
SOFTWARE—PRACTICE AND EXPERIENCE, VOL. 1(1), 1 (DECEMBER 1997)

Object-Oriented Patterns: Lessons from Expert Systems

TIM MENZIES

Department of Artificial Intelligence, School of Computer Science and Engineering, The University of New South
Wales, Sydney, Australia, 2052 timm@cse.unsw.edu.au

SUMMARY

Three benefits are typically claimed for object-oriented (OO) patterns: (i) reusing parts of the conceptual
models of old implementations; (ii) guiding the current development based using successful previous devel-
opments; and (iii) communicating existing systems to newcomers. We will argue that a similar idea can be
found in the expert systems literature dating from the early-1980s. The goal of or knowledge-level mod-
elling (e.g. KADS) is to identify abstract patterns of inference that appear in many expert systems. Such
abstract patterns of inference and program structure, it is argued, are productivity tools for the creation
of software applications; i.e. argues for a similar reuse benefit as OO patterns. Recently, however, an
alternative view has emerged. While such abstract patterns are good for communications and guidance, the
reuse benefits may never be realised. Patterns may be best viewed as tools for structuring an argument,
rather than recording a conclusion.

KEY WORDS OO patterns expert systems knowledge-level modelling

INTRODUCTION

An exciting idea in current OO thinking is the pattern, i.e. a fragment of a high-level conceptual model
which may be useful in many applications. Using patterns may have three benefits:

The re-use benefit: A designer can bootstrap themselves into better systems using proven old
systems. Example reuse patterns can be found in 1-4. Note that analysts may not use the patterns
verbatim. Reuse patterns are like the logical design which may require some configuration/ al-
teration for the physical implementation of any particular system. Nevertheless, the essence of
the physical implementation will be the reuse pattern.
The guidance benefit: Not all patterns are reusable libraries of OO classes. Guidance patterns
serve to direct the analyst’s focus onto a set of issues that previous analysts have found insightful.
Example guidance patterns are CHECKS 5 and Caterpillar’s Fate 6.
The communication benefit: Patterns are a succinct tool for explaining existing systems. When
we tutor OO, we find patterns to be a useful final initiation ritual for a novice OO developer.
When they “get” patterns, we know that they are capable of comparing and contrasting a wide
range of OO systems.

Despite the current level of enthusiasm for OO reuse patterns, we find it necessary to sound a note
of caution. A similar idea, called or knowledge-levelmodelling can be found in the expert systems
literature dating from the early-1980s 7, 8. This paper tries to bridge the gap between abstract conceptual
models proposed for OO and abstract conceptual models proposed for expert systems. In all, we will
say more about expert systems than OO. In particular, after over a decade of experience with , we

CCC 0038–0644/97/010001–01 Received 1 October 1996
c 1997 by John Wiley & Sons, Ltd. Revised 10 May 1996

2 T.J. MENZIES

Class Hierarchy Browser
Number

 Fraction
 Complex

 Integer
-
*
+

- aNumber

denominator) -
^((numerator * aNumber

 (denominator * aNumber
(denominator * aNumber

numerator))/

denominator)

Figure 1. A class hierarchy browser

can make some clear statements about its pitfalls. We will argue that we can extrapolate the lessons
of modelling to OO reuse patterns. That is, the problems already seen by will have to be
faced in the future by OO pattern researchers. In particular: we doubt the reuse benefit but not the
communication benefit or the guidance benefit.

This paper is structured as follows. Due to the hybrid nature of the content of this paper (OO and
expert systems), we will first introduce OO design patterns to our expert systems audience. Since
our concern is primarily with the reuse benefit and not the guidance benefit, this section will focus
on the GOF/GOV/Fowler/Coad-style reuse design patterns . Next, we introduce to our software
engineering audience and then offer a mapping from OO patterns to . Known pitfalls of will
be reviewed. Our discussion section offers two action plans based on this revised view of patterns.
Roughly speaking, we say that patterns may be best viewed as tools for structuring an argument, rather
than recording a conclusion.

REUSE OO PATTERNS

This section is a short introductory tutorial on OO patterns.
Consider the class hierarchy browser of Figure 1. When a class name is selected in the upper-left

list box, the methods of that class are displayed in the upper-right list box. If one of these methods is
selected, then the source code for that method is displayed in the bottom text pane.

Now compare this class hierarchy browser with the disk browser shown in Figure 2. When a directory
name is selected in the upper-left list box, the files in that directory are displayed in the upper-right list
box. If one of these files is selected, then the contents of that file are displayed in the bottom text pane.

Clearly, there is some similarity in the two browsers. Containers (classes or directories) are shown
top-left. The things in the containers that are not themselves containers (methods and files) are shown
top-right. The contents of these non-container things are shown in the bottom pane.

If we rename containers composites and the non-containers leaves then we can design one composite
browser class that handles both class hierarchies and directory trees (see Figure 3). That is, our disk
browser and class hierarchy browser are both presentations of nested composites.

