/pdf/02agentis.pdf

Name : Notes Introduced in...
OO : Object-oriented §2.1

Standard BDI : BDI= beliefs, desires, intentions §2.2
FORTRAN : How we used to build agents §3.1
dMARS : A commercial agent-oriented BDI tool §3.1

Command agents : Heinze and Pearce’s extension to dMARS §3.1
Behavioural cloning : Machine learning to build agents §3.1

Petri nets : §3.3
TACAIR/ SOAR/ PSCM : The problem space computational model (PSCM) is

how the rule-based system called SOAR implements
TACAIR, an agent system.

§3.4

G2 : Gensym’s rule-based expert system shell: includes
powerful interface tools.

§3.5

MBD-based : The model-based diagnosis system used in NASA’s re-
mote agent experiment (RAX).

§3.6

Fig. 1. Agent implementation technologies discussed in this article

In pilot-in-the-loop flight simulation, intelligent pilots (agents) interact with each other in the computer
simulation, as well as the human pilot in the virtual environment. These dynamic, interactive multi-agent
simulations pose a challenge for the integration of valid pilot competencies into computer controlled agents.
This involves modeling pilot perception through recognition of actions and events that occur during sim-
ulation. Such simulators are often used after purchase as training tools. Hence, a core task within DSTO
is the construction and maintenance of agent-oriented systems. These AOD agent simulations push the
state-of-the-art:

– AOD agents interact at high frequency in a dynamic environment with numerous friendly and hos-
tile agents. For example, AOD agents engage in complex aerial maneuvers against hostile high-speed
aircraft.

– AOD agents co-ordinate extensively to achieve shared goals. For example, a squadron of fighters may
collaborate to shepherd a cargo ship through enemy lines.

– AOD agents may change their roles at runtime. For example, if the lead of a fighter formation is shot
down, then the wing-manmay assume the role of fighter lead. As roles change, agents must dramatically
alter their plans.

After discussions with AOD users, the following concerns were identified. These concerns are the basis
for our user-oriented discussion of the merits of different agent technologies:

– Easy of construction/ modification.
– Provable reliability.
– Execution speed.
– Easy of explanation of agent behaviour.
– Support for teaming. Teaming is a special AOD requirement which is described below and may not be
widely relevant.

The rest of this article debates the merits of the agent implementation technologies of Figure 1 for AOD
applications. After that debate, we will see that agent-oriented systems requires much that does not exist in
standard software engineering methods:

2

– AOD agent programmers do not spend their time fretting about encapsulation, classification, etc.
– Instead, they concern themselves with concepts such as plans, communication, perception, intentions,
roles, and teams.

This is not to say that standard methods such as (e.g.) object-oriented are irrelevant to agent construction.
At the end of this article we will briefly describe how objects are used within AOD agents for building
environments in which we specify agent behavior.

2 Agents Versus Objects

Before proceedings, we digress for a brief introduction to agents. In order to simplify the reader’s intro-
duction to agents, we will stress the similarities and differences of agent technology to object technology.
In what the literature calls weak agents maps neatly into object technology. However, object technology is
incomplete for implementing what the literature calls strong agents.

2.1 Weak Agency

A spectrum of agents types is offered by Woolridge and Jennings [22]. Within that spectrum we say that
AOD’s agents are at least weak agents since they are autonomous, social, reactive and proactive. They are
autonomous since, while the simulations execute, AOD agents act within intervention by a human operator.
They are are also social in the sense that AOD’s agents interact extensively with other agents. Also they
are reactive since AOD analysts develop different scenarios for their agents. Within each scenario, AOD’s
agents must react to changing circumstances. Further, they are proactive since AOD agents can take the
initiative within a simulation.

Woolridge and Jennings comment that concurrent object-oriented languages provide much support for
weak agents. According to the UML community (e.g. Booch [1]), OO technology consists of at least iden-
tity, state, behavior, classification, inheritance, polymorphism and encapsulation. These terms, and there
relations to agents, are described below.

An object is something that can be clearly distinguished from other concepts in the design. Agents can
use this identity to distinguish themselves from other agents.

