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Abstract We seek an AI agent that is fast enough to keep up
with debates between humans and and can offer suggestions
regarding what is the next most important issue to explore.

To assess the merits of treatment learning for such an
agent, this kind of learning was applied to three models of
a mythical (but plausible) development project building soft-
ware for autonomous systems. The models were the COCOMO
effort estimation model; the COQUALMO defect introduc-
tion and removal model; and Madachy’s Heuristic Schedule
Risk model.

The experiment was successful; i.e. the learner found ways
to improve reduce the residual defects per thousand lines of
code by 85% while halving the risk that the schedule over
run. Also, the development effort was nearly halved. Hence,
we conclude that treatment learners can understand how to
improve the process of building autonomous software.
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1 Introduction

Suppose a group of talented Ph.D.-level developers were bold
enough to try something new- develop an autonomous soft-
ware system for part of the new NASA Crew Exploration Ve-
hicle (CEV). What software process decisions would reduce
the risks associated with such a brave undertaking?

To make the problem interesting, we’ll assume that this
team has previously built many successful products, none of
which used autonomy. Also, we’ll assume that the project is
being analyzed very early in its life cycle when many issues
are still open and many decisions have yet to be made.

To solve this problem, we’ll model the project includ-
ing all its “maybes” and “what-ifs” A Monte Carlo simula-
tor called XOMO (pronounced “x-o-mow”) will then sample
that space of possibilities. XOMO combines three models:

– The COCOMO effort estimation model [2, p29-57];
– The COQUALMO defect model [2, p254-268];
– The Madachy’s schedule risk model [2, 284-291].

XOMO’s output will then be based to a data miner that
seeks the decisions that most:

1. Decrease the mean development times, while...
2. Decreasing the mean chance of schedule over-run, while...
3. Leaving the fewest mean number of defects.
4. Also, the learner tries to reduce the variance in the model

behavior so predictions can be made with more certainty.

The particular data miner used here is the TAR3 treatment
learner [13]. The premise of treatment learning is that we
are all busy people and busy people don’t need (or can’t use)
complex models. Rather, busy people need to know the least
they need to do to achieve the most benefits. For example,
when dealing with complex situations with many unknowns
(e.g. developing autonomous system), it can be a wise tactic
to focus your efforts on a small number of key factors rather
than expending great effort trying to control all possibilities.

It is shown below that, at least for this case study, XOMO
and treatment learning can reach all the above four goals:

1. The mean development effort will be nearly halved;
2. The mean risk of schedule over run will be halved;
3. The mean defects densities will be reduced by 85%.
4. The variance on the above measures will also be signifi-

cantly reduced.

The case study was fast to run: all the results shown below
took ten minutes to run on a standard computer (a Mac OS X
box running at 1.5GHz). Those ten minutes included 5000
runs of the model and five runs of the data miners. Hence,
this study gives us confidence that AI-based decision support
agents can run fast enough to keep up with humans debating
software process options for autonomous systems.

The rest of this paper describes how the XOMO models
and treatment learning were applied to the case study. Before
that, we first pause for a quick digression.

2 Digressions: Are our Models “Correct”?

One drawback with our results is that they come from simu-
lation and not from empirical observations of real world de-
velopment teams applying the policy decisions made by the
learners. If our models are wrong (e.g. poorly calibrated) then
our results are suspect.

Our methodology partially addresses this concern. For ex-
ample, the COCOMO effort model contains two calibration
parameters and the above results hold for simulations across
the space of possible calibrations. That is, Monte Carlo plus
data mining can find stable conclusions within the space of
possibilities (this is a conclusion we have made elsewhere,
many times [5, 11–13, 15–17]).

Nevertheless, simulations across the space of options will
never give the right answers if that model is fundamentally
flawed; e.g. important domain factors are missing from the
model. This is a problem with all model-based reasoning: if
the model is wrong then the reasoning is wrong as well.

However, as George Box says, “all models are wrong but
some are useful”. Certainly this has been the recent experi-
ence in physics. Over the last 100 models, numerous revisions
to the atomic theory of matter have been proposed:

Each new model was wrong since it was superseded by a
newer model. But each new model was useful in the sense
that it explained more effects than the previous model.

The lesson here is that committing to a model of the cur-
rent best understanding of a phenomenon is good practice,
even if that model is not “correct” in some absolute sense.
And once that new model is generated, it is right and proper
that it be exercised, criticized, and improved. In the next few
months, the XOMO models will be used in panel sessions
were experts will convene to debate cost and risk models for
autonomous NASA software. At those sessions, it is expected
that the XOMO models will be critiqued and extensively re-
vised.