Figure 4 shows the inner structure of the composite browser. Composites contain either other com-
posites or leaves. Leaves compile the contents of lower text-pane. Once this structure is in place, all
that is required to convert a disk browser to a class hierarchy browser is to:

Change the title of the window for “Disk Browser” to “Class Hierarchy Browser”.

GOF= the “gang of four” 1; GOV= the “gang of five” 2; Fowler 3; Coad 4

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 3

c:\
 bin
 docs
 wp

docs

words.dvi

words.tex
words.ps

\begin{document}

\author{Tim Menzies, Department
\title{OO Patterns: Lessons}

of Artificial Intelligence

Figure 2. A disk browser

Define Class beneath Composite and Method beneath Leaf.
Implement the different compiles methods in Method. Compiling file contents implies
transferring text to primary storage. Compiling method contents implies parsing the source
code, etc.

We have just isolated a “pattern”: a fragment of a high-level conceptual model which may be useful
in many applications. The above design can be used to (i) browsing a disk; (ii) browse a class hierarchy;
or, more generally, browse any 1-to-many nested aggregation (e.g. players in teams, persons in com-
panies, stock on shelves). This composite pattern is one of the 23 OO reuse design patterns listed by
GOF. The above example suggests the power of such OO reuse patterns. Seemingly different problems
can be resolved to a single design. OO reuse patterns could become a repository for experience which
can benefit new designers. OO reuse patterns could also serve to unify the terminology of OO design,
allowing experience from one application to migrate into another area.

Patterns have been documented in many formats. The GOV prefer the format: context, problem,
solution 2. The context describes a design situation. The problem describes the set of forces that re-
peatedly occur in that situation while the solution describes a configuration to balance those forces.
This solution contains a description of the static components and the runtime behaviour. In OO pat-
terns: (i) the static components are described using class hierarchies and their relationships; and (ii) the
runtime behaviours are described using some variant on collaboration diagrams 9. The GOV argue that
this format of a pattern is compatible with numerous other patterns researchers (page 11 of 2).

Patterns can be at different layers of abstraction. The GOV describe three layers of pattern ab-

Composite Broswer

Composites
hierarchy

Leafs at
selected
composite

 Fraction

Editor for the selected leaf.

Figure 3. A composite browser

4 T.J. MENZIES

Method

X Y isa XY

YX Association

AggregationYX

(1 to 1)

Class name

methods
attributes

File

Component

Leaf

Class Directory

edits

Composite
children

title
CompositeBrowser

browse

compiles

(many X to 1 Y)

Figure 4. Object model for the composite browser

straction: (i) low-level language-dependent idiom patterns; middle-layer language independent design
patterns describing a programmer’s key mechanisms (e.g. the GOF patterns); (iii) and top-level ar-
chitectural patterns that spread across the entire application. Examples of architectural patterns are
layered architectures (e.g. the three tiered database-model-dialogue systems found commonly in stan-
dard management information system-style applications); pipe-and-filter (e.g. the dominant paradigm
in UNIX shell scripts); or blackboards (an expert systems technique).

Patterns can be pitched at different audiences. For example, the GOV and GOF patterns are intended
for programmers or implementation-aware analysts. Fowler describes analysis patterns’; i.e. high-level
conceptual patterns which are used to communicate a design to the user community. Fowler was in-
volved in the development of a large medical system. Analysis patterns were used to discuss the design
of the system with doctors and nurses. Some patterns found in that medical system (chapter 3 of 3)
were also useful in a corporate finance applications (chapter 4 of 3).

INFERENCE SKELETONS

Our general claim will be that OO reuse patterns and (e.g. KADS) are similar enough for lessons
from to be relevant to OO reuse patterns. This section describes . For the moment, we will use
the term “inference skeletons” to describe the conceptual models in since we have yet to prove
that equals OO patterns (this will be done below).

The goal of modelling is to identify abstract reusable inference skeletons that appear in many ex-
pert systems; e.g. diagnosis, classification, monitoring, etc. Such abstract reusable inference skeletons,
it is argued, are productivity tools for the creation of expert systems. Examples of are Problem
Solving Types 7, Clancey’s model construction operators 10, the PROTEGE-II project 11, TINA 12,
SPARK/ BURN/ FIREFIGHTER (SBF) 13 and KADS 14. In terms of mature methodologies,

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 5

Data abstractions Solution abstractions

HEURISTIC MATCH

ABSTRACTION
DATA

Data Solutions

REFINEMENT

Figure 5. Heuristic classification

KADS is the dominant approach. Wielinga et. al. note that, as of 1992, KADS has been used
in some 40-to 50 knowledge-based systems (KBS) projects, 17 of which are described in published
papers 14.

In his classic Heuristic Classification paper, Clancey reverse-engineered 10 expert systems written
in a variety of tools and languages. He found that all these systems shared the same abstract inference
skeletons, which he called heuristic classification (shown in Figure 5).

