2

3

COMP9414: Artificial Intelligence

Intelligent Agents

Wayne Wobcke

Room J17-433 wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco

What is an Intelligent Agent?

- Agent an entity that perceives its environment through sensors and acts on its environment through effectors
- Example human agent sensors – eyes, ears, touch, etc. effectors – hands, legs, etc.
- Example robotic agent

sensors – ultrasonic, infrared range finder, video input, etc. effectors – motors, manipulators, etc.

COMP9414		©UNSW, 2007	COMP9414	©UNSW, 2007	Generated: 17 April 2007	
COMP9414, Tuesday 24 April, 2007	Intelligent Agents	1	COMP9414, Tuesday 24 April, 2007	Intelligen	t Agents	
Overview			Rational Agent			
Rational Agents			We would like to des	ign and build rational ag	ents	
Taxonomy of Agent Progra	Taxonomy of Agent Programs			Rational agent – an agent that does the right thing		
Environments	Environments			But what is right?		
Coupling Agents to Environments			Initial idea: "right thing" to do is that which makes the agent most			
BDI Agents			"successful"			
Reference: Stuart J. Russel A Modern Approach, Seco	l and Peter Norvig, Artificial I ond Edition, Pearson Education	ntelligence: n, 2003.				

(Chapter 2)

Rational Agents

- Rationality depends on:
 - ▶ The performance measure that defines degrees of success
 - Everything agent has perceived so far (percept sequence)
 - What agent knows about its environment
 - Actions agent can perform
- Ideal Rational Agent:

For each possible percept sequence, an ideal rational agent should do whatever is expected to maximise its performance measure, on the basis of the evidence provided by the percept sequence and whatever built-in knowledge the agent has

COMP9414	©UNSW, 2007	Generated: 17 April 2007		COMP9414	©UNSW, 2007	Generated: 17 April 2007
COMP9414, Tuesday 24 April, 2007	Intelligen	t Agents	5	COMP9414, Tuesday 24 April, 2007		Intelligent Agents

Mappings

- Therefore, agent's behaviour depends only on percept sequence
- Mapping describes agent via a table: entries correspond to action(s) taken in response to each percept sequence
- In principle (but not always in practice) it is easy to determine
- Ideal mapping which action(s) agent ought to take in response to given percept sequence
- A mapping can be specified by a table or a program

Autonomy

- An agent is autonomous to the degree that its behaviour is determined by its experience/perception
- Need to provide agent with initial knowledge plus ability to learn

©UNSW, 2007

Agent Programs and Architectures

- Agent program function implementing mapping from percept sequence to actions
- Architecture computing device on which agent program will run

Agent = Architecture + Program

e.g. can have robotic agents, software agents (softbots, infobots), etc.

7

6

Agents

COMP9414

Agent Type	Percepts	Actions	Goals	Environment
Medical diagnosis system	Symptoms, findings, pa- tient responses	Questions, tests, treat- ments	Healthy patient, minimise costs	Patient, hospital
Satellite im- age system	Pixels of vary- ing intensity, colour	Print cate- gorisation of scene	Correct cate- gorisation	Images from or- biting satellite
Automated taxi driver	Cameras, speedometer, GPS, sonar, microphone	Steer, acceler- ate, brake, talk to passenger	Safe, fast, legal, comfortable trip, maximise profits	Roads, other traffic, pedestri- ans, customers
Robocup robot	Camera im- ages, laser range finder readings, sonar readings	Move motors, "kick" ball	Score goals	Playing field with ball and other robots

Based on Russell and Norvig (1995) Figure 2.3.

8

9

A Taxonomy of Agent Programs

Modelled after (Russell and Norvig, 1995)

Reflex (reactive) agent - applies condition-action rules to each percept

COMP9414, Tuesday 24 April, 2007

Intelligent Agents

A Taxonomy of Agent Programs

Agent with internal state - keeps track of world

A Taxonomy of Agent Programs

Goal-based (teleological) agent — state description often not sufficient for agent to decide what to do so it needs to consider its goals (may involve searching and planning)

COMP9414, Tuesday 24 April, 2007

COMP9414

Intelligent Agents

11

10

A Taxonomy of Agent Programs

Utility-based agent — considers preference for certain world states over others

Intelligent Agents

12

13

14

15

Environments

Accessible vs. Ina	accessible	
agent's senso internal state	rs give access to complete state or required)	of environment (no
Deterministic vs.	Non-deterministic	
next state of agent's choic Episodic vs. Non-	environment determined only by e of action episodic	current state and
agent's exper think ahead i Static vs. Dynami	ience divided into "episodes"; ag n episodic environment c	gent doesn't need to
environment	changes while agent deliberates	
Discrete vs. Cont	inuous	
limited numb	er of distinct, clearly defined per	cepts and actions
201 (201 (201	©UNSW, 2007	Generated: 17 April 2007

BDI Agents

- Beliefs: Explicit representation of the world
- Desires: Preferred states of the environment
- Goals: Desires the agent has chosen to pursue (must be consistent)
- Intentions: Actions the agent has chosen and committed to
 - ▶ Pose problems for deliberation (how to fulfil them)
 - Constrain further choices (must be compatible)
 - Control conduct (lead to future action)

Generated: 17 April 2007	COMP9414	©UNSW, 2007	Generated: 17 April 2007

COMP9414, Tuesday 24 April, 2007

Intelligent Agents

BDI Agent Interpreter

COMP9414, Tuesday 24 April, 2007

- Why are all these considerations important?
- Assumptions made about environment dictate nature of agent
- Need only design agent complex enough to deal with its environment
- Determine how agent will interact (couple) with environment
- Specific architectures constrain agent's computational power and limits behaviour: aim to be more efficient than general architectures

16

PRS (Procedural Reasoning System)

Abstract PRS Interpreter:

initialize-state();
do
 options := option-generator(event-queue, B, G, I);
 selected-options := deliberate(options, B, G, I);
 update-intentions(selected-options, I);
 execute(I);
 get-new-external-events();
 drop-successful-attitudes(B, G, I);
 drop-impossible-attitudes(B, G, I)

until quit

COMP9414 ©UNSW, 2007 Generated: 17 April 2007 COMP9414, Tuesday 24 April, 2007 Intelligent Agents 17

PRS (Procedural Reasoning System)

- useful in dynamic environments where
 - ▶ reasonable plans can be formed in advance
 - ▶ agent needs continuity of commitment
 - agent needs to respond rapidly to situation
 - ▶ agent's computational resources are limited

Conclusion

- The term "agents" has become very widespread in recent literature yet the meaning of the term is very unclear (arguably because it is used in vague terms and it means different things to different people!)
- We have tried to give a definition which is broad yet encompasses much of the work we are trying to do
- Keep in mind that we are primarily concerned with techniques that can be used to build components of an agent not the entire agent itself
- Is the technique's use limited to only certain of the environments that we have discussed? Is it widely applicable?

COMP9414

©UNSW, 2007

Generated: 17 April 2007

18