
68 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t  S y s t e m s  i n  B i o l o g y

Diagnosis Systems 
in Medicine With
Reusable Knowledge
Components 
Maria Taboada, University of Santiago de Compostela
Julio Des and José Mira, National University for Distance Education, Spain
Roque Marín, University of Murcia

Constructioning knowledge systems is viewed as modeling activity for developing

structured knowledge and reasoning models. To ensure well-formed models, the

use of some knowledge engineering methodology is crucial. Additionally, reusing mod-

els can significantly reduce the time and costs of building a new application. Reusing 

knowledge components across different applications
and domains can help acquire expert knowledge and
accurately describe the reasoning process. In fact,
current knowledge engineering research has taken
major initiatives in the development of knowledge
systems by reusing generic components, such as
ontologies1 or problem-solving methods.2 Examples
of knowledge engineering approaches based on
reusing problem-solving methods include the
methodology CommonKADS,3 the formal frame-
work UPML,4 and the general-purpose framework
Protége-II.5

Dieter Fensel and Enrico Motta6 proposed char-
acterizing method development and selection as a
process consisting of navigating through a 3D space
composed of methods, tasks, and domain assump-
tions. The navigation through the space is made by
means of adapters. To facilitate this navigation, we
used one- or two-dimensional adapters. During the
modeling of our diagnosis system, we distinguished
two types of task–problem-solving method adapters:
task-based adapters, which define new subtasks such
as input data check-up or filters, and renaming
adapters, which directly connect I/O roles. We have
also used one and two-dimensional refiners to con-
figure the internal method specification and its
requirements.

By combining several current approaches for reuse
of problem-solving methods, you can model the diag-
nosis task. Following these approaches, we can char-
acterize a problem by task commitments, problem-
solving paradigms, and domain knowledge
assumptions.5,6 We base the steps for developing a
reusable knowledge model by selecting and config-
uring generic problem-solving methods. In our
approach, method configuration is an assumption-dri-
ven and different method combination-based activity. 

The methodological approach 
A problem-solving method (PSM) specifies a

domain-independent reasoning pattern, character-
ized by a set of actions that must be carried out to
solve a problem, a control structure over these
actions, and a set of knowledge roles that specify the
needed static and dynamic knowledge.

In CommonKADS,a method (called task-method)
is defined by a set of inferences that set up the actions
to carry out, an inference structure that shows the data
flow among these inferences, and a set of knowledge
roles. Additionally, CommonKADS provides a library
of task-methods, and developing a new application
consists of selecting and adaptating methods from this
library. However, we can view a task-method as a
task’s PSM instantiation, so the method includes some
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specifications about problem commitments.
The method-adapting process for a new prob-
lem consists of modifying some templates
stored in the library; therefore, the reusing of
methods is not immediate.

For another approach, we must describe
a method in a higher abstraction level, with-
out including specifications about problem
commitments. This second option’s advan-
tage is its higher reusability potential. How-
ever, this description is too abstract and dif-
ficult to understand. In fact, different authors
use different versions of some generic meth-
ods, even with different numbers of input
and output roles. In spite of this disadvan-
tage, we considered using the generic PSM’s
description separately from problem com-
mitments. This approach facilitates reuse
methods, whenever methods are unambigu-
ously defined and mechanisms (such as
adapters6) facilitate the connection between
methods and problem types.

In this way, the Protege-II approach dis-
tinguishes between tasks and PSMs. The key
steps in developing a knowledge system com-
prise task analysis, method selection, and
method configuration. We view task analysis
as a modeling activity5 that identifies a prob-
lem and obtains I/O relationships and the
available knowledge. Thus, an application
task is a set of assumptions about the prob-
lem space.7 Additionally, some approaches,
such as UPML,4 distinguish between pre-
condition, postcondition, and domain-level
assumptions.

Method selection is too complex because
the most appropriate method choice depends
on many factors, including task assumptions,
solution quality, computational complexity,
and so on. This step is frequently performed
manually, but some projects have proposed to
do this automatically.