Objects are repositories of data. Synonyms for this state include attributes or data.
Objects are also repositories of pre-defined behaviour. Synonyms for behaviour include methods, func-

tions, procedures, or code. Agents can use state and behaviour to model their beliefs and actions on the
world. Further, identity-specific behaviour lets us implement agent pro-activeness; each agent-object can
carry with itself an agenda of tasks to be performed.

Each object can be categorized into exactly one class. This classification defines the state and behaviour
that is valid for that object. Agents can use classification to simplify their reasoning about other objects in
the domain. For example, if an agent recognizes that the object LauraBush belongs to the Person class,
then they can access default knowledge about LauraBush from Person.

Objects can be defined via extensions to parent objects. Services and invariants of such parent objects
can be relied on within all the parent’s children since parent properties are inherited. Agents can use classi-
fication to simplify their own internal implementation as well as extending their classification knowledge.

Behaviors can be implemented in different objects using the same name. This polymorphism implies
some kind of message-passing system; i.e. the results of a particular message is computed from the name
of message and the nature of the receiver of that message. The same message sent polymorphically to

3

different objects may generate different responses. Agents can use polymorphism to group together the
services offered by other agents. For example, an agent might assume that all other agents in their domain
respond to messages such as ”position” or ”velocity”. Polymorphism means agents can assume simple and
common interfaces to other agents; i.e. polymorphism simplifies the implementation of agent social ability.

Clients of an object should not need access to the internal details of that object. Such clients can ask
an object to perform a named service without needing to know the details of how such services are imple-
mented. Agents can use this encapsulation to ensure that, when they run autonomously and asynchronously,
their internal knowledge is not mixed up with the knowledge of other agents.

2.2 Strong Agency

According to Wooldridge and Jennings, strong agents may possess mentalistic attitudes or be emotional
or animated. AOD agents lack emotion but are mentalistic. AOD agents are based on the beliefs, desires
and intentions (BDI) paradigm of [17]. The current state of entities and environment as perceived by the
agent (abstract labels or percepts) are the agent’s beliefs. A desire is some future states agent would like to
be in (a.k.a. goals). Intentions are some commitment of an agent to achieve a goal by progressing along a
particular future path that lead to the goal (a.k.a. a plan). One advantage with using intentions is that the
effort associated with creating them need not be repeated every time they are required. Intentions can be
pre-computed and cached. Each intention can be tagged with a trigger describing some situation in which
this intention should be accessed and applied.

In this BDI paradigm, deliberation is done through the selection of a goal, selection of a plan that will
be used to form an intention, selection of an intention, and execution of the selected intention. All these
decisions are based on the beliefs the agent has about the current state of the environment. The process of
selecting the forming plan is known as means-end reasoning.

The BDI means-end reasoning approach has proven very beneficial to the AOD, particularly the OP-
ERATOR AGENT that is used to simulate military operations, it is used in support of multi-billion dollar
requisitions [20]. This is partly reflected in the maturity of BDI, and the fundamental limitations it over-
comes [17]. This includes ways of relaxing the need to have perfect knowledge of opponents’ plans.

The BDI approach has made it easier for DSTO to codify tactics and build simulations, and importantly,
to get explanations out of them of what happens. The DSTO has found it easier to construct and modifying
scenarios, as the Operator Agent is a generalized agent capable of simulating different entities, aircraft,
ships etc. Implemented using the dMARS procedural reasoning language [4]), BDI improves abstraction
for representation of declarative and procedural knowledge. This allows for improved explanation, as the
success of these operational simulations is measured in terms of what all stakeholders receive, whether
experts or operators.

The BDI approach has also scaled up for large scale operational simulation-the Operator Agent at the
Air Operations Division (AOD) has been used to run operational simulations involving 32 pilots, 400 plans,
10 goals, 25 intentions concurrently, each receiving 8 contacts every 50ms [20].