During those panels, it is important that the experts’ time
is put to best use. Autonomy experts are scarce and it will take
a significant administrative effort to collect them all together
at the same place and at the same time. It is therefore vital that
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# thousands of lines of codes
_ANY(ksloc, 2, 10000)

# scale factors: exponential effect on effort
ANYi(prec, 1, 6)
ANYi(flex, 1, 6)
ANYi(resl, 1, 6)
ANYi(team, 1, 6)
ANYi(pmat, 1, 6)

# effort multipliers: linear effect on effort
ANYi(rely, 1, 5)
ANYi(data, 2, 5)
ANYi(cplx, 1, 6)
ANYi(ruse, 2, 6)
ANYi(docu, 1, 5)
ANYi(time, 3, 6)
ANYi(stor, 3, 6)
ANYi(pvol, 2, 5)
ANYi(acap, 1, 5)
ANYi(pcap, 1, 5)
ANYi(pcon, 1, 5)
ANYi(aexp, 1, 5)
ANYi(plex, 1, 5)
ANYi(ltex, 1, 5)
ANYi(tool, 1, 5)
ANYi(site, 1, 6)
ANYi(sced, 1, 5)

# defect removal methods
_ANYi(automated_analysis, 1, 6)
_ANYi(peer_reviews, 1, 6)
_ANYi(execution_testing_and_tools, 1, 6)

# calibration parameters
_ANY(a, 2.25,3.25)
_ANY(b, 0.9, 1.1)

Fig. 1 XOMO: specifying legal ranges.

function ksloc0() {
# Low-level primitive that returns a ksloc
return from(2,10000,ratio( min("ksloc"),max("ksloc")))}

function ksloc() {
# On the first call, there is nothing in the cache.
# So call the primitive function and cache the result.
# On subsequent calls, return the value in the cache
if ("ksloc" in Cache) { return Cache["ksloc"] }
else { return Cache["ksloc"] = ksloc0()} }

function Ksloc() {
# Return an unfiltered ksloc
return ksloc()}

Fig. 2 XOMO: expanding ANY(ksloc,2,10000)

no time be wasted in discussing irrelevancies. The XOMO
toolkit can be used to quickly prune debates about relatively
unimportant issues. The panel moderator could (gently) guide
the discussion onto other matters if the matters under debate
have little effect on the model behaviors. Similar, the mod-
erator could ask XOMO for the next most important issue to
discuss (that issue would be the one that most changes the
current model’s behavior).

3 XOMO

XOMO is a general framework for Monte Carlo simulations
that has been customized for processing COCOMO-like mod-
els. An XOMO user begins by defining a set of ranges for
model variables. For example, in Figure 1, ANY(x,n1,n2)
defines some variable x that can take any value fro n1 to n2.

function prec0() {
return from(1,6,ratioInt(min("prec"),max("prec")))}

function prec() {
if ("prec" in Cache) { return Cache["prec"] }
else { return Cache["prec"] = prec0()} }

function Prec() {
return scaleFactor("prec",

pred())}

Fig. 3 XOMO: expanding ANYi(prec,1,6). Very similar to
Figure 2, but Prec() takes the value returned by prec() and
maps it into the COCOMO regression parameters.

Many of the COCOMO parameters map some integer index
into a table of regression which can be defined in XOMO us-
ing ANYi(y,n1,n1). So the first two entries of Figure 1
define ksloc using ANY and prec (which is a COCOMO
parameter) using ANYi.

Internally, XOMO represents its variables as memoed,
possible filtered, functions. A variable foobar gets three
functions: foobar0, foobar() and Foobar():

– foobar0() computes a new value for “foobar”; e.g. see
ksloc0 in Figure 2.

– foobar() calls and traps the results from foobar0 in
a memo table called Cache. This Cached value is then
return by all subsequent calls to foobar() so multiple
calls to foobar() all return the same value.

– Foobar() returns the results of foobar() and filters
then through some other function. For example, in Fig-
ure 3, Prec() converts the results of prec() to a CO-
COMO regression parameter. On the other hand, Ksloc()
in Figure 2, returns ksloc) without any filtering.

Much of this detail is invisible to an XOMO applica-
tion programmer. They just define ranges (e.g. Figure 1) and
XOMO generates code like Figure 2 and Figure 3 automat-
ically. The programmer can then access variables via a call
to the Foobar() functions. More experienced programmers
can modify the auto-generation process by editing XOMO’s
macro expansion files (which are written in the M4 language).

4 Case Study

XOMO picks model inputs using Figure 1, plus any addi-
tional restraints supplied on the command line. The command
line can set exact values (using the “-=” flag) or can define
a range from some lower to upper value (using the “-l” and
“-u” flags).

Using that syntax, we define the inputs to our case study
as follows:

-p ksloc -l 75 -u 125 : We assume that some de-
veloper from a prior autonomy project has guess-timate
that this new project will require 75,000 to 125,000 lines
of code.

-p rely -=5 : At NASA, everything must be have high-
est reliability. In COCOMO, rely’s maximum value is
very high; i.e. 5.

