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W H E N  THE RESEARCH THAT 
led to CommonKADS was conceived as part 
of the European Esprit program in 1983, the 
AI community as a whole showed little inter- 
est in methodological issues. At the time, the 
prevailing paradigm for building knowledge- 
based systems was rapid prototyping using 
special purpose hard- and software, such as 
LISP machines, expert system shells, and so 
on. Since then, however, many developers 
have realized that a structured development 
approach is just as necessary in knowledge- 
based systems as it is in conventional software 
projects. This structured development ap- 
proach is the aim of CommonKADS. 

Traditionally, knowledge engineering was 
viewed as a process of “extracting” knowl- 
edge from a human expert and transferring 
it to the machine in computational form. 
Today, knowledge engineering is approached 
as a modeling activity. In the CommonKADS 
methodology, KBS development entails con- 
structing a set of engineering models of prob- 
lem solving behavior in its concrete organi- 
zation and application context. This 
modeling concerns not only expert knowl- 
edge, but also the various characteristics of 
how that knowledge is embedded and used 
in the organizational environment. The dif- 
ferent models are a means of capturing the 
different sources and types of requirements 
that play a role in realistic applications. A 

THE AM OF COMMONMDS IS TO FILL THE 
NEED FOR A STRUCTURED METHODOLOGY FOR 
ms PROJECTS BY CONSTRUCTlNG A SET OF 

E N G l ” G  MODELS BUZLT W T H  THE 
ORGANlZATlON AND THE APPLlCATlON lN MIND. 

KBS, then, is a computational realization as- 
sociated with a collection of these models. 

Figure 1 summarizes the suite of models 
involved in a ComrnonKADS project. A cen- 
tral model in the CommonKADS methodol- 
ogy is the expertise model, which models the 
problem solving behavior of an agent in 
terms of the knowledge that is applied to per- 
form a certain task. Other models capture rel- 
evant aspects of reality, such as the task sup- 
ported by an application; the organizational 
context; the distribution of tasks over differ- 
ent agents; the agents’ capabilities and com- 
munication; and the computational system 
design of the KBS. These are engineering- 
type models and serve engineering purposes. 
The models are considered not as “steps 
along the way,” but as independent products 
in their own right that play an important role 
during the life cycle of the KBS. 

Here, we give a brief overview of the Com- 
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monKADS methodology, paying special at- 
tention to the expertise modeling - an aspect 
of KBS development that distinguishes it 
from other types of software development. 
We illustrate the CommonKADS approach 
by showing how aspects of the VT system’ 
for elevator design would be modeled (see 
sidebar, “The VT System” for background). 

Project management 
principles 

In CommonKADS, project management 
and development activities are separated. Pro- 
ject management is represented by a project 
management activity model that interacts with 
the development work through model states 
attached to the CommonKADS models. The 
development process proceeds in a cyclic, risk- 
driven way similar to Boehm’s spiral model? 
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The VT system 

Whenever possible, parallel development 

The VT system was originally developed 
for the Westinghouse company to support 
the routine design of elevators. The system 
was developed because processing standard 
design took too much time, and sales peo- 
ple wanted to serve customers with simple 
design problems more quickly. 

At the time of development, a number of 
software tools were available, such as a data- 
base of elevator components and specialized 
tools for calculating particular formulas. We 
selected the VT domain because it is well- 
known and is used for comparisons in the 
knowledge engineering community.’ 

References 
1 .  G. Yost, “Configuring Elevator Systems,” 

tech. repoIt, Digital Equipment Corpora- 
tion, Marlboro, Mass., 1992. 
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Figure 1 The (ommonKADS suite of models The lines indicate direct dependencies between elements of the models. 

of models is encouraged. Models must be 
maintained over the life cycle of the product. 
For each project a specialized “life cycle” 
can be configured depending on specific pro- 
ject objectives and risks. Finally, control of 
quality and progress is integrated through 
regular checking of model states that must 
be reached in a cycle. 