You can view method configuration as an
assumption-driven activity7—that is, refining
an application task (described by a set of
assumptions) taking into account the method’s
functional specification and the available
domain theory. You could also consider method
configuration as a process of refining generic
problem-solving methods using the ontologi-
cal commitments instead of refining tasks.6

Building a library
The AI community has extensively stud-

ied the diagnosis task and proposed many
methods and approaches for both technical
and medical domains for reusing knowledge
components in diagnosis. Several PSMs

were revised. We highlight Richard Ben-
jamins’ library of PSMs for technical diag-
nosis8 and John and Susan Josephson’s work
on medical abductive diagnosis. 9 From
these works, we built an assumptions library
and a library of medical diagnosis roles. We
carry out diagnosis task modeling by select-
ing a subset of assumptions and roles from
these libraries (see Figure 1). In this way,
eye emergency diagnosis has been modeled
by a descriptive specification, including a

goal, a set of assumptions, and a set of roles
(see Figure 2). A label and an explanatory
text define each assumption and three types
we have distinguished as preconditions,
which impose requirements about input
data, postconditions, which deal with output
data and the reasoning process, and domain-
level, which concerns the domain model.
Additionally, we classified the latter under
domain structure assumptions and domain
content assumptions.
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Figure 1.  Steps to develop eye emergency diagnosis by reusing problem-solving methods.
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Roles and assumptions
To describe diagnosis of eye emergencies,

we selected the following roles and assump-
tions. Later, during method selection and
configuration, we added more assumptions
and roles.

Input dynamic roles
set of observations is composed of simple roles

named observations, which we define as a three
element tuple of the form <o, f, v>, with the
following constraints: o is a kind of entity, f  is-a-
slot-of o, and v is an allowable value of f.

Output dynamic roles
diagnosis is a set of simple roles, described by

one element <d> that is a kind of candidate. additional
data are described by a three elements tuple of
the form <t,o, f> with the following constraints:
t and o is a kind of entity, f is a slot of o.

Internal dynamic roles
set of abstracted data is composed of simple

roles named abstracted data, which we define as
a three element tuple of the form <o, f, v>
with the following constraints: o is a kind of
entity, f is a slot of o, and v is an allowable value of f.

Static roles
set of candidates is a set of simple roles named

candidates, which are described by one element
<c> that is a kind of entity. 

diagnostic associations exist between one candi-
date and many observations, and between one
candidate and many abstracted data. 

data associations exist between many observa-
tions and many higher abstracted data.

hierarchical and non-hierarchical candidate associa-
tions also exist.

Preconditions
User control over introducing data. Clin-

ical experts often want to have control during
the introduction of patient information.
Therefore, the user should have options avail-
able to  introduce values for all features of
all observables.

Postconditions
Positive coverage. The solution must

explain the set of abnormal observations and
the set of normal observations must be con-
sistent with the solution.

Multiple fault assumption.This states that an
arbitrary number of diseases can be responsible
for the appearance of a set of patient findings.

Composed or alternative solutions. The
first states that you can have possible solutions

together, and the second one states that the
possible solutions are alternatives. In our
approach, you must compose initial candi-
dates (or their refinements) together, and two
candidates derived from an hierarchical refine-
ment are alternative solutions.

Ranked solutions by scoring.You can solve
the solution choice by ranking the whole of
possible candidates following some scoring
method.

Combining data-driven reasoning and solution-
driven reasoning. Reduce the set of possible
hypotheses from the information that comes
in during the reasoning process and obtain
the set of additional data from the possible
set of hypotheses.

Sensitivity-based selection. Select addi-
tional data by taking into account the sensi-
tivity of each finding both for each hypothe-
sis and for the joint hypotheses. If a
hypothesis is true, the most probable find-
ings to be present will be the most sensitiv-
ity findings. Therefore, if the highest sensi-
tive findings are not present, you can rule out
the associated hypotheses.

Reasoning with unknown and not valuable val-
ues. Do not rule out a hypothesis if there is
some unknown finding with a higher sensitiv-
ity.  Additional data include unknown findings
to collect them. You cannot rule out a hypoth-
esis whereas there is some nonvaluable higher
sensitivity finding. 

Independence of hypotheses. An individ-
ual hypothesis explains a set of observations
regardless of what other hypotheses can
explain.

Domain structure assumptions
Simple causal model. Two single levels of

detail model causal relations—that is, causal
connections between each candidate and a
set of abstracted data and causal connections
between each candidate and a set of compli-
cations (which are candidates).

Solution refinement hierarchies. The solu-
tion space is structured according to a refine-
ment hierarchy.

Hierarchical and nonhierarchical data
associations. The input data are structured
according to hierarchical and nonhierarchical
associations.

Domain content assumptions
Complete association set. The associations

must form a complete set to generate all rel-
evant hypotheses, and an instantiation of
some causal association must exist for each
hypothesis.

Observation types.You can classify the set
of observations into normal and abnormal
observations.