3 A Range of Agent Technologies

In this section, we explore a range of agent implementation technologies considered at AOD. All our im-
plementation options are compared to some mythical ideal AOD agent system in the repertory grid of
Figure 2. Figure 2 shows various implementation options (e.g. G2) ranked on different dimensions (e.g.
easy/hard to modify). Repertory grids are a knowledge acquisition technique extensively explored by Shaw

4

A repertory grid maps examples into a range of dimensions. For any row in the table, if an example
scores ”5”, it is near the right-hand end of a dimension. If it scores ”1”, it is near the left-hand end
of a dimension. For example, bottom left, petri nets scores a ”5”; i.e. it is more a rule-based system
than a iTMS or PSCM-based system. Black areas denote “don’t know”. Trees on far right show
distances between each example and dimension; e.g. standard BDI and dMARS-based systems
are very similar.

Fig. 2.A comparison of implementation issues for agents. Generated from the web-based repertory grid server at http:
//gigi.cpsc.ucalgary.ca/.

and Gaines [19, 5]. Their key benefit is that superfluous comparisons between examples are ignored. Di-
mensions are only added to a repertory grid if they help to distinguish examples. That is, dimensions with
no information content are excluded. A side-effect of this approach will be that we will not define in detail
different agent implementation technologies. Instead, we will just discuss how these technologies differ ac-
cording the repertory grid dimensions. However, we do provide references for each method so the interested
reader can explore further.

The rest of this section defines the dimensions of Figure 2. The desired end of each dimensions will be
shown as headings while the opposite, and undesirable, end of each dimension will be shown in italics.

3.1 Easy to Build/Modify

Opposite= hard to build/modify.
AOD’s agents are used to handle specialized what-if queries. What-if queries are notoriously ad hoc.

Ideally, we should be able to quickly change our agents to accommodate new what-if queries.
Originally, AOD ran its agent simulations using standard procedural languages to implement the deci-

sion logic of a human operator. In procedural systems (e.g. FORTRAN) such decision logic may comprise

5

less than 20% of the total system. However, such code can consume up to 80% of the maintenance effort.
For example, new programmers working on a FORTRAN simulator could take up to one year before be
able to modify the decision logic.

In response to this maintenance cost, AOD turned to high-leval BDI-based agent-oriented languages.
Agent-oriented software such as dMARS [4] offers a succinct and high-level representation of the decision
logic. Using such agents, AOD has been very successful in reacting to customer ”what if” queries from their
customers. With the FORTRAN systems, in might have taken weeks before AOD could report simulation
results from different operator actions. With the agent systems, such reports can be generated in days or
even hours.

Standard BDI is a conceptual framework that must be supported by a tool such as dMARS in order to
be practical for real-world practioners. dMARS offers high-level support for BDI and extensive graphical
facilities. dMARS reduced the cost of creating AOD agents. However, even though costs were significantly
reduced, AOD still finds agent design to be very expensive. Two technologies that address the cost issue are
command agents and behavioral cloning of agents, discussed below.

Command Agents Pearce and Heinze added another layer on top of dMARS to process the patterns of
standard agent usage seen at AOD [14, 7]. Their command agents divide reasoning into the following .
Firstly, situation awareness extracts the essential features from the environment. Next, the assessment layer
ranks the extracted features. These ranking represents a space of options explored by tactic selection:. lastly,
in the selection of operational procedure layer, the preferred option is mapped onto the available resources.

In repeated applications of this framework, Pearce and Heinze report that the command agents frame-
work offers a significant productivity increase for AOD personnel over standard dMARS.

Behavioral Cloning of Agents Behavioral cloning is a machine learning technique. A qualitative model of
a domain is generated. The qualitative model is imprecise and so contains areas of uncertainty. A scenario is
described. This scenario serves to restrict the ranges of some of the uncertain values within the model. The
model is now executed within the constraints offered by the scenario. Where uncertainty exists, the sim-
ulator either picks one option at random or backtracks over all options (if such backtracking is tractable).
This simulation generates an experience base: a file of examples of the operation of the model. The expe-
rience base is then classified according to some domain criteria; e.g. we never ran low on fuel. A machine
learner then generates some summary of the classified examples. This technique has been used to generate
knowledge of cardiac function [2], satellite electrical systems [15], how to fly a plan [18], and how to run a
software project [11].

Behavioral cloning often throws the intermediaries between inputs and outputs. Hence, a disadvantage
of behavioral cloning is that the learnt theory can’t queried for a rich description for how some output was
reached. Hence, behavioral clones may be hard to explain.