For example, Figure 6 shows Clancey’s analysis of the MYCIN 15, 16 inference structure (abstract
schema at top, followed by an example). MYCIN was a backward-chaining rule-based system that
prescribed antibiotics. MYCIN worked by building an abstract model of the patient from the patient’s
data. This is then matched across to a hierarchy of disease classes. The final diagnosis is produced by
following the class diseases hierarchy downwards, looking for the most specific disease that is relevant
to this patient. Note the similarity with Figure 5.

Figure 7 shows Clancey’s analysis of another system, written in LISP which diagnoses an electronic
circuit in terms of the component that is causing faulty behaviour. The abstract schema is shown on
top, and an example is shown underneath. Note the similarity with Figure 6 and 5.

After the Heuristic Classification paper, Clancey refined his inference skeletons. In Model Con-
struction Operators 10, Clancey argued that rules like Figure 8 contain domain-specific terminology
(see Figure 9) as well as reusable inference strategies (see Figure 10). If these are removed from the
rule, then not only have we isolated the true business knowledge in the rule (see Figure 11), but we also
have found inference knowledge we can reuse elsewhere. Clancey’s preferred architecture for expert
systems is (i) a library of pre-defined problems solving strategies such as Figure 10; and (ii) a separate
knowledge base containing the special domain heuristics like Figure 11.

Inspired by Clancey’s work, subsequent researchers sought other abstract inference skeletons. Tans-
ley & Hayball 17 list over two dozen reusable inference skeletons including systematic diagnosis (lo-
calisation and causal tracing), mixed mode diagnosis, verification, correlation, assessment, monitoring,
simple classification, heuristic classification, systematic refinement, prediction, prediction of behaviour
and values, design (hierarchical and incremental), configuration(simple and incremental) planning, and
scheduling. These skeletons are recorded using the KADS notation of Figure 12 in which rectangles are
data structures and ovals are functions. Given a complaint, the KADS abstract pattern for diagnosis
is that a system model is decomposed into hypothetical candidate faulty components. A
norm value is collected from the system model. An observation for that candidate is requested
from the observables (stored internally as a finding). The candidate hypothesis is declared to
be the diagnosis based on the difference between the norm value and the finding. Note the
shaded portions of Figures 12 & 13. We will return to these shaded portions below (see Figure 18).

As another example, Figure 13 shows the KADS abstract inference skeleton for monitoring. A
parameter is selected from a system model. The model’s expected normal value is generated

6 T.J. MENZIES

HEURISTIC

Compromised Host
infection

Gram-negative

Immunnosuppressed

GENERALISATION

GENERALISATION

Leukopenia

DEFINITIONAL

Low WBC

QUALITATIVE

WBC < 25

E. coli Infections

SUBTYPE

Patient Data Disease

REFINEMENTABSTRACTION
DATA

Patient Abstractions Disease Classes

HEURISTIC MATCH

Figure 6. MYCIN

from the model and collected from the observable-s (stored as a finding). The current state of
the monitoring system us reported as a discrepancy class after comparing the finding with
the expected normal value.

Note that Figures 5,12, & 13 do not imply a particular execution order of their functions. Concep-
tually each function can be driven forwards or backwards to connect inputs to outputs or visa versa.
The heuristic classification pattern of Figure 5 could be driven from data to solutions to perform diag-
nosis; i.e. given the data, execute forwards data-abstraction then heuristic match, then
refinement. Alternatively, it could be driven from solutions to data to perform intelligent data col-
lection; i.e. given solutions, execute backwards refinement, then heuristic match, then
data abstraction. In this backwards reasoning, the generated data items become requests back
to the environment in order to rule out certain possibilities. KADS explicitly models this procedural
ordering of the function calls in a separate task layer diagram.

All known abstract inference patterns skeletons are really combinations of a small number of reusable
inference subroutines. Some of the reusable inference subroutines are shown in Figures 12 & 13 (e.g.
select, specify, compare). We will see more inference subroutines in the TINA system, below.

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 7

HEURISTIC

DATA

HEURISTIC MATCH

of Ports
Qualitative value

ABSTRACTION

Qualtitative
Circuit Behaviour

Circuit Behaviour
Measurements

Behaviour at Some Port
of Some Module in
Behavior Lattice

REFINEMENT

Component Fault

QUALITATIVE

Variable Voltage(Voltage N11 N14)
Reference is High

or OKis High

Q5 Collector Open

CAUSE

(Voltage N11 N14)
> 31 V

Figure 7. SOPHIE III

New abstract reusable inference skeletons can be quickly built out of these lower-level inference primi-
tives. Libraries of abstract reusable inference skeletons become a productivity tool for building a wide-
variety of expert systems. Marques et. al. report significantly reduced development times for expert
systems using a library of 13 reusable inference subroutines (including eliminate, schedule,
present, monitor, classify, select and dialog-mgr) in their SPARK/ BURN/ FIRE-
FIGHTER (SBF) environment. In the nine studied applications, development times changed from one
to 17 days (using SBF) compared to a range of 63 to 250 days (without using SBF) 13. To our knowl-
edge, this is the largest documented evidence of productivity gains in any software approach (be it
knowledge based, object-oriented, or otherwise).

if the infection in meningitis and
the type of infection in bacterial and
the patient has undergone surgery and
the patient has undergone neurosurgery and
the neurosurgery-time was less than 2 months ago and
the patient received a ventricular-urethral-shunt

then infection = e.coli (.8) or klebsiella (.75)

Figure 8. A domain rule with hidden reusable inference fragments. From 10.