Selecting and configuring generic
problem-solving methods

We describe the generic method by an
external and an internal specification. The first
one describes a method as a black box in terms
of its externally visible behavior. It includes
specifications about the dynamic and static
input data requirements and the provided out-
put data. However, the internal specification
describes how the method operates. It
describes generic methods in terms of their
internal structure (a set of subtasks and inter-
nal roles) and the interaction among parts of
its internal and external structure (that is, a
function structure representing the data and
knowledge flow among subtasks). Following
this description, method configuration com-
prises three steps—configuration of the inter-
nal specification to achieve the task postcon-
ditions; adaptation of the external specification
to the task roles, preconditions, and domain-
level assumptions; and specification of the
dynamic behavior (see Figure 1).  

These steps, together with the method selec-
tion step, are carried out by an iterative cycle,
where each cycle corresponds to the selection
and configuration of methods for each subtask.
For space reasons, we are omitting the speci-
fication of the method dynamic behavior. 

In clinical domains, many diagnostic
approaches are built using generate and dis-
criminate. This classic method is based on the
generate-and-test strategy applied by med-
ical experts during the differential diagnosis
process. Internally, the method generates a
list of possible hypotheses and then further
discriminates among the generated hypothe-
ses, usually by taking into account additional
data. We need knowledge about associations
between data and candidates to generate and
discriminate hypotheses. Also, in many cases
in clinical domains, the method should return
additional data to be gathered for the set of
hypotheses to be more efficiently discrimi-
nated. This method satisfactorily carries out
the combining solution-driven and data-driven reason-
ing assumption.

Adaptation of the method external
specification 

To adapt the external specification to the
tasks preconditions, we have considered the
following information about method com-
putational complexity and efficiency:
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• The method’s internal configuration will
be easier if, during each new clinical ses-
sion, one feature of an observable can only
have one value. The adaptation of the
method to the task’s precondition will be
carried out by a subtask called input data
check-up. To avoid the execution of the
method with data containing more than
one value for the same feature of an
observable, the subtask input data check-up
checks the list of initial observations and
notifies the user when he or she tries to
introduce a new value for a feature with a
known value already in due session, val-
ues out of range, or values incompatible
with other feature’s values.

• When the diagnostic model is too exten-
sive, the diagnosis task will likely become
more computationally tractable if you
reduce the initial candidate space using
heuristic knowledge. So, the related sub-
task will consist of filtering the set of all
possible candidates and obtaining a
smaller subset, which has been called set
of candidates. You can solve this subtask
using the simple classification method.

• The tasks operational specification will be
simpler if the control over introducing data

is distributed between the user and the task.

We have modeled the method’s adaptation
to the diagnosis task by an I/O bridge con-
taining two subtasks, data acquisition and filter
(see Figure 3). An ad-hoc, mixed-initiative
control method solved the data acquisition
and a simple classification method solved the
filter. In Figure 3, the three assumptions
about domain structure defined in the diag-
nosis task enrich the method.

Configuration of the heuristic
classification method

William Clancey’s heuristic classification
method10 solves a task by using three sub-
tasks named abstract, heuristic match, and refine-
ment, by which the available data are
abstracted, matched to possible solutions,
and then refined (see Figure 4).

Data abstraction consists of inferring new
data from existing data using data associa-
tions as domain assumptions. In medicine,
several types of domain associations are dis-
tinguished:

• Definitional abstractions between a con-
cept property and expressions about prop-

erties of one or several concepts,
• Qualitative abstraction between qualita-

tive concepts and quantitative values of
concepts and 

• Generalization and Specialization higher
level data and lower level data in a hierar-
chical structure. Additionally, we consid-
ered that abnormal or unexpected obser-
vation detection can be viewed as a data
abstraction task.

In CommonKADS, data abstraction is
viewed as an inference, which is solved by a
forward chaining. As the latter is a process
defined in the design model and not in the
expertise model, we considered data abstrac-
tion a subtask. A primitive abstraction
method solves this subtask. It is defined by an
inference structure, which includes two basic
inferences, select and match (see Figure 5).

The heuristic match subtask obtains the initial
set of solutions by comparing each abstracted
datum with the set of data explained by each
candidate (as  shown in Figure 5). The sub-
task result is a set of individual solutions, each
one explaining some observation. Each
hypothesis of this set is verified or rejected
during the discrimination step.
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Hypothesis refinement consists of gener-
ating more specialized hypothesis from solu-
tion hierarchical associations. It is solved by
matching a set of conditions associated to the
solution node in the hierarchical structure,
and by specializing the solution if some
refinement condition is true. 