Figure 2 gives a stylized representation of 
how project management and development 
work are connected through model states. At 
the start of a management cycle, objectives 
for the cycle are defined, and associated risks 
are identified. From these objectives and 
risks, a set of model states is derived that 
must be realized within the cycle. These tar- 
get model states are projected onto develop- 
ment activities that should result in “filling” 
elements of the CommonKADS models. 

In Figure 2, the target state (validation of 
the problem description in the organization 
model) leads to the exploration of a number 
of additional states that the target state de- 
pends on (such as a description of the struc- 
ture of the organization). These information 
dependencies are depicted as dashed lines in 
the figure. CommonKADS provides exten- 
sive background information on such model 
state dependencies. At the end of each de- 
velopment cycle, a check is performed on the 
quality of the results. The project manager 
then reviews the results achieved in light of 
the overall objectives and risks. 

A CommonKADS project usually consists 
of many cycles, with the actual number de- 
pending on the planning horizon and the 
identification of new objectives and risks. 
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Figure 2. Example management cycle with assaciated development activities. Solid lines indicate seqGGGj of aclivi- 
ties. Dashed lines describe information dependencies between development activities. OM = organization model; TM = 
task model. 

Steps within a cycle can be repeated many 
times. The CommonKADS model set plays 
a pivotal role in this process. It provides a 
comprehensive and organized collection of 
aspects that can be relevant in a KBS project. 
However, this does not mean that in an ac- 
tual project all models have to be fully de- 
veloped; only those model components and 
states that bear on the project objectives and 
risks are selected. This allows for a parsimo- 
nious approach whenever necessary. 

Modeling the KBS 
environment 

Any information system has to function in 
the context of the overall organization. Infor- 
mation and knowledge systems are minor 
components within an organization’s business 
processes. A KBS is only one agent among 
many - human and nonhuman - and car- 
ries out only a fraction of the organization’s 
tasks. As a result, it is essential to keep track 
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of the overall environment in which the KBS 
has to operate. Many KBS failures have re- 
sulted from the lack of concem for social and 
organizational factors. Yet, many system de- 
velopment methods still focus on the techni- 
cal aspects only, and provide little support for 
the analysis of the organizational elements that 
determine success or failure. 

The CommonKADS model set provides 
four models that are specifically geared to 

modeling the organizational environment of 
a KBS: the organization, task, agent, and 
communication models. 

The organization model supports the 
analysis of the major features of an organi- 
zation to discover problems and opportuni- 
ties for KBS development, as well as possi- 
ble effects a KBS could have when fielded. 
A template that defines object and relation 
types is associated with each model in the 

model set (see Figure 3). The different com- 
ponents and relations in Figure 3 constitute 
topics to explore in this process and “stores” 
for the information obtained. 

For example, an organizational analysis of 
the VT elevator design domain could result in 
the following (simplified) descriptions of or- 
ganization model components. 

Function: The central organizational 
function under consideration is design. 
Structure: Currently, three departments 
are carrying out design activities. 
Computing resources: A database of ele- 
vator components and some specialized 
computational tools are available. 
Current problems: First, the design lead 
time (currently three weeks) is too long. 
Second, communication between the 
three involved departments is cumber- 
some and time consuming. 
Solution: First, a separate group for solv- 
ing standard design problems will be 
formed, recruiting members from the ex- 
isting departments. Second, the three (re- 
duced) departments will act as expert 
groups for special, nonstandard designs. 
Third, the new group will act as the liai- 
son with the sales department, and will 
be supported by a new computational 
tool: a KBS. 

Clearly, this solution affects the organiza- 
tion. Effectively, the design function is di- 
vided into two new subfunctions - standard 
and nonstandard design. The organization 
structure is adapted accordingly. The KBS 
forms an addition to the computing resources 
of the organization and should fit into the cur- 
rent infrastructure. The intended organiza- 
tional changes will also lead to changes in 
other aspects, including the distribution of 
knowledge. Separate variants of the organi- 
zation model could model both the old and 
new situations. 

The task model describes, at a general 
level, the tasks that are performed or will be 
performed in the organization where the ex- 
pert system will be installed. The tasks it cov- 
ers are those that help realize an organiza- 
tional function. The task model is represented 
as a hierarchy of tasks. In addition, aspects 
like inputs and outputs of tasks, task features, 
and task requirements can be modeled. The 
task model also specifies the distribution of 
tasks over agents. 