3



runxomo() {
Scenario="-p ksloc -l 75 -u 125

-p rely -= 5
-p prec -= 1
-p acap -= 5
-p aexp -= 1
-p cplx -= 6
-p ltex -= 1
-p ruse -= 6"

xomo $Scenario }

Fig. 4 XOMO: specifying restraints.

-p prec -= 1 : Since this team has never done this sort
of thing before, the precedence (or prec) is set to the
lowest value.

-p acap -= 5 : This team is skillful; i.e. has highest an-
alyst capability.

-p aexp -= 1 : Their experience in this kind of software
is non-existence.

-p cplx -= 6 : The software is very complex.
-p ltex -= 1 : The team has no experience with the lan-

guages and tools used for autonomous systems.
-p ruse -= 6 : This team, in their enthusiasm, believe

that the tools they are building here will be reused by
many developers in the future.

Figure 4 summarizes the XOMO command line used in this
study. Each run of Figure 4 generates one line of Figure 5.
Between each run, the Cache is cleared so that the next run
is free to select another set of inputs. Observe in Figure 5 how
the selected values satisfy both the ranges of Figure 1 and the
restraints of Figure 4. For example, the rely values are all
5 (since the command line included -p rely -= 5) while
the other values can range more widely.

5 Multi-Dimensional Optimization using “BORE”

Our goal is reducing development effort and the risk of sched-
ule risk and the defect density in our code. Optimizing for all
these three goals can be difficult. The last 3 columns of Fig-
ure 5 show scores from COCOMO, the risk model, and CO-
QUALMO. The rows are sorted by the COQUALMO scores;
i.e. by the estimated number of defects per 1000 lines of code.
Interestingly, high number of remaining defects are not cor-
related with high schedule risk or development effort:

– The second and last rows have similar efforts but very
different defect densities.

– Row two has the highest schedule risk but one of the low-
est defect densities.

The reason for these non-correlations is simple: even though
the three models within XOMO using the same variables,
they predict for different goals. This complicates optimization
since any gain achieved in one dimension may have detrimen-
tal effects on other dimensions.

To model this multi-dimensional optimization problem,
XOMO uses a multi-dimensional classification scheme called
BORE (short for “best or rest”). BORE maps simulator out-
puts into a hypercube which has one dimension for each util-
ity; in our case, one dimension for effort, remaining defects,

26 inputs 3 outputs
schedule

rely plex ksloc . . . pcap time aa effort risk defects
5 1 118.80 . . . 5 3 5 2083 69 0.50
5 1 105.51 . . . 1 3 5 4441 326 0.86
5 4 89.26 . . . 3 5 3 1242 63 0.96
5 2 89.66 . . . 1 4 5 2118 133 2.30
5 1 105.45 . . . 2 4 5 6362 170 2.66
5 3 118.43 . . . 2 6 2 7813 112 4.85
5 4 110.84 . . . 4 4 4 4449 112 6.81

. . .

Fig. 5 XOMO: output from Figure 4.

rely plex ksloc . . . pcap time aa effort secdRisk defects
best:

5 4 89.26 . . . 3 5 3 1242 63 0.96
5 1 118.80 . . . 5 3 5 2083 69 0.50
5 2 89.66 . . . 1 4 5 2118 133 2.30

rest:
5 1 105.51 . . . 1 3 5 4441 326 0.86
5 4 110.84 . . . 4 4 4 4449 112 6.81
5 3 118.43 . . . 2 6 2 7813 112 4.85

Fig. 6 BORE: classification of Figure 5.

and schedule risk, These utilities are normalized to “zero” for
“worst”, and “one” for “best”. The corner of the hypercube
at 1,1,... is the apex of the cube and represents the desired
goal for the system. All the examples are scored by their Eu-
clidean distance to the apex. The N best examples closest to
the apex are then labeled best. A random sample of N of the
remaining examples are then labeled rest. Figure 6 shows a
BORE report of the three best and three rest examples from
XOMO output. Note how the average efforts, schedule risk,
and defects are lower in best than rest.

BORE’s classifications are passed to a data miner to find
what settings select for best and avoid the rest. Before de-
scribing that data mining process, we first describe the CO-
COMO, COQUALMO and schedule risk models that gener-
ated the output columns of Figure 5.