In Figure 4, we can see the connection
between task and method I/O roles, which is
carried out by renaming roles. In addition, the
method has been enriched with two domain
structure assumptions about the type of data
associations (hierarchical and nonhierarchical).

The propose and revise method solves the dis-
criminate subtask by proposing a plan to gather
additional data and revise the set of hypotheses
using new data that the user introduced. Two

different methods, as a function of the domain
data types solve the propose subtask. That is, this
subtask has been enriched with an assumption
about data types—symptoms and signs. A
ranking method is applied to propose a basic
plan for gathering symptoms, that is, for carry-
ing out the Anamnesis (the patient’s case his-
tory)—and the propose-verify-modify method
obtains a basic plan about the set of tests to
achieve. Following the first method, each symp-
tom, which can be caused by a scored hypoth-
esis, taking into account the symptom sensi-
tivity both for individual and joint hypotheses.
This method assumes the sensitivity-based
selection assumption—that is, additional data
obtained on the basis of corroborating the set
of hypotheses, and not by ruling them out.

On the other hand, the propose-verify-modify
method obtains a test plan. To configure the
method, it is enriched with two assumptions
about the type of tests—physical examina-
tion and complementary. The physical exam-
ination tests consist of a set of ordered explo-
ration steps, where a set of signs are collected
in each step. You carry out each exploration
step by using a set of different instrumental
techniques and applying a set of different
pharmacological actions. As a result, an
exploration step can cause an adverse effect
in the presence of some disease. In this case,
the exploration step is incompatible to a
hypothesis and must be replaced by a differ-
ent step intended to gather the same signs.
The propose-verify-modify method proposes a
basic plan by selecting the most relevant
signs for each hypothesis, merging all the
signs into one set, selecting a basic explo-
ration phase for each sign, and ordering the
set of phases. It then verifies the suitability of
each phase, taking into account the set of
diagnosis hypotheses. If a phase is not suit-
able, it must be substituted for a different
phase or ruled out from the plan if the new
proposal has already been replaced within
the same cycle.

The revise subtask, from the propose-and-revise
method, verifies whether or not the set of indi-
vidual hypothesis explains the set of new addi-
tional data. You can carry out this subtask by a
basic abductive method, because the Multiple
Fault Assumption is achieved by this method,
whereas the Independence of hypotheses are
achieved by this method. A basic abductive
method decomposes a task in four subtasks:

• propose a set of individual hypotheses,
• verify each hypothesis from the complete

set of data,
• refute the set of lower suspect hypotheses,

and 
• assemble individual hypotheses by apply-

ing a basic covering method.

You can solve the proposal of a set of indi-
vidual hypotheses by directly adding the new
hypotheses generated in the generate task (as
a consequence of the new additional data),
to the set of hypotheses resulting from pre-
vious data.

The hierarchical classification method solves
the verification of each hypothesis and, in turn,
a ranking method solves the establish subtask.
This ranking method consists of matching each
individual observable that can be explained by
each hypothesis against the observed datum.
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Inconsistent, explained, unexplained, missing,
and not valuable values result from this matching.
The ranking method also computes the degree
of matching of each hypothesis and the set of
data, taking into account the results of previous
matching. This computation is based on the
positive coverage and the reasoning with
unknown and not valuable values postcondition. It
then sorts the set of individual hypothesis into
two subsets, higher suspect hypotheses and
lower suspect hypotheses.

You assemble an individual hypothesis by
applying a basic covering method, based on
the independence of hypotheses assumption.
The causal covering method solves the find-
ing of contributors; that is, for each datum, a
subset of hypotheses is obtained by contain-
ing the hypotheses for which the datum has
been labeled as explained or not valuable.
The transformation of the individual hypoth-
esis into a hypothesis set is carried out by the

basic set covering—that is, a hypothesis cov-
ers all contributor sets.

The key steps involved in developing
our diagnosis system have been based

on the Protége-II approach.5 In particular,
the method configuration step has been con-
sidered as an assumption-driven activity.7

Nevertheless, it is not an assumption refine-
ment-driven activity but a different method-
combination-based activity. We used generic
methods usual in knowledge engineering
such as heuristic classification, propose-critique-
modify or generate and test, and methods specific
to concrete tasks, such as ranking methods or
abstraction methods. A prototype of the sys-
tem was implemented using the knowledge
engineering tool Kappa-Pc. This version
facilitated the acquisition of new knowledge

and the evaluation of the reasoning model.
However, as an isolated version, it holds up
the updating process. The system is being
migrated to a Web environment by using the
medical knowledge acquisition tool Keam,
which is being developed by our research
group.
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