An agent is an executor of a task. It can be 
human, computer software, or any other “en- 
tity” capable of executing a task. In the agent 
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model, the capabilities of each agent are de- 
scribed. The model can also be used to rep- 
resent constraints on an agent, such as norms, 
preferences, and permissions that apply to 
the agent. For example, a constraint might be 
an organizational rule: A specific decision- 
making task should not be performed by a 
computer. Often, more agents are involved 
in a task than just a user and a KBS. In the 
VT case, for example, there is a database of 
elevator components. 

Because several agents are usually in- 
volved in a task, it is important to model the 
communication between agents. This is the 
purpose of the CommonKADS communica- 
tion model. The transactions here are mod- 
eled at a level that is still independent of a 
computational realization. 

Figure 4 illustrates part of the task model 
for the VT application. The figure shows sev- 
eral agents (five departments, the KBS, and 
a database) in relation to several tasks. In the 
new situation, the liaison department handles 
standard designs with support from the KBS. 
Liaisons give nonstandard designs to spe- 
cialized departments, and the design output 
is routed back to the sales group. 

Using these models, a developer can build 
a project-specific picture of the social con- 
text in which a KBS must operate. The orga- 
nization model supplies the main high-level 
aspects of the organizational environment, 
while the task model focuses on a subset of 
tasks directly related to the problem to be 
solved. These tasks are allocated to agents 
characterized through the agent model. In- 
formation-exchange acts between agents are 
detailed in the communication model. Rea- 
soning capabilities required for tasks can be 
analyzed with the aid of the expertise model 
explained below. Together, the expertise and 
communication specifications form the con- 
ceptual basis for technical system design. 

Modeling expert knowledge 
Expertise modeling is a focus point of 

CommonKADS, and is a specific activity in 
the type of systems we have targeted. The 
first-generation knowledge-based systems 
used one relatively simple inference engine 
working on a knowledge base in a particular 
representational format, usually production 
rules. But such a knowledge base hides im- 
portant properties of the reasoning process 
and knowledge structure in the application 
d ~ m a i n . ~  Certain rules, or parts of rules, ful- 
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THEN machine-efficiency = 0.18 

Figure 5. Domain knowledge fragments in the VI domain. 

till particular roles in the reasoning process 
that remain implicit in such a KBS organi- 
zation. This implicitness of underlying struc- 
tures impairs the acquisition and refinement 
of knowledge for the KBS, as well as ham- 
pering the reuse of the system, its explana- 
tory power, and the assessment of its relation 
with other systems. 

During the eighties, the idea of introduc- 
ing a knowledge-level description was taken 
on in knowledge-engineering research to 
solve these problems4 A knowledge-level 
model of a KBS makes the organization of 
knowledge in the system explicit through 
elaborate knowledge typing. This knowledge 
typing should provide an implementation- 
independent description of the role that var- 
ious knowledge elements play during the sys- 
tem’s problem solving process. A knowl- 
edge-level model should explain how and 
why the system carries out a task in a vocab- 
ulary understandable to users. The model is 
thus an important vehicle for communicat- 
ing about the system, both during develop- 
ment and during system execution. 

With respect to knowledge categories, a 
distinction is often made between domain 
knowledge and control knowledge. Domain 
knowledge is static, and consists of the con- 
cepts, relations, and facts that are needed to 
reason about a certain application domain. 
We divide control knowledge into two cate- 
gories: inference knowledge, which describes 
how to use domain knowledge in elementary 
reasoning steps (inferences); and tusk knowl- 
edge, which describes how to decompose the 
top-level reasoning task, and how to impose 
control on this decomposition. 