6 Models

This section describes the three models within XOMO:

– Boehm et.al.’s COCOMO-II (2000) model that computes
development effort;

– Madachy’s heuristic risk model that computes the risk
that schedules will over run;

– Boehm et.al.’s COQUALMO model that estimates the num-
ber of defects remaining in delivered code;

6.1 The COCOMO Effort Model

COCOMO measures effort in calendar months where one
month is 152 hours (and includes development and manage-
ment hours). COCOMO assumes that as systems grow in
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Definition Low-end Medium High-end

Scale factors:
flex development flexibility development process rigor-

ously defined
some guidelines, which
can be relaxed

only general goals defined

pmat process maturity CMM level 1 CMM level 3 CMM level 5
prec precedentedness we have never built this kind

of software before
somewhat new thoroughly familiar

resl architecture or risk resolution few interfaces defined or few
risk eliminated

most interfaces defined
or most risks eliminated

all interfaces defined or all
risks eliminated

team team cohesion very difficult interactions basically co-operative seamless interactions

Effort multipliers
acap analyst capability worst 15% 55% best 10%
aexp applications experience 2 months 1 year 6 years
cplx product complexity e.g. simple read/write state-

ments
e.g. use of simple inter-
face widgets

e.g. performance-critical
embedded systems

data database size (DB bytes/SLOC) 10 100 1000
docu documentation many life-cycle phases not

documented
extensive reporting for each
life-cycle phase

ltex language and tool-set experience 2 months 1 year 6 years
pcap programmer capability worst 15% 55% best 10%
pcon personnel continuity

(% turnover per year)
48% 12% 3%

plex platform experience 2 months 1 year 6 years
pvol platform volatility

( frequency of major changes
frequency of minor changes

)

12 months
1 month

6 months
2 weeks

2 weeks
2 days

rely required reliability errors mean slight inconve-
nience

errors are easily recov-
erable

errors can risk human life

ruse required reuse none multiple program multiple product lines
sced dictated development

schedule
deadlines moved closer to
75% of the original estimate

no change deadlines moved back to
160% of original estimate

site multi-site development some contact: phone, mail some email interactive multi-media
stor main storage constraints

(% of available RAM)
N/A 50% 95%

time execution time constraints
(% of available CPU)

N/A 50% 95%

tool use of software tools edit,code,debug integrated with life cycle

Fig. 7 Parameters of the COCOMO-II effort risk model; adapted from http://sunset.usc.edu/COCOMOII/expert_cocomo/
drivers.html. “Stor” and “time” score “N/A”” for low-end values since they have no low-end defined in COCOMO-II.

size, the effort required to create them grows exponentially,
i.e. effort ∝ KSLOCx. More precisely, COCOMO-II uses
the variables of Figure 7 as follows:

months = a∗
“
KSLOC(b+0.01∗

P5
i=1 SFi)

”
∗

 
17Y

j=1

EMj

!
(1)

where a and b are domain-specific parameter, and KSLOC is
estimated directly or computed from a function point analy-
sis. SFi are the scale factors (e.g. factors such as “have we
built this kind of system before?”) and EMj are the cost
drivers (e.g. required level of reliability). Scale factors have
an exponential impact on software cost while effort multipli-
ers have a linear impact.

Figure 8 shows XOMO implementation of the COCOMO
effort equation. This implementation using the functions gen-

function Effort() {
return A() * Ksloc() ˆ E() * Rely()* Data()* Cplx()*

Ruse()* Docu()* Time()* Stor()* Pvol()* Acap()*
Pcap()* Pcon()* Aexp()* Plex()* Ltex()* Tool()*
Site()* Sced()

}

function E() {
return B() + 0.01*(Prec() + Flex()

+ Resl() + Team() + Pmat())
}

Fig. 8 COCOMO: computing effort.

erated by Figure 1. Values such as (e.g.) flex=1 get con-
verted to numerics as follows. First, the integers {1, 2, 3, 4, 5,
6} are converted to the symbols {vl, l, n, h, vh, xh} (respec-
tively) representing very low, low, nominal, high, very high,
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vl l n h vh xh
Scale factors:
flex 5.07 4.05 3.04 2.03 1.01

pmat 7.80 6.24 4.68 3.12 1.56
prec 6.20 4.96 3.72 2.48 1.24
resl 7.07 5.65 4.24 2.83 1.41
team 5.48 4.38 3.29 2.19 1.01
Effort multipliers:
acap 1.42 1.19 1.00 0.85 0.71
aexp 1.22 1.10 1.00 0.88 0.81
cplx 0.73 0.87 1.00 1.17 1.34 1.74
data 0.90 1.00 1.14 1.28
docu 0.81 0.91 1.00 1.11 1.23
ltex 1.20 1.09 1.00 0.91 0.84
pcap 1.34 1.15 1.00 0.88 0.76
pcon 1.29 1.12 1.00 0.90 0.81
plex 1.19 1.09 1.00 0.91 0.85
pvol 0.87 1.00 1.15 1.30
rely 0.82 0.92 1.00 1.10 1.26
ruse 0.95 1.00 1.07 1.15 1.24
sced 1.43 1.14 1.00 1.00 1.00
site 1.22 1.09 1.00 0.93 0.86 0.80
stor 1.00 1.05 1.17 1.46
time 1.00 1.11 1.29 1.63
tool 1.17 1.09 1.00 0.90 0.78

Fig. 9 COCOMO: co-efficients

and extremely high. Next, these are mapped into the look-up
table of Figure 9.