On the other hand, behavioral cloning scores highly on the “easy to build/modify” scale. Once the
background qualitative model has been built, the knowledge required for a new agent can be generated
automatically merely by adopting new scenario constraints.

Easy to Modify: Summary Clearly FORTRAN scores the lowest on this dimension and behavioral
cloning, theoretically anyway, scores the highest. dMARS is mid-range on this scale and command agents
are easier to modify than standard dMARS systems.

6

3.2 Supports Teaming

Opposite= no teaming support
Teams are a natural means of modeling collaborating defense forces. Teams act as if they share a belief

set even though sometimes team members may have subtlety different beliefs. While team member A may
not know everything known by team member B, some abstract co-ordination agent knows everything that
the team members know.

The current generation of agent software used at AOD is designed for modeling the interaction of solo
agents in a shared environment. Coding such tools gets complex when teams co-ordinate and share beliefs.
In particular, every exception case where the team believes X while the team member believes Y must be
encoded.

At present, AOD makes little use of team-based agent simulations: i.e. most of its systems are at the
first-person singular level. Consequently, the spaghetti sections are not large. However, it is anticipated that
in the near future, AOD will be making extensive use of team-based simulations.

Some initial experiments have been performed with implementing teaming in a dMARS framework [21].
These initial studies may also supply command agents with a teaming ability (since command agents are
built on top of dMARS). Apart from that, the AOD experience is that most agent systems have very little
support for teaming.

3.3 Provable reliability

Opposite= reliability unknown.
Currently, AOD’s agents are only used in the research labs. However, this may change. Each simulator

stores extensive tactical knowledge that could be usefully applied in the field. However, before a research
prototype can be deployed into the field, its reliability must be certified. In the context of this article we say
that reliability is some probability that, after watching the system run and seeing some errors, that in for
future time T we will see N errors.

Within AOD there has been some discussions on using petri nets to implement agents. A petri net [16] is
a directed graph interconnecting nodes of different types on which multiple tokens are permitted to travel.
There are two types of nodes: places and transitions. Arcs connect places to transitions and transitions
to places; transitions are never connected to transitions, and places are never connected to places. While
Petri nets consist of a small number of elements and the algorithms for evaluation can be expressed very
simply, they are sufficiently formal to allow mathematical analysis. These tend to be both detailed and
complex. A large suite of reliability results exist for petri nets (as used in Markov chains [10, p759-765])
or otherwise [9]. Agents based on petri-nets/markov models have been used in domains as complicated as
Robocup[6] (though Pearce, Heinze and Goss comment that such single state systems do not adapt well
when there are multiple entities operating in the simulation [14, 7]).

Petri nets are a convenient tool for reasoning about concurrent systems. Unlike a state transition diagram,
where execution is sequential, traversing one state after another, with petri nets execution is fully concurrent.
Hence, it has been argued that petri nets are a sound basis for constructing reliable agents.

On balance, it is doubtful that AOD will adpot the petri net approach, due to the next point.

3.4 Separate KB and Control

Opposite= Mixed.

7

AOD has a strong commitment to cognitive modeling; i.e. generating human-like behaviour from ex-
plicit high-level symbolic representations. Hence, an ideal AOD agent uses such representations.

Different approaches to agent-based systems take a different approach to their representations. General
BDI is a conceptual framework, not a specific implementation. Hence, it makes no commitment to levels of
control flexibility. Procedural languages like FORTRAN mix domain knowledge and inference knowledge
like spaghetti. Recall that it was the maintenance effort associated with such spaghetti code that drove AOD
away from FORTRAN. Knowledge based systems take a separate approach: inference and domain knowl-
edge are distinct and can be modified separately. All the non-FORTRAN agent systems being discussed
here can be divided up according to how flexible is their control knowledge.