Domain knowledge. A CommonKADS de- 
scription of domain knowledge defines both 
the content and the structure of the domain- 
specific knowledge base in a declarative 
form. Figure 5 shows some typical fragments 
of the knowledge base used in the VT do- 
main. The formulas specify dependencies be- 
tween elevator system parameters. (The ex- 
amples were derived from the Ontolingua 
version of the VT knowledge base.5) 

When the formulas are studied in more de- 
tail, it becomes clear that there are in fact two 
types: 

(1) Calculation formulas, which can be 
used to compute the value of a parame- 
ter (C 1, C3, C7); and 

( 2 )  Constraint formulas, which define pa- 
rameter-value restrictions that should 
not be violated (C2, C4-6). 

Such an underlying structure of domain 
knowledge elements is represented in Com- 
monKADS through an ontology. Figure 6 
shows the ontology for the formulas in Fig- 
ure 5 .  The notation is part of the Com- 
monKADS Conceptual Modeling Language 
(CML) (see also the sidebar, “Specification 
formalisms”). In the figure, the diamonds 
represent relation types. The calculation is 
represented as a ternary relation between a 
formula, a set of parameters playing the role 
of inputs (represented by the Da symbol), 
and a single parameter serving as output. The 
constraint relation is modeled as a binary re- 
lation between a formula and the parameter 
involved. Modeling complex expressions 
such as formula types is a typical feature of 
KBS construction. 
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inferences (part of the inference knowledge) that are invoked by leaf tasks. 

Inference knowledge. Inference knowledge 
is modeled in CommonKADS in terms of the 
operations on domain knowledge (infer- 
ences) and in terms of roles. A role is a label 
for some class of domain knowledge ele- 
ments that are used in a particular inference 
operation. The label indicates the role these 
elements play in the reasoning process (such 
as “hypothesis”). 

Figure 7 shows two inferences present in 
the VT application. Ovals represent infer- 
ences; rectangles denote data elements ma- 
nipulated by the inference (dynamic roles). 
The double arrow indicates the underlying 
domain knowledge that is used by the infer- 
ence (static roles). In this case, a compute in- 
ference computes a value for a parameter, 
using the calculation formulas in the knowl- 
edge base. This new parameter assignment 
can be used as input for an evaluate infer- 
ence that can produce constraint violations. 

Structures like the one in Figure 7 are 
called inference structures. They show the 
data dependencies between inferences and 
constrain (but do not define) the flow of con- 
trol. Also, the inference knowledge is 
phrased in a domain-independent vocabu- 
lary: No VT-specific terms, such as “eleva- 
tor,” are used. 

The role of inference knowledge is sim- 
ilar to that of inference rules in classical 
logic. In logic, an inference rule describes 
how axioms (domain knowledge) can be 
combined to derive new information. The 
sequence or purpose of the inferences is not 
described in the inference rule, but may be 
part of a mechanism embodied in a theorem 
prover. Inferences in CommonKADS can 
be viewed as generalizations of inference 
rules in logic. The main differences lie in 
the following features of CommonKADS 
inferences: 

they operate on restricted parts of domain 
knowledge; 
they are not necessarily truth preserving; 
and 
they refer to a computational method that 
has a specific purpose in problem solving. 

An inference specified in the inference 
knowledge is assumed to be basic in the 
sense that it is fully defined through its name, 
an input/output specification, and a reference 
to the domain knowledge that it uses. The 
computational way in which the inference is 
carried out is assumed to be irrelevant for the 
purposes of modeling expertise. From the 
viewpoint of the expertise model, no control 
can be exercised on the internal behavior of 
the inference. The inference is only assumed 
to be basic with respect to the expertise 
model. It is very possible that such a basic 
inference is realized in the actual system 
through a complex computational technique. 

Task knowledge. Task knowledge in Com- 
monKADS is modeled as a hierarchy of 
tasks. Figure 8 shows a task decomposition 
for the standard design task based on the pro- 
pose-and-revise method.6 This method re- 
quires that a design be represented as a set of 
parameter assignments (parametric design). 
The leaf nodes in this task hierarchy (such as 
propose and verify) invoke particular infer- 
ences (such as compute and evaluate). 

A specification of a CommonKADS task 
is divided into two parts. The tusk definition 
is a declarative specification of the goal of the 
task, describing what must be achieved. The 
tusk body specifies a procedure, and prescribes 
the activities to accomplish the task. The task 
body describes how the goal can be achieved. 