Ideally, software effort-estimation models like COCOMO-
II should be tuned to their local domain. Off-the-shelf “un-
tuned” models have been up to 600% inaccurate in their es-
timates, e.g. [18, p165] and [8]. However, tuned models can
be far more accurate. For example, [6] reports a study with a
Bayesian tuning algorithm using the COCOMO project database.
After Bayesian tuning, a cross-validation study showed that
COCOMO-II model produced estimates that are within 30%
of the actuals, 69% of the time.

Elsewhere, with Boehm, Chen, Port, Hihn, and Stukes [3,
4,10,14] we have explored calibration methods for COCOMO.
Here, we take a new approach and ask “what conclusions hold
across the space of possible tunings”?. Hence we treat the
tuning parameters “a” and “b” as random variables (see Fig-
ure 1, last two lines).

6.2 SCED-RISK: a Heuristic Risk Model

The Madachy Heuristic Risk model (hereafter SCED-RISK)
was an experiment in explicating the heuristic nature of effort
estimation. It returns a heuristic estimate of the chances of a
schedule over run in the project. Values of 0-5 are consid-
ered to be “low risk”; 5-15 “medium risk”; 15-50 “high risk”;
and 50-100 “very high risk”. Studies with the COCOMO-I
project database have shown that the Madachy SCED-RISK
index correlates well with months

KDSI (where KDSI is thousands
of delivered source lines of code) [9].

Internally, the model contains dozens of tables of the form
of Figure 10. Each such table adds some “riskiness” value
to the overall project risk. These tables are read as follows.
Consider the exceptional case of building high reliability sys-
tems with very tight schedule pressure (i.e. sced=vl or and
rely=vh or vh). Recalling Figure 9, the COCOMO co-
efficients for these ranges are 1.43 (for sced=vl) and 1.26

rely= rely= rely= rely= rely=
very low nominal high very
low high

sced= very low 0 0 0 1 2
sced= low 0 0 0 0 1
sced= nominal 0 0 0 0 0
sced= high 0 0 0 0 0
sced= very high 0 0 0 0 0

Fig. 10 SCED-RISK: an example risk table

Total_risk =
(Schedule_risk + Product_risk + Personnel_risk +
Process_risk + Platform_risk + Reuse_risk)/3.73

Schedule_risk=
Sced_Rely_risk + Sced_Time_risk + Sced_Pvol_risk +
Sced_Tool_risk + Sced_Acap_risk + Sced_Aexp_risk +
Sced_Pcap_risk + Sced_Plex_risk + Sced_Ltex_risk +
Sced_Pmat_risk

Product_risk =
Rely_Acap_risk + Rely_Pcap_risk + Cplx_Acap_risk +
Cplx_Pcap_risk + Cplx_Tool_risk + Rely_Pmat_risk +
Sced_Cplx_risk + Sced_Rely_risk + Sced_Time_risk +
Ruse_Aexp_risk + Ruse_Ltex_risk

Personnel_risk =
Pmat_Acap_risk + Stor_Acap_risk + Time_Acap_risk +
Tool_Acap_risk + Tool_Pcap_risk + Ruse_Aexp_risk +
Ruse_Ltex_risk + Pmat_Pcap_risk + Stor_Pcap_risk +
Time_Pcap_risk + Ltex_Pcap_risk + Pvol_Plex_risk +
Sced_Acap_risk + Sced_Aexp_risk + Sced_Pcap_risk +
Sced_Plex_risk + Sced_Ltex_risk + Rely_Acap_risk +
Rely_Pcap_risk + Cplx_Acap_risk + Cplx_Pcap_risk +
Team_Aexp_risk

Process_risk =
Tool_Pmat_risk + Time_Tool_risk + Tool_Pmat_risk +
Team_Aexp_risk + Team_Sced_risk + Team_Site_risk +
Sced_Tool_risk + Sced_Pmat_risk + Cplx_Tool_risk +
Pmat_Acap_risk + Tool_Acap_risk + Tool_Pcap_risk +
Pmat_Pcap_risk

Platform_risk =
Sced_Time_risk + Sced_Pvol_risk + Stor_Acap_risk +
Time_Acap_risk + Stor_Pcap_risk + Pvol_Plex_risk +
Time_Tool_risk

Reuse_risk =
Ruse_Aexp_risk + Ruse_Ltex_risk

Fig. 11 SCED-RISK: the calculations.

(for rely=vh). These co-efficients also have a risk factor of
2 (see Figure 10). Hence, a project with these two attribute
ranges would contribute 1.43*1.26*2=3.6036 to the schedule
risk.

The details of the SCED-RISK calculations are shown in
Figure 11. The risk tables of the current model are shown in
Figure 12.