At one end of the control flexibility-scale are agents based on the SOAR architecture (e.g. TACAIR [8]).
A SOAR knowledge base has two distinct parts: a standard declarative rule section and a second section de-
scribing the control knowledge in rule-based terms. In SOAR, agents seek operators which might take them
closer to their goals. Conflict resolution is used to resolve conflicts between competing operators. Conflict
resolution is SOAR, the operators, and the domain rule knowledge are all implemented in the same uniform
rule-based manner. This means that the knowledge engineer can customize not only the rule base but also
the control of how the rules are fired. Rules in SOAR are organized into problem spaces: zones within the kb
that discuss the same sets of operators. If a SOAR problem space can’t resolve operator clashes, then a im-
passe is declared and SOAR forks a nested problem space with the task of resolving that conflict. Hence, at
runtime, a SOAR system conducts a recursive descent through the problem spaces. This is called the prob-
lem space computation model (or PSCM [23]). Recursive descent is only an approximation of PSCM. Each
problem space is an autonomous group of rules that might ”wake-up” and execute if their pre-conditions
are ever satisfied. The authors of TACAIR use this feature extensively. TACAIR views its knowledge as an
intricate goal hierarchy. Problems spaces act like min-agents; each with their own autonomous agenda that
sleep till some trigger condition makes them execute.

At the other end of the control flexibility-scale are petri nets and the decision trees generated by be-
havioral cloning. Petri nets and decision trees permit no meta-level control of the inference net. In marked
contrast to SOAR, inference is via inflexible local propagation rules. It would be a simple matter to add a
meta-interpreter to (e.g.) petri nets that could customize the propagation rules. However, such meta-level
control would change the runtime properties of a petri net and invalidate all the petri net reliability results.

Halfway between the total flexibility of SOAR and the rigid inflexibility of petri nets/decision trees lies
the BDI support systems (dMARS, command agents). These system restrict the knowledge engineer into
creating planning systems. However, within that restriction, considerable flexibility is offered.

3.5 Easy explanations

Opposite= hard explanations
Defense personnel audit AOD agent knowledge bases to see if they reflects current Australian defense

tactical maneuvers. Hence, it is important that the inner workings of agents can be explained to a domain
expert.

Explaining the behaviour of a agent generated from behavioral cloning is difficult. The learnt theory is a
mapping of inputs to outputs with all internal connections thrown away. Such internal connections are useful
in building rich explanation structures. Still, the simplicity of the decision tree generated from behavioral
cloning makes cloned agents easier to understand than those written in some procedural language (e.g.
FORTRAN).

AOD supports at least two methods for generating intricate explanations. Firstly, they claim that the
agents knowledge base is close in concept to how human operators control defense hardware. At AOD,

8

agency is not merely some implementation trick. Rather, by explicating agent knowledge, AOD is hoping
that it is also explicating human knowledge at a comprehensible level of abstraction. Further, the command
agents paradigm sits well with standard operational practice within the Australian defense forces. Hence,
AOD argues, explaining an BDI/command agents tool is fundamentally simpler than browsing some other
conceptual model (e.g. FORTRAN code).

Secondly, AOD uses explanations via graphical visualizations. The dMARS tool makes extensive use
of graphical interfaces. Another implementation tool of note is the G2 system. Clancey et.al have used G2
to build elaborate agent systems in which the behaviour of an organization is emergent from the behaviour
of the agents representing the workers in that environment [3]. G2 offers extensive support for a tradi-
tional rule-based execution paradigm. G2 is also a powerful tool for building elaborate graphical interfaces
(e.g. Figure 3).

Fig. 3. Sample screensap from a G2 application. From
http://www.gensym.com/products/operationsexpert.htm.

3.6 Tractability/speed results known

Opposite= tractability/ speed is an open issue.
Repeating the above point on reliability, if a research prototype is to be deployed into the field, we need

some assurance that it will execute at least as fast as events in the field.
Behavioral cloning builds decisions trees and such trees execute very quickly at runtime. While this is

a significant advantage of behavioral cloning, we note that this comes at the cost of all the disadvantages
mentioned above; e.g. poor explanatory capacity.

9

In terms of reasoning efficiency, an interesting middle ground between decision trees and BDI is the
agent technology used by NASA in its remote agent experiment (RAX). NASA deployed RAX in the
asteroid belt in May 1999. RAX built its own autonomous plans to react to flight events [12]. The represen-
tations within RAX were much simpler than (e.g.) the AOD BDI plans. The RAX development team claim
that, after several years with exploring model-based diagnosis (MBD), that very simple representations can
model even complex domains. Further, given regular propositional encodings of that domain knowledge, an
incremental truth maintenance system (iTMS) [13] can build satisfactory plans very quickly.