8 T.J. MENZIES

subtype(meningitis, bacteriaMenigitis).
subtype(bacteriaMenigitis, eColi).
subtype(bacteriaMenigitis, klebsiella).
subsumes(surgery, neurosurgery).
subsumes(neurosurgery, recentNeurosurgery).
subsumes(recentNeurosurgery, ventricularUrethralShunt).
causalEvidence(bacteriaMenigitis, exposure).
circumstantialEvidence(bacteriaMenigitis, neurosurgery).

Figure 9. Domain-specific terms from Figure 8.

The above description is only a partial description of in general and KADS in particular. For
an on-line versions of the KADS documentation, see

and .
See 17 for a detailed text on KADS. See the Related Work section of 14 for a discussion of the differ-
ences in the various approaches. For a tutorial introduction to KADS, see 18, 8. For an advanced
use of KADS-type models, see the TINA system (below).

= OO PATTERNS

This section argues that it is inappropriate to declare inference skeletons to be different from OO
patterns based on their observed notational differences. The intention of the researchers is the same
as the OO patterns. Inference patterns satisfy the GOV definition of a pattern; i.e. they have context,
problem, and solution. Hence, we argue that inference skeletons are essentially the same as OO
patterns. Further, we will demonstrate that the patters are, in some respects, better patterns than
the OO patterns.

Are the Notational Differences Significant?
OO patterns are usually expressed in a different notation to inference skeletons (compare Fig-

ure 4 with Figure 12). However, just because inference skeletons are not expressed in an OO
format, that does not mean they aren’t patterns:

OO patterns researchers agree that patterns need not be expressed only as networks of classes
(pages 23-24 of 2). For example, Coplien refers to the 150 patterns gathered at Bell Labs for
telecommunication systems. He remarks that “none are really object-oriented” 19.

Strategy Description
exploreAndRefine Explore super-types before sub-types.

findOut If an hypothesis is subsumed by other findings which are not present in this case then that
hypothesis is wrong.

testHypothesis Test causal connections before mere circumstantial evidence.

Figure 10. Problem solving strategies from Figure 8.

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 9

if the patient received a ventricular-urethral-shunt
then infection = e.coli (.8) or klebsiella (.75)

Figure 11. The business knowledge of Figure 8.

Patterns can be found in the data-modelling world (chapter 4 of 3) where they are expressed in
an entity-relationship format.
Patterns were first described by Alexander as a tool for architectural design 20; i.e. originally,
patterns were expressed in a non-programming format.
Shaw & Garlan’s text discusses common software architectures 21 using a free text format. The
GOV’s section on architectural patterns translates the Shaw & Garlan, into an OO notation under
the headings “context-problem-solution”. We would argue that the GOV translation did not add
significantly to the Shaw & Garlan material. That is, Shaw & Garlan were discussing “patterns”;
they just structured their material in a different manner.

Another reason to reject inference skeletons as being true patterns is that they are not described
in the way proposed by the GOV; i.e. context, problem, and solution. Such a rejection may not be
justified:

We will argue below that tacit in the inference skeletons is a very strong notion of context,

complaint

select

decompose

observable hypothesis specify

select

finding compare norm

system model

difference

Figure 12. KADS: diagnosis

10 T.J. MENZIES

difference

discrepancy
class

classify historical
data

select

observable

finding

system
model

select

parameter

specify

normcompare

Figure 13. KADS: monitoring

problem, and solution.
Several prominent patterns texts do not use the context/ problem/ solution format explicitly (i.e.
Fowler 3 and Coad 4), yet clearly represent patterns research. For example, several of the patterns
found in Coad can also be found in the GOF text, with small changes. Also, the foreword of the
Fowler book is an enthusiastic patterns-based endorsement by one of the GOF authors.

EveningTime

DayTime Table
DayRate

Table
EveningRate

Activity

State Taxes
Compute

Taxes
State

Allocation
Time

BasicTime

Figure 14. Fowler’s process modelling notation; from page 153 of 3.