6.3 COQUALMO: defect introduction and removal

COQUALMO models how process options add and remove
defects to software during requirements, design, and coding.
For example, poor documentation leads to more errors since
developers lack the guidance required to code the right sys-
tem. So, Figure 13 offers its large defect introduction values
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Fig. 12 SCED-RISK: the details. For example, looking at the top-left matrix, the Sced Rely risk is highest when the reliability is very
high but the schedule pressure is very tight.

rely data ruse docu cplx time stor pvol acap pcap pcon aexp plex ltex tool site sced
requirements:
xh 1.05 1.32 1.08 1.08 1.16 0.83
vh 0.7 1.07 1.03 0.86 1.21 1.05 1.05 1.1 0.75 1 0.82 0.81 0.9 0.93 0.92 0.89 0.85
h 0.85 1.04 1.02 0.93 1.1 1.03 1.03 1.05 0.87 1 0.91 0.91 0.95 0.97 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.22 0.93 0.95 1.08 0.88 0.86 1.17 1 1.11 1.12 1.05 1.04 1.05 1.1 1.09

vl 1.43 1.16 0.76 1.33 1 1.22 1.24 1.11 1.07 1.09 1.2 1.18
design:
xh 1.02 1.41 1.2 1.18 1.2 0.83
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.12 1.13 0.83 0.85 0.8 0.82 0.86 0.88 0.91 0.89 0.84
h 0.85 1.05 1 0.93 1.13 1.06 1.06 1.06 0.91 0.93 0.9 0.91 0.93 0.91 0.96 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.83 1.1 1.09 1.13 1.11 1.09 1.07 1.05 1.1 1.1

vl 1.45 1.18 0.71 1.2 1.17 1.25 1.22 1.17 1.13 1.1 1.2 1.19
coding:
xh 1.02 1.41 1.2 1.15 1.22 0.85
vh 0.69 1.1 1.01 0.85 1.27 1.13 1.1 1.15 0.9 0.76 0.77 0.88 0.86 0.82 0.8 0.9 0.84
h 0.85 1.05 1 0.92 1.13 1.06 1.05 1.08 0.95 0.88 0.88 0.94 0.94 0.91 0.9 0.95 0.92
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
l 1.23 0.91 0.98 1.09 0.86 0.82 1.05 1.16 1.15 1.07 1.08 1.11 1.13 1.09 1.1

vl 1.45 1.18 0.71 1.11 1.32 1.3 1.13 1.16 1.22 1.25 1.18 1.19

Fig. 13 COQUALMO: effort multipliers and defect introduction
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prec flex resl team pmat
requirements:
xh 0.7 1 0.76 0.75 0.73
vh 0.84 1 0.87 0.87 0.85
h 0.92 1 0.94 0.94 0.93
n 1 1 1 1 1
l 1.22 1 1.16 1.17 1.19
vl 1.43 1 1.32 1.34 1.38
design:
xh 0.75 1 0.7 0.8 0.61
vh 0.87 1 0.84 0.9 0.78
h 0.94 1 0.92 0.95 0.89
n 1 1 1 1 1
l 1.17 1 1.22 1.13 1.33
vl 1.34 1 1.43 1.26 1.65
coding:
xh 0.81 1 0.71 0.86 0.63
vh 0.9 1 0.84 0.92 0.79
h 0.95 1 0.92 0.96 0.9
n 1 1 1 1 1
l 1.12 1 1.21 1.09 1.3
vl 1.24 1 1.41 1.18 1.58

Fig. 14 COQUALMO: scale factors and defect introduction

function defectsIntroduced() {
return 10*Ksloc()*defectsIntroduced1("requirements") +

20*Ksloc()*defectsIntroduced1("design") +
30*Ksloc()*defectsIntroduced1("coding") }

function defectsIntroduced1(table) {
# return the product of the Figure 13 and
# and the Figure 14 figures }

Fig. 15 COQUALMO: defects introduced.

automated peer execution testing
analysis reviews and tools

requirements:
xh 0.4 0.7 0.6
vh 0.34 0.58 0.57
h 0.27 0.5 0.5
n 0.1 0.4 0.4
l 0 0.25 0.23
vl 0 0 0
design:
xh 0.5 0.78 0.7
vh 0.44 0.7 0.65
h 0.28 0.54 0.54
n 0.13 0.4 0.43
l 0 0.28 0.23
vl 0 0 0
coding:
xh 0.55 0.83 0.88
vh 0.48 0.73 0.78
h 0.3 0.6 0.69
n 0.2 0.48 0.58
l 0.1 0.3 0.38
vl 0 0 0

Fig. 16 COQUALMO: defect removal

when the effort multiplier docu=vl is very low. See also
Figure 14 for the defects introduced by various settings to the
scale factors.