4 Conclusion

The goal of this paper was to assess agent-oriented systems via two kinds of user-oriented queries. Firstly,
our users were worried about the (non)-distinction between agents and objects. As seen above, the “OO
mindset” contains about half a dozen key concepts: class, instance, encapsulation, inheritance, polymor-
phism, and so on. However, the key concepts of the AOD “agent-oriented” mindset make little reference to
the key OO concepts. For example, OO makes no reference to the concept that AOD regards as central to
agency: intentionality. Nor do the core OO concepts refer to explicit knowledge representation of domain
and control knowledge, teaming, plans, communication, perception, beliefs, and desires. Further, the as-
sessment criteria we would apply to agent systems are orthogonal to the key OO concepts and include ease
of construction and maintenance, ability to explain agent knowledge, and promises of runtime performance,
reliability.

Secondly, our users were concerned about the range of issues and the range of technologies clustered
in Figure 4. This figure is a 2-D display of a n-dimensional space and so cannot be a totally accurate
representation. However, it does clearly show the distance of FORTRAN to AOD’s ideal agent technology.
Further, the low-level representations of petri nets and the MBD-based RAX system make them poles apart
from AOD’s ideal agent. Behavioral cloning is surprisingly close to AOD’s ideal; perhaps only because of
its ease of construction.

Apart from Figure 4, we have also seen that different design goals select different agent implementation
technologies:

– If the goal is human cognitive modeling, then avoid low-level representations. High-level representation
schemes mentioned here were SOAR and the BDI-based tools.

– If committed to intentionality, then use BDI-based tools such as dMARS or the command agents ex-
tension.

– If the goal is raw execution speed, use low-level representations plus a fast theorem prover. Two such
candidates are the decision trees from behavioral cloning or propositional encoding with the iTMS.

– If the goal is explanation/justification of system behaviour, use some technology that offers high level
views of the system. Two such systems reviewed here are the graphical interfaces of G2 or systems that
use high-level representations that match local domain knowledge (e.g. command agents).

– If the goal is highly-reliable systems, then use petri nets.
– If the goal is to model elaborate teaming interactions, then hire AI specialists and conduct a research
program to extend the state-of-the-art in agent systems.

– If the goal is to reduce maintenance costs, then consider automatically generating the agent using be-
havioral cloning. Alternatively, if the goal is to increase revenue through maintenance requests, then
use FORTRAN.

10

This figure is generated from Figure 2 via a principle components analysis to grid the data. 2-D
positions are generated via first isolating combination of factors that are strongly correlated. These
factors define a transform space into which the various technologies described in this article can be
mapped into a 2-D space. This diagram can be used to gain an intuitive view of what technologies
are similar (they appear closer together on this diagram).

Fig. 4. Clusters of agent technologies. Generated from the web-based repertory grid server at http://gigi.cpsc.
ucalgary.ca/ using the dimensions of Figure 2.

Acknowledgements

The contents of this paper were greatly enhanced by the lively discussion at the Australian workshop on
agent-oriented systems organized by Leon Sterling (Melbourne University) and Simon Goss (AOD). All
views expressed here are the authors and may not reflect the consensus view of that workshop.

This research was partially conducted at West Virginia University under NASA contract NCC2-0979.
The work was sponsored by the NASA Office of Safety and Mission Assurance under the Software As-
surance Research Program led by the NASA IV&V Facility. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or
imply its endorsement by the United States Government.

References

1. G. Booch. Object-Oriented Design with Applications (second edition). Benjamin/ Cummings, 1994.
2. I. Bratko, I. Mozetic, and N. Lavrac. KARDIO: a Study in Deep and Qualitative Knowledge for Expert Systems.
MIT Press, 1989.

11

3. W. Clancey, P. Sachs, M. Sierhuis, and R. van Hoof. Brahms: Simulating practice for work systems design. In
P. Compton, R. Mizoguchi, H. Motoda, and T. Menzies, editors, Proceedings PKAW ’96: Pacific Knowledge Ac-
quisition Workshop. Department of Artificial Intelligence, 1996.