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 11

Interestingly, sometimes an “OO pattern” can look a lot like a “ inference skeleton”. For exam-
ple, consider Fowler’s proposed high-level notation for dynamic events Figure 14. Fowler notes that
this notation is experimental, but stresses the importance of a high-level functional view like Figure 14.
In Fowler’s proposed notation, ovals are event-driven controllers or triggers on tables which, when
required, will call methods inside the classes (polygons). For example, when day time writes to
day rate table, the triggers in that table will call methods within the activity class. If we (i)
divide Fowler’s class polygons into one rectangle for each public method of each class, and (ii) replace
Fowler’s ovals with ellipses, then the Fowler diagram become very similar to the KADS inference
skeletons shown in Figures 12 & 13.

Goals & Uses
Notational comparisons aside, the intent of the modelers and the OO patterns researchers is

clearly the same. Consider the quote Clancey used to open the classic paper Heuristic Classifica-
tion 22. We believe that this quote reflects something of the same intent as the OO patterns community:

To understand something as a specific instance of a more general case- which is what
understanding a more fundamental principle of structure means- is to have learned not
only a specific thing but also a model for understanding other things like it that one may
encounter. J.S. Bruner

Both and OO patterns are examples of the same software abstraction process. Experienced
software engineers can describe different applications using a common, abstract, language. Both
and OO design languages seek some characterisation of a design that is implementation independent
and re-usable. The literature shows that they seek to use inference skeletons in a similar
manner to OO patterns:

The SHELLEY 14 workbench project seeks to gain from the reuse benefit. Using SHELLEY,
knowledge engineering becomes a structured search for an appropriate inference pattern. Knowl-
edge engineers search requirement documents for a match between the stated requirements and
the library of known abstract reusable inference patterns. Once such a pattern is found or devel-
oped, then systems development becomes a process of filling in the details required to implement
that abstract inference pattern. productivity tools for new applications.
Numerous researchers argue for the communication benefit. For example, practioners find
this retrospective second-glance at their systems useful for developing more generalised archi-
tectures for future work 18. Expert systems theoreticians have used to assess and clarify the
essential features and differences of applications 23. Lastly, knowledge engineering novices can
use a analysis of classic expert systems to quickly review successful techniques.
However, to our knowledge, researchers do not argue for the guidance benefit.

Structure
To demonstrate conclusively that our inference skeletons are the same as the patterns seen in

the OO world, we must show that inference skeletons match the GOV definition; i.e. context,
problem/solution, and descriptions of static components with their runtime behaviour. This section
will argue that not only do inference skeletons contain “context-problem-solution”, but the under-
standing of the mapping between problems and solutions is more advanced in than in OO patterns.

12 T.J. MENZIES

Context
Clearly, all the inference skeletons have a context. The contexts of the Tansley & Hayball work

were listed above and included systematic diagnosis (localisation and causal tracing), mixed mode
diagnosis, verification, correlation, assessment, monitoring, simple classification, heuristic classifica-
tion, systematic refinement, prediction, prediction of behaviour and values, design (hierarchical and
incremental), configuration(simple and incremental) planning, and scheduling.

Problems & Solutions
can offer detailed descriptions of problems and their mapping to solutions. For example:

The TINA 12, 24 system offers a 45 word language for describing problem constraints divided up
into “epistemological criteria” (e.g. fault behaviour not constrained), “environ-
mental criteria” (e.g. imprecise values). and “assumption criteria” (e.g. single fault
assumption).
SBF 13 allows users to graphically draw a network reflecting their business process.

The problems/solutions component of the GOV definition is often expressed as an IF-THEN rule.
In some cases, the rules describing the mapping between problems and solutions in libraries is
so well understood that they can be directly executed. The result can be an automatically configured
system. For example:

SBF can automatically map its business function graphs into its library of inference sub-routines.
Once this mapping has been made, a rule-base can be generate which solves the business prob-
lem. SBF worked in the context of configuration.
A similar tool for automatically generating a runtime solution from a high-level problem descrip-
tion can be found in Protege-II 11. Protege-II is intended to be a multi-context tool but most of
its published applications have been in the area of skeletal plan refinement (instantiating a gen-
eral plan to a particular circumstance) or propose-and-revise (proposing an initial design, then
modifying inappropriate portions of that design).
Benjamin describes TINA, an automatic configuration device for configuring solutions to differ-
ent problems in the context of diagnosis 12, 24.

TINA was a “proof-of-concept” prototype only and is not as sophisticated as SBF or Protege-II.
However, the TINA technique is quite succinct. We will use this system to demonstrate how
researchers automatically map problem statements into solutions. In TINA, a solution is a problem
solving method (PSM) which must be configured for a particular sub-context using a set of primitive
inference techniques. For example:

Sub-contexts of diagnosis are defined by constraints within the domain such as the availability
or absence of simulation rules.
A primitive inference withinprediction based filtering could be a set intersection
sub-routine.