In Figure. 9, a specification of the top-level 
task for the VT application is shown. The 
task definition defines the overall goal of this 
design task and its I/O. This particular task 
definition requires that the domain knowl- 
edge can be viewed in terms of a set of pa- 
rameters representing the skeletal design, 
and a set of constraints that involve these pa- 
rameters. Design starts off with proposing a 
design extension (a new parameter value). 
This value is checked to see if it introduces 
a constraint violation. If it does, the revise 
task is invoked with the violated constraint 
as input. This process is repeated until all 
parameters in the skeletal design have been 
assigned a value. If for some reason the pro- 
pose task or the revise task fails, the overall 
design task fails. 
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It is important to consider how to support 
the process of defining the expertise model for 
a particular application. Like most other meth- 
ods, CommonKADS provides this support by 
enabling reusability of previously defined 
model components. The main difference is 
that in CommonKADS, the components are 
metamodels of the domain and control knowl- 
edge descriptions. 

The separation of the domain knowledge 
and control-related knowledge gives rise to 
an important question: What are the depen- 
dencies between the two parts of the model? 
While the so-called interaction problem states 
that control knowledge and domain knowl- 
edge are highly dependent’ -one cannot de- 
fine the domain knowledge without knowing 
what the task is going to be, and vice versa 
- early work on KADS was done under the 
assumption that domain knowledge can be 
formulated independently from the task.8 

Domain metamodels: ontology. There is a 
growing consensus that some interaction be- 
tween the domain knowledge and the task 
must exist, but that different types of interac- 
tion can be distinguished. In CommonKADS, 
this is called the relative interaction hypoth- 
esis -different types of knowledge differ in 
the degree to which they are dependent on the 
nature of the task. In CommonKADS, these 
different knowledge types are explicitly de- 
scribed in a number of ontologies. 

These ontologies are metamodels describ- 
ing the model structure of (part of) the domain 
knowledge. The ontologies can be organized 
in a multilevel structure, where each level cor- 
responds to a particular type of interaction. 
Mappings between the layers represent “view- 
points” on the domain knowledge. Multiple 
mappings of a certain knowledge type can 
exist, representing multiple viewpoints. Figure 
10 shows a graphical representation of on- 
tologies involved in the VT application. The 
bottom shows two fragments in the knowl- 
edge base (taken from Figure 5). 

Several ontologies serve as metamodels of 
the VT knowledge base. The parametric de- 
sign ontology introduces the general notion 
of constraint expression to describe parame- 
ter dependencies (among other definitions 
not shown). This ontology should contain on- 
tological commitments that are required by 
the parametric design task in general, but are 
not necessarily sufficient for the method used 

task parametric-design; 
task-definition 

goal: “find a design that satisfies a set of constraints”; 
input: 

output: 

task-body 
type: composite; 
sub-tasks: init, propose, verify, revise; 
additional-roles: 

skeletal design: “the set of system parameters to which values need to be assigned”; 
requirements: “the set of initial parameterhahe pairs”; 

design: “final set of assigned parameters”; 

extended-design: “current set of assigned parameters”; 
design-extension: “proposed new element of the extended model”; 
violation: “violated constraint”; 

parametric-design(skeleta1-design t requirements + design) = 
control-structure: 

init(requirements + extended-design) 
REPEAT 

propose(skeleta1-design t extended-design --3 design-extension) 
extended-design := design-extension U extended-design 
verify(design-extension t extended-design + violation) 
IF “some violation“ 
THEN revise(extended-design t violation -+ extended-design) 

design := extended-design; 
UNTIL “a value has been assigned to all parameters in the skeletal-design” 

end 

Figure 9. Sample task spetificotion of the top level task for the V i  opplicotion. In the control structure, orrom ore used 
to distinguish input and output. The statements in italics describe actions hose representotionol detoils hove to be de- 
cided during KBS design. 
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Figure 10. Linking domain and inference knowledge through ontdogC thus making their interoction explicit. 
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Table 1. Characterization of the propose-and-revise Conglomerate of methods. 