As shown in Figure 15 the COQUALMO defect intro-
duction factors are effects-per-1000 lines of code. A small
weighting factor (10,20,30) is added to show an increasing
number of defects as the life cycle progresses.

The defects remaining in software is the product of the
defects introduced times the percentage removed (see Fig-
ure 16 and Figure 17). The removal percentage is calculated
in Figure 18 which shows how various actions (automated
analysis, peer reviews, and execution testing

function Total_defects() {
return defects("requirements",Coqualr) +

defects("design", Coquald) +
defects("coding", Coqualc)

}

function defects(what,table) {
introduced = defectsIntroduced1(what,table);
percentRemoved = defectsRemovedRatio(what);
return percentRemoved*introduced

}

Fig. 17 COQUALMO: defects added and removed

function defectsRemovedRatio(table, auto,review,tool) {
return (1 - drf(table,"automated_analysis")) *

(1 - drf(table,"peer_reviews")) *
(1 - drf(table,"execution_testing_and_tools"))

}

function drf(table,x ) {
# return x’s value in table from Figure 16

}

Fig. 18 COQUALMO: ratio of defects removed

outlook temp(oF) humidity windy? class
sunny 85 86 false none
sunny 80 90 true none
sunny 72 95 false none

rain 65 70 true none
rain 71 96 true none
rain 70 96 false some
rain 68 80 false some
rain 75 80 false some

sunny 69 70 false lots
sunny 75 70 true lots

overcast 83 88 false lots
overcast 64 65 true lots
overcast 72 90 true lots
overcast 81 75 false lots

Fig. 19 TAR3: Playing golf.

and tools) remove defects during requirements, design
and coding. These values are ratios per 1000 lines of code so
their complement represents the remaining defects (see Fig-
ure 18).

7 Learning

Once the above models run, and BORE classifies the output
into best and rest, a data miner is used to find input settings
that select for the better outputs. This study uses treatment
learning since this learning method return the smallest theo-
ries that most effect the output. In terms of software process
changes, such minimal theories are useful since they require
the fewest management actions to improve a project.

7.1 Treatment Learning

Treatment learning inputs a set of training examples E. Each
example maps a set of attribute ranges to some class sym-
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input:

SELECT class
FROM golf

SELECT class
FROM golf
WHERE
outlook = ’overcast’

SELECT class
FROM golf
WHERE
humidity >= 90

output:
none none none none none
some some some lots lots
lots lots lots lots

lots lots lots lots none none none some lots

distributions:

0
2
4
6

5 3 6
0
2
4
6

0 0 4
0
2
4
6

3 1 1

legend: none some lots

Fig. 20 TAR3: Class distributions selected by different conditions in Figure 19.

bol; i.e. {Ri, Rj , ... → C} The class symbols C1, C2.. are
stamped with some utility score that ranks the classes; i.e.
{U1 < U2 < .. < UC}. With E, these classes occur at fre-
quencies F1%, F2%, ..., FC%. A treatment T of size X is a
conjunction of attribute ranges {R1 ∧ R2... ∧ RX}. Some
subset of e ⊆ E are consistent with the treatment. In that
subset, the classes occur at frequencies f1%, f2%, ...fC%.
A treatment learner seeks the seek smallest T which most
changes the weighted sum of the utilities times frequencies
of the classes. Formally, this is called the lift of a treatment:

lift =
∑

C UCfC∑
C UCFC

For example, consider the log of golf playing behavior
seen in Figure 19. In that log, we only play lots of golf in

6
5+3+6 = 43% of cases. To improve our game, we might
search for conditions that increases our golfing frequency.
Two such conditions are shown in the WHERE test of the
select statements in Figure 20. In the case of outlook=
overcast, we play lots of golf all the time. In the case
of humidity ≤ 90, we only play lots of golf in 20% of
cases. So one way to play lots of golf would be to select a va-
cation location where it was always overcast. While on hol-
idays, one thing to watch for is the humidity: if it rises over
90%, then our frequent golf games are threatened.

The tests in the WHERE clause of the select statements in
Figure 20 is a treatment. Classes in treatment learning get a
score UC and the learner uses this to assess the class frequen-
cies resulting from applying a treatment (i.e. using them in a
WHERE clause). In normal operation, a treatment learner does
controller learning that finds a treatment which selects for
better classes and reject worse classes By reversing the scor-
ing function, treatment learning can also select for the worse
classes and reject the better classes. This mode is called moni-
tor learning since it finds the thing we should most watch for.

In the golf example, outlook = ’overcast’ was the controller
and humidity ≥ 90 was the monitor.

Formally, treatment learning is a weighted-class minimal
contrast-set association rule learner. The treatments are asso-
ciations that occur with preferred classes. These treatments
serve to contrast undesirable situations with desirable situ-
ation where more of the outcomes are favorable. Treatment
learning is different to other contrast set learners like STUCCO [1]
since those other learners don’t focus on minimal theories.