A TINA problem is described via suitability criteria categorised into a small number of types. For
example inference rules and simulation rules are suitability criteria with the same type
of constraint suspension method. The TINA system can automatically reflect over a set of
rules describing the transformation process from problems to solutions (or, in the language of TINA,
types of suitability criteria into PSMs). A simplified version of some of TINA’s rules is given in Fig-
ure 15. Types of suitability criteria are shown in the when sections. When executing a then section,

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 13

1 diagnosis
2 if prime_diagnostic_method
3 then symptom_detection and
4 hypothesis_generation and
5 hypothesis_discrimination.
6
7 symptom_detection
8 when ask_user_method
9 then apply_user_judgment.
10
11 symptom_detection
12 when compare_symptom or
13 detection_method
14 then generate_expectation and
15 compare.
16
17 hypothesis_generation
18 when empirical_hypothesis_

generation_method
19 then associate and
20 prediction_filter.
21
22 hypothesis_generation
23 when model_based_hypothesis_method
24 then find_contributors and
25 transform_to_hypothesis_set and
26 prediction_based_filtering.
27
28 hypothesis_generation
29 when hypothesis_generation_method
30 then select_hypothesis and
31 collect_data and
32 interpret_data.

Figure 15. Portions of the TINA rules used for converting problems descriptions into solutions. Adapted from 12.

.

if the PSM component is named in another rule, the reflection can recurse. For example, executing line
3 symptom detection makes TINA test the suitability of the rules at lines 7 and 11.

A sample fragment of TINA output is shown in Figure 16. The trace back method traces back
the dependents of the broken component to find potential contributors to the fault. In the case of mul-
tiple contributors, TINA is saying that in this sub-context, they can be simply intersected. The
resulting contributors set is assessed using the corroboration method. Innocent contributors are
deleted (innocence is computed via running a high-level simulation). The remaining contributors are
potentially guilty of the faults and another sub-routine is called to discriminate between them. Note that
thiscorroboration methodwas generated when TINA exploredprediction based filtering
on line 26 of Figure 15 (using rules not shown in this article). For full details of this example, see 12.

Static & Runtime Behaviour
One difference between patterns and OO patterns is their different emphasis of descriptions of

static components vs runtime behaviours. As we move from the GOF to the GOV to Fowler, we see a
common approach to static structure descriptions (OO notations) and an increasing focus on describing

14 T.J. MENZIES

model_based_hypothesis_generation_method {
trace_back_method;
intersection_method;
corroboration }

trace_back_method {
find_upstream }

intersection_method {
intersection }

corroboration_method {
select_random;
simulate_hypothesis;
compare;
delete }

Figure 16. After exploring its problems/solution mappings, TINA can automatically generate a PSM for
diagnosis. Adapted from 12 and converted into a procedural formalism.

the runtime behaviour. patterns offer a very rich description of the runtime behaviour but are less
focused on the static descriptions. The patterns we have seen to date are modelled in a functional
decomposition style. Hence:

Unlike OO, operations are not modelled with data structures. Rather, they are modelled
separately as inference sub-routines like classify (Figure 12) and select random (Fig-
ure 16).
KADS does not show the relationships between their entities. The only “relationships” modelled
are those representing data flows between functions.

If “patterns” was purely an OO concept, then this functional decomposition approach to the speci-
fication of inference skeletons would disqualify them as patterns. However, we argued above that
the concept of a pattern transcends the OO paradigm.

Patterns OO Patterns?
OO patterns dates back to the early 1990s 25 while dates back to nearly a decade earlier 7.

patterns research is more advanced than OO patterns research:

patterns have been refined to the point where libraries of pattern solution components can
be automatically configured into executable solutions from a problem description.
Librarian software has been built to support the intelligent indexing of patterns. For example,
if TINA finds that its problem cannot be solved using its known solutions, it conducts a dialogue
with the user about which modelling assumptions can be relaxed. Further, a programmer can go
to TINA with only a partial description of their proposed solution, and TINA will fill in the rest
after a search for patterns related to that description.

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 15

Model % disorders identified % knowledge fragments identified
1: epistemological 50 28

2: KADS 55 34
3: no model 75 41

Figure 17. Analysis via different models

LIMITS TO

We have made our case that research is essentially the same as OO patterns excepting that the
former uses a functional decomposition notation while that latter uses an OO notation. This section
discusses the significance of that equivalence. What can OO patterns research learn from the work?

On the positive side, OO patterns researchers can import a large, well-defined body of knowledge
about patterns in inference. OO patterns are mostly specified via a description of their static compo-
nents. patterns are specified via a description of their runtime components. OO patterns researchers
could learn some useful tricks about runtime behaviour from their counterparts.

On the negative side, even after a decade of research, the productivity benefits of patterns has yet
to be conclusively demonstrated in the field. The rest of this section discusses these productivity
issues. Clancey’s Heuristic Classification paper 22 offered a unified retrospective view on numerous,
seemingly different, expert systems. Similar (but smaller) studies (e.g. 26, 18) suggest that can retro-
spectively clarify historical expert systems design issue. However several important productivity issues
remain outstanding: do abstraction assist in the design of new systems?; are the abstractions
re-usable?; and does the extra level of abstractions used in overly-complicate the design process?.
This questions are discussed below.