IASK PSM RESULTING DECOMPOSITION 

design Propose-critique-modify propose, verify, revise 
propose Decomposition into design plan no sobtasks Table 1 characterizes propose-and-revise in 
verify Domain-specific calculations no subtasks terms of the design-task analysis f r a m e ~ o r k . ~  
revise Dependency-directed backtracking find-fixes, apply-fix, propagate-fix The method underlving tou-level decomuo- 

~ 

Specification formalisms 
CommonKADS provides two 

formalisms for the specification of an 
expertise model. The CML formalism 
used here is a highly structured but still 
informal notation. It is used for the ini- 
tial specification, and designed to be 
easily usable by knowledge engineers 
with a CommonKADS background. If 
the domain is well understood, this 
CML specification can be judged to be 
sufficient input for system design. Alter- 
natively, the ML2 formalism can be used 
to construct a formal specification. For 
ML2, a theorem prover is available that 
allows model validation through (partial) 
simulations of the reasoning behavior. 
Tools that support transformations from 
a CML specification to skeleton ML2 
specification are available. 

to carry out the task. Therefore, we can char- 
acterize it as a task-type-oriented ontology. 
The propose-and-revise ontology is shown 
in Figure 6. It describes the structure of the 
domain knowledge in the format required by 
the inferences of the method selected (pro- 
pose-and-revise). 

In Figure 6, constraint and calculation are 
defined as viewpoints on constraint expres- 
sion in the parametric-design ontology. This 
method-oriented viewpoint enables us to par- 
tition the set of constraint expressions into 
two subsets that are each used in a different 
way: The “calculations” are the constraint ex- 
pressions used by the compute inference; the 
“constraints” are used by the evaluate infer- 
ence. In this way, each ontology can define 
its own interpretation of terms. For example, 
the term “constraint” in the propose-and-re- 
vise ontology has a much more restricted 
meaning than “constraint expression” in the 
parametric design ontology. The ontological 
levels attribute context-spec@c semantics to 
domain knowledge elements. This is in con- 
trast with the traditional logicist’s view of 
model-theoretic semantics, which implies a 
description of semantics at one level. 

The elements of the propose and refine on- 

tology are linked to inferences. This creates 
yet another metamodel defining how domain 
knowledge elements are manipulated dynam- 
ically during reasoning. In addition, methods 
often require specific knowledge that is not 
part of a more general ontology such as the 
parametric design ontology. For example, the 
propose-and-revise method requires knowl- 
edge of$xes: knowledge that describes how 
to change parameters when a constraint is vi- 
olated. This additional method-specific 
knowledge is represented as a separate knowl- 
edge base, and has its own ontology. 

By using different ontologies with different 
generality, and by partitioning the knowledge 
base accordingly, we can identify different 
classes of knowledge bases with different 
scope, generality, and reusability. For exam- 
ple, when the distinction between task-type- 
oriented and method-oriented ontologies is 
identified, it is easier to identify parts of the 
knowledge base for reuse in a similar task 
when applying a different method. 

Control knowledge: problem-solving meth- 
ods. We have mentioned the propose-and-re- 
vise method to solve the VT task. However, in 
the task specification in Figure 9 this method 
is never explicitly mentioned. The reason for 
this is that a method is in fact a metalevel no- 
tion that prescribes how a task definition (a 
goal) can be mapped onto a task body (a goal 
satisfaction procedure). Such a method is 
called apmblem solving method (PSM). 

A specification of a PSM is similar to a task 
specification. The main difference lies in the 
additional information about competence and 
acceptance criteria of the PSM. The PSM can 
be selected when a task definition specifies a 
goal that matches the competence of the 
method, provided that the acceptance criteria 
are met. A PSM decomposes a task into sub- 
tasks (such as propose, verify, and revise) or, 
alternatively, provides a direct way to achieve 
a task. A PSM can introduce additional roles 
that serve as place holders for intermediate re- 
sults, and can provide a template for a control 
regime over the subtasks. This information is 
essentially sufficient to create a task body. 

The propose-and-revise method used in 
solving the VT task is in fact a conglomerate 
of methods for solving a design problem. 