4. M. d’Inverno, K. M., L. D., and M. Wooldridge. A formal specification of dmars. In A. Singh and M.Wooldridge,
editors, Intelligent Agents IV: Proc. of the Fourth International Workshop on Agent Theories. Architectures and
Languages, Springer Verlag, 1998.

5. B. Gaines and M. Shaw. Comparing the conceptual systems of experts. In IJCAI ’89, pages 633–638, 1989.
6. K. Han and M. Veloso. Automated robot behaviour recognition applied to robot soccer. In Proceedings of the Six-

teenth Interntional Joint Conference on Artificial Intelligence. Workshop on Team Behaviour and Plan Recognition,
pages 47–52, 1999.

7. C. Heinze, S. Goss, T. Josefsson, K. Bennett, S. Waugh, I. Lloyd, G. Murray, and J. Oldfeild. Interchanging agents
and humans in military simulation. AI Magazine, 23(2), Summer 2002.

8. R. M. Jones, J. E. Laird, P. E. Nielsen, K. J. Coulter, P. G. Kenny, and F. V. Koss. Automated intelligent pilots for
combat flight simulation. AI Magazine, 20(1):27–41, 1999.

9. O. Kummer. The petri nets bibliography; keyword: reliability. http://www.informatik.uni-hamburg.
de/TGI/pnbib/keywords/r/reliability.h%tml, 2000.

10. M. Lyu. The Handbook of Software Reliability Engineering. McGraw-Hill, 1996.
11. T. Menzies, E. Sinsel, and T. Kurtz. Learning to reduce risks with cocomo-ii. In Workshop on Intelligent Software

Engineering, an ICSE 2000 workshop, and NASA/WVU Software Research Lab, Fairmont, WV, Tech report #
NASA-IVV-99-027, 1999, 2000. Available from http://menzies.us/pdf/00wise.pdf.

12. N. Muscettola, P. P. Nayak, B. Pell, and B. Williams. Remote agent: To boldly go where no ai system has gone
before. Artificial Intelligence, 103(1-2):5–48, August 1998.

13. P. P. Nayak and B. C. Williams. Fast context switching in real-time propositional reasoning. In Proceed-
ings of AAAI-97, 1997. Available from http://ack.arc.nasa.gov:80/ic/projects/mba/papers/
aaai97.ps.

14. A. Pearce, C. Heinz, and S. Goss. Meeting plan recognition requirements for real-time air-mission simulations,
2000.

15. D. Pearce. The induction of fault diagnosis systems from qualitative models. In Proc. AAAI-88, 1988.
16. W. Reisig. Petri Nets. Springer Verlag, 1982.
17. A. Roa and M. Georgeff. Bdi agents: From theory to practice. In Proceedings of the First International Conference

on Multi-Agent Systems, San Francisco, CA, June, 1995.
18. C. Sammut, S. Hurst, D. Kedzier, and D. Michie. Learning to fly. In D. Sleeman, editor, Ninth International

Conference on Machine Learning, pages 385–393. Morgan Kaufmann, 1992.
19. M. Shaw. WebGrid: a WWWPCP Server. Knowledge Systems Institute, University of Calgary, http://Tiger.

cpsc.ucalgary.ca/WebGrid/WebGrid.html, 1997.
20. G. Tidar, C. Heinze, S. Goss, G. Murray, D. Appla, and I. Lloyd. Using intelligent agents in military simulations

or ’using agents intelligently.’. In Proc. of Eleventh Innovative Applications of Artificial Intelligence Conference,
American Association of Artificial Intelligence, 1999.

21. G. Tidhar, C. Heinze, and M. Selvestrel. Flying together: Modelling air mission teams. Applied Intelligence,
8(3):195–218, 1998.

22. M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice. The Knowledge Engineering Review,
10(2):115–152, 1995. Available from http://www.cs.umbc.edu/agents/introduction/ker.ps.
Z.

23. G. Yost and A. Newell. A Problem Space Approach to Expert System Specification. In IJCAI ’89, pages 621–627,
1989.

12