Do Abstractions Assist in the Design of New Systems?
Corbridge et. al. reports a study in which subjects had to extract knowledge from an expert dialogue

using a variety of abstract pattern tools 27. In that study, subjects were supplied with transcripts of a
doctor interviewing a patient. From the transcripts, it was possible to extract 20 respiratory disorders
and a total of 304 “knowledge fragments” (e.g. identification of routine tests, non-routine tests, relevant
parameters, or complaints).

Subjects were also supplied with one of three abstract reusable patterns representing models of
the diagnostic domain. Each model began with the line “To help you with the task of editing the tran-
script, here is a model describing a way of classifying knowledge”. Model one was an “epistemological
model” that divided knowledge into various control levels of the diagnosis process. Model one was the
“straw man”; it was such a vague description of how to do analysis that it should have proved use-
less. Model two was a more sophisticated version of Figure 12. Model three was “no model”; i.e. no
guidance was given to subjects as to how to structure their model. The results are shown in Figure 17.

The statistical analysis performed by Corbridge et. al. found a significant difference between the
performance of groups 3 compared to groups 1 and 2. No significant difference could be found between
the poor-abstract-model group (model 1) and the group that was using a very mature abstract model
(model 2). These are very counter-intuitive results. Using a hastily-built abstraction was just as useful
as using a mature abstraction. And using no abstractions worked best of all! Far from challenging
this result, the community is now exploring empirical methods for exploring its approach in the

16 T.J. MENZIES

Sisyphus-3 project .

Are Abstractions Re-usable?
It is not clear that the problem solving methods found by are truly reusable. Often, researchers

build their own preferred patterns rather than use existing ones. The Tansley & Hayball patterns 17

are very different to the patterns offered by other researchers; e.g. Bredeweg’s qualitative prediction
method 29. In the literature already reviewed by this paper, we can find four different versions of
diagnosis:

Benjamin’s TINA’s view,
KADS (Figure 12),
Heuristic classification (Figure 6, & 7),
Tansley & Hayball’s approach 17.

To this list, we can add numerous other approaches to diagnosis:

An OO-based approach described in chapter 3 of Fowler 3.
Our own graph-theoretic approach 30.
DeKleer & William’s approach based around a distinction between a problem solver and a
assumption-based truth maintenance system 31.
Poole’s approach based on Bayesian reasoning 32.
To name but a few (for more examples, see 33).

While some of the these patterns share some common features, they reflect fundamentally divergent
different views on how to perform diagnosis. For example, like DeKleer, we view assumption space
management as the key inference strategy within diagnosis 30. In assumption space management, mu-
tually exclusive assumptions are managed in separate logical worlds. An expert system can reflect over
that assumption space to intelligently select the next test to perform (a “good” test costs very little and
culls much of the assumptions space). The implementation of such a multiple-worlds approach is a
non-trivial task. It adds significant amounts of extra architecture to the implementation. This approach
is not explored by Fowler, KADS, or Tansley & Hayball. We therefore note that, at least in the case of
diagnosis:

The pattern has not stabilised with time;
The pattern may not do so in the foreseeable future.

More generally, between the various camps of researchers, there is little agreement on the details
of the inference patterns. The list of inference sub-routines from KADS 14 and SBF 13 are significantly
different. Also, the number and nature of the problem solving methods is not fixed. Often when a
domain is analysed using a new method is induced 18. In summary, since inference patterns have
not stabilised over time, then extensive reuse is unlikely.

Does Modelling Overly-Complicated Modelling?
Certain authors note certain similarities between the different abstract reusable inference pat-

terns proposed by KADS:

Sisyphus is an attempt by the international KA community to define reproducible KA experiments 28.

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 17

finding compare

difference

norm

specifyobservable

select

parameter/
hypothesis

Figure 18. Overlap between KADS diagnosis and monitoring

Scheduling, planning and configuration are actually the same problem, divided on two dimen-
sions (“goal states known or not” and “temporal factors considered or not” (Figure 12.3 of 17).
There exists a common sub-graph between Figures 12 & 13 (see Figure 18).

Having noted that such similarities exist, the researchers do not take the next step and sim-
plify their distinctions (e.g. by combining diagnosis and monitoring). In other work 30, 34, we have
explored unifying knowledge-based processing by inferencing over and-or graphs. Such graphs could
be computed from an OO design if we ignore all encapsulation boundaries and just map the depen-
dencies between instance variables. In terms of abstraction, we would characterise such a modelling
technique as a very-low level tool. Nevertheless, we have found that a single inference procedure (ab-
duction) can be applied over such a representation to implement many of the abstract reusable
inference patterns (e.g. diagnosis, case-based reasoning, explanation, prediction, prediction, classifica-
tion, planning, monitoring, qualitative reasoning, verification, multiple-expert knowledge acquisition,
explanation, single-user decision support systems, multiple-user decision support systems, natural-
language processing, design, visual pattern recognition, analogical reasoning, financial reasoning, ma-
chine learning, and case-based reasoning).