, “ I  

sition in propose-and-revise is an instance of 
the class of propose-critique-modify meth- 
ods (although in propose-and-revise there is 
no explicit critique task). 

A KADS library of PSMs developed in 
1987 has proven to be of help to many knowl- 
edge engineers in application development. 
At the minimum it provides useful initial 
ideas for expertise models, and ideally it 
changes the nature of the modeling process 
from a design-from-scratch task into a con- 
figuration-like activity. In the present Com- 
monKADS library,I0 the support has been 
improved by reducing the grain size of li- 
brary elements from wholesale models to a 
broad range of configurable components, and 
by giving better guidance to the actual con- 
struction of an appropriate model. The Com- 
monKADS expertise modeling library cov- 
ers nine problem types: diagnosis, prediction, 
assessment, design, planning, assignment, 
scheduling, configuration, and modeling. 

The PSM specification in the library does 
not provide automatic mechanisms to apply 
a method to a task definition; the PSM spec- 
ification should be viewed as a structured 
way to write down knowledge about prob- 
lem solving. In principle, it is possible to in- 
tegrate the PSMs as an explicit part of the ex- 
pertise model, and allow the system to 
decompose the task dynamically. This ap- 
proach can greatly enhance the flexibility of 
the KBS, allowing it to cope with a wider 
range of problems. It requires, however, ad- 
ditional knowledge about how to achieve 
goals. We call this additional metaknowledge 
strategic knowledge.” It is in fact similar to 
the strategic layer in earlier versions of the 
KADS expertise model.* 

System design 
The models discussed so far capture the 

various types of requirements for the target 
system, in particular the expertise model and 
the communication model. Based on these 
requirements, the CommonKADS design 
model describes the structure of the system 
that needs to be constructed in terms of the 
computational mechanisms, representational 
constructs, and software modules that are re- 
quired to implement the expertise and com- 
munication models. The design model has 
three constituents: 
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Architecture design defines an abstract 
computational machine that provides 
the basic primitives for realizing the ap- 
plication. 
Application design describes how the var- 
ious elements of the expertise model and 
communication model are mapped onto 
the primitive elements of the architecture. 
Platfom design defines the hardware and 
software infrastructure in which the sys- 
tem will be implemented. 

CommonKADS does not prescribe a par- 
ticular design approach, such as object-ori- 
ented or rule-based design. As a general 
rule, realizing a system will be simple and 
transparent if the gap between application 
and architecture specification is small - 
that is, that the expertise and communica- 
tion modeling constructs map easily onto 
computational primitives in the architecture. 
For example, although it is possible in prin- 
ciple to map the expertise model onto a first- 
generation rule-based architecture, such a 
design would lose the distinctions between 
the various types of knowledge. All knowl- 
edge types would be mapped onto the flat 
rule base, reducing maintainability and 
reusability. 

The approach that is favored in Com- 
monKADS is the structure-presenting de- 
sign approach. The basic principle here is 
that distinctions made in the expertise model 
are maintained in the design and the imple- 
mented artifact, while design decisions that 
add information to the expertise model are 
explicitly documented. (Design decisions 
specify computational aspects that are left 
open in the expertise and communication 
models, such as the representational formats, 
computational methods used to compute in- 
ferences, dynamic data storage, and the com- 
munication media.) The advantage of a struc- 
ture-preserving design is that the expertise 
and communication models act as a high- 
level documentation of the implementation, 
and thus provide pointers to elements of the 
code that must be changed if the model spec- 
ifications change. 

The structure-preserving design approach 
predefines a skeletal architecture that pro- 
vides the basic computational mechanisms 
needed to implement the expertise model: 
task execution mechanism, dynamic data 
storage, inference method execution, and ac- 
cess mechanisms for the domain knowl- 
edge.'* To construct the part of the design 
model related to the expertise model, we first 
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Figure 1 1. Modules in the VI system orrhitedure. 

map the elements of the expertise model onto 
elements of the skeletal architecture. Addi- 
tional design decisions are then made to 
specify the precise representation of the do- 
main knowledge, the locus of inference con- 
trol, and so on. Finally, an implementation 
platform is chosen that further constrains the 
design decisions. 