Conceptually, a treatment learner explores all possible sub-
sets of the attribute ranges looking for good treatments. Such
a search is impractical in practice so the art of treatment learn-
ing is quickly pruning unpromising attribute ranges. This study
uses the TAR3 treatment learner [7] that uses stochastic search
to find its treatments.

7.2 Iterative Treatment Learning

Sometimes, one round of treatment learning is not enough.
Iterative treatment learning runs by conducting Monte Carlo
simulations over the ranges of any uncertain variables. For
example, there are 28 variables in the XOMO models:

– Ksloc;
– 5 scale factors;
– 17 effort multipliers;
– 2 calibration parameters (“a,b”);
– 3 defect removal activities (automated analysis, peer re-

views, execution testing and tools).

The restraints of Figure 4 only offers hard constraints
on seven of the variables: rely, prec, acap, ...1.
XOMO’s Monte Carlos execute by picking random values

1 The constraint on ksloc is softer- it can vary from 75K to
125K).
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Fig. 22 TAR3: impact of Figure 21’s restraints.

from valid ranges for all known inputs. After, say, 1000 Monte
Carlo runs, BORE classifies the outputs as either the 100 best
or 100 rest. The treatment learner studies the results and
notes which input ranges select for best. The ranges found
by the learner then become restraints for future simulations.
The whole cycle looks like this:

restraintsi → simulationi → learn →
→ restraintsi+i → simulationi+1

8 Results

For this study the initial baseline restraints were set accord-
ing to our autonomy settings; i.e. Figure 4. XOMO was run
1000 times each iteration and BORE returned the 100 best
examples and a random sample of 100 of the rest. These best
and rest examples were passed to TAR3 and the best learned
treatment was imposed as restraints on subsequent iterations.

Figure 21 shows the restraints learned by four iterations
of iterative treatment learning. Figure 22 shows the effects of
these restraints on the output of the XOMO models:

1. The mean development effort was nearly halved: 3257 to
1780 months;

2. The mean SCED-RISK halved: 77 to 36;

3. The mean defects densities were reduced by 85% from
0.97 to 0.15.

4. The variance on the above measures was significantly re-
duced: the COQUALMO and SCED-RISK standard de-
viations nearly reached zero.

Several of the Figure 22 curves flatten out after 2000 runs
of XOMO. A parsimonious management strategy could be formed
from just the results of the first two rounds of learning. Inter-
estingly, in those first two rounds, process changes were more
important than the application of technology. Technology-
based techniques such as tool support or execution testing
and tools did not arise till iteration three. On the other
hand, the first two iterations labeled “1000,2000” in Figure 21
want to decrease schedule pressure (sced), increase process
maturity (pmat), and programmer capability (pcap) and re-
quested the user of peer reviews.

Another interesting feature of the results is that many of
the inputs were never restrained. The left-hand-side plot of
Figure 21 shows that even after four rounds of learning, only
17 of the 28 inputs were restrained. That is, management
commitments to 11 of the 28 inputs would have been a waste
of time. Further, if management is content with the improve-
ments gained from the first two iterations, then only 12 re-
straints are required and decisions about the remaining 16 in-
puts would have been superfluous.
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9 Discussion

Software models like COCOMO, COQUALMO, and SCED-
RISK contain many assumptions about their domain. The con-
clusions gained from this models should be scrutinized by
domain experts. Early in the life cycle of a software project,
such scrutiny is complicated by all the unknowns associated
with a project. Exploring all those unknowns can lead to mas-
sive data overload as domain experts are buried beneath a
mountain of data coming from their simulators.

Tools like XOMO, BORE, and treatment learners like
TAR3 can assist in that scrutiny. These tools can find auto-
matically find software process decisions that reduce defects
and effort and risk of schedule over run. These tools sample
the space of options and report sample conclusions within the
space of possibilities.

To demonstrate that technique, this paper conducted a
case study with software development for autonomous sys-
tems. Certain special features of autonomous systems were
identified. These features included high complexity and little
experience with building these kinds of systems in the past.
These features were then mapped into general software cost
and risk models.

It is encouraging that the analysis is so fast: the above
case study took less than ten minutes to run on a standard
computer. Hence, we can use these tools during early life cy-
cle debates about options within a software project.

While the particular case study examined here is quite
specific, the analysis method is quite general. Our case study
related to autonomous systems, but there is nothing stopping
an analyst from using XOMO to study other kinds of soft-
ware development. The only requirement is that the essential
features of that software can be mapped onto COCOMO-like
models.

– All the models used here contain most of their knowledge
in easy-to-modify tables representing the particulars of
different domains.

– All the tools used here are portable and use simple command-
line switches that allow an analyst to quickly run through
a similar study for a different kind of project.
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