Figure 11 shows the software modules re- 
sulting from the high-level architecture de- 
sign for the VT application, based on the 
structure-preserving principle. White boxes 
represent the modules that are part of the 
skeletal architecture. Boxes with lightly 
shaded edges represent the modules that can 
be generated automatically from the exper- 
tise model specification. Together, these 
modules contain all the information present 
in the expertise model: &k and inference de- 
clarations, ontologies, definitions of map- 
pings between ontologies, and domain mod- 
els (the domain knowledge bases). The dark 
boxes are modules that contain specifications 
of additional design decisions, such as those 
with respect to the computational methods 
used. The result is a highly modular design, 
parts of which can be easily reused in other 
applications. 

CommonKADS in perspective 
One of the salient features of Com- 

monKADS is the modeling approach. The 
suite of models not only acts as a means to 

Gt'ireric architecture 

Module dvectly 
generated froin 
CML description 
Module specifying 
design decisions 
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carve up the world in manageable pieces, but 
it also supports the selection of those aspects 
that are relevant and potentially amenable to 
risks in the development process. The tem- 
plates for each of the models form the core of 
the methodology. The notion of model states, 
along with the decoupling of project man- 
agement and planning from the development 
process, also provide mechanisms for flexi- 
ble project configuration and control. 

The knowledge modeling approach in ear- 
lier versions of KADS has matured in Com- 
monKADS, and now includes extensive fa- 
cilities for modeling of domain knowledge. 
This approach has also been brought into 
line with others, such as components of ex- 
pertise, generic tasks, F'rot6gC-11, and SBF. 
The CommonKADS expertise model sup- 
ports the introduction of ontologies as a 
mechanism for generating abstracted de- 
scriptions of the structure and vocabulary of 
the domain knowledge. The ontologies also 
link the domain knowledge to the inference 
knowledge, thus explicating and minimiz- 
ing the interaction between declarative 
knowledge and the task. 

The decomposition of a knowledge sys- 
tem as used in the CommonKADS expertise 
model has similarities with the three view- 
points identified by current software-engi- 
neering approaches: data, functional, and 
control view. Separation of these views sup- 
ports structured analysis and design, as well 
as modularization of the models and systems. 
However, the methods employed in Com- 
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monKADS differ in several ways from con- 
ventional modeling techniques. First, the ex- 
pressiveness of the knowledge modeling for- 
malisms is larger than that of entity-relation 
models or object-oriented analysis tech- 
niques. Second, the functional view (infer- 
ence structure) in CommonKADS is much 
more constrained than in typical data-flow 
modeling techniques: the primitives that re- 
sult from a full, functional decomposition are 
limited to certain sets of standardized oper- 
ations. Finally, CommonKADS differs from 
the more conventional views in the nature of 
the link between domain knowledge (“data”) 
and the inferences (“functions”). Through in- 
troduction of abstraction mechanisms in the 
form of knowledge roles and ontologies, the 
coupling between the data and functional 
views of the model is indirect, and hence 
there exists more potential for reuse of indi- 
vidual components. 

design model does not prescribe a particular 
approach, the structure-preserving design 
was found to be particularly fruitful. Pre- 
serving the structure of the expertise model 
in the system design allows linking between 
the knowledge model and the actual code. 
Such links can be instrumental in explana- 
tion, testing, and maintenance. In addition, 
structure-preserving design provides handles 
for an advanced design-support environment. 

CommonKADS is a good candidate for 
becoming the de facto European standard 
and point of reference for knowledge engi- 
neering methodologies covering a wide 
range of KBS development aspects. Many 
successful projects have been performed with 
CommonKADS, albeit not always with the 
methodology in its present form. Commer- 
cial as well as academic (research-oriented) 
support tools are available for versions of 
CommonKADS. As a framework, Com- 
monKADS has given rise to numerous re- 
search projects, and keeps on doing so. Ideas 
like knowledge-level reflection, formal spec- 
ification, automated code generation, and 
knowledge sharing are being researched 
within the common framework provided by 
CommonKADS. The effects of these explo- 
rations will become more and more visible 
in the future. 
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