Our general point here is that, in the case of , abstractions have confused rather than clarified
the modelling process. In this regard, the analysis of Motta & Zdrahal of the Sisyphus-2 applications
to be particularly interesting. Motta & Zdrahal discuss the various Sisyphus-2 implementations
using their special knowledge of constraint satisfaction algorithms 35. We find their lower level more
insightful into the construction process than the less-detailed, high-level approach. This low-level
view of a problem can find errors that experienced practioners cannot. For example, Motta &
Zdrahal argue that one declarative translation of the procedures in the Sisyphus-2 specification blurred
the distinction between hard constraints (which must not be violated) and soft constraints (which can
be optionally violated) 36.

DISCUSSION

Based on our experience with an equivalent line of research in expert systems, we have argued that
OO patterns are not a productive reuse tool. This is a counter-intuitive position. The overwhelming
intuition is that the abstractions offered by OO reuse design patterns and are true and useful for
the construction of new systems. Ralph Johnson comments:

18 T.J. MENZIES

The reason that I believe that OO design patterns are reusable is because I reuse them. The
reason I believe they help people design is because people who learn them tell me that
they help them design. The reason that I am sure that different groups of designers use
different patterns is because I’ve seen it happen 37.

This quote sounds a lot like something from the KADS community; i.e. abstract descriptions of old
designs are a penetrating and useful insight into the design process. However, after a decade of
research, we now doubt this insight, at least for :

Abstract patterns developed by different developers can be different.
The number of abstract patterns seems unbounded; practioners keep inventing new one.
Practioners don’t reuse each others’ supposedly reusable abstractions.
When we actually experiment with supposedly reusable patterns and productivity, (e.g. the Cor-
bridge study) we see evidence to support the counter-intuitive conclusion that well-formed ma-
ture supposedly reusable patterns are less productive than no pattern at all.

So, what is the appropriate use of the reuse patterns offered by (e.g.) GOF, GOV, Fowler, KADS, etc?
We make two suggestions. Firstly, we should monitor OO patterns for -type problems. Secondly,
we not use them as objective canonical versions of truth, but as an assistant in analysis and design.

Monitoring Potential Problems with Patterns Reuse
We hope we have, at the very least, motivated the need for experimentation to test if patterns are

indeed reusable. This section describes a series of such tests,
If, in the year 2007 we see the following, then we can conclude that the reuse benefits for OO

patterns are illusionary:

Between different OO “reusable” patterns, common processing elements are identified suggest-
ing that seemingly different “reusable” patterns have a significant overlap.
The extra layer of abstraction used in OO “reusable” patterns confuses rather than clarifies design
issues.
When controlled experiments are performed measuring development productivity, then no dif-
ference is detected between those applications that use and do not use OO “reusable” design
patterns.
In the future, we find that low-level details (e.g. constraint-satisfaction algorithms or and-or
graph processing) become the focus of the design process.
OO “reusable” patterns prove not to be reusable.
Different developers working on the same problem develop different “reusable” patterns.
For the above two reasons, libraries of “reusable” design patterns from different sources contain
significant deviations.

On the last point, we note that we can already see differences of opinion of the exact nature of the
patterns:

The GOV’s design-level patterns are different to those of the GOF (page 380 of 2);
There exists a non-trivial overlap between 3 of the GOV patterns: MVC (page 125 of 2), View
Handler (page 291 of 2), and Publisher/Subscribe (page 239 of 2). We would propose to combine
them.

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 19

We place a very different emphasis to Fowler on graph-theoretic designs. Fowler offers 1.5 pages
on “plans and protocols as graphs”(pages 166-68 of 3). We have argued above that generalised
and-or graphs are a engineering framework useful in numerous contexts. For example, recall
TINA’s search for candidates that could contribute to the current diagnostic problem (Figure 16).
Such a search is greatly simplified if the program can access the dependency graph between
business concepts. So, in our graph-theoretic view, we would propose to replace much of the
diagnostic architecture of Fowler chapters 3 & 4 with a more intricate version of “plans and
protocols as graphs”.

With respect to these last two points, it is a debatable point whether or not our design proposals are
better than those given by the GOV or Fowler. We argue below that it is important that such debates
take place, in public, and in front of students of OO design.

Constructivist Patterns
Having raised some doubts over patterns, we still believe patterns are useful. When training OO

practioners, we have observed that patterns are a powerful tool for communicating the insights of
experienced designers to less-experienced designers. However, it may be a mistake to assume that
just because students study patterns, that they will actually use them in their own work. This section
uses some theory from computer-based education to claim that while patterns may not be useful as
objective records of canonical truth, they may be very useful in supporting analysts and designers as
they construct their systems. That is, while we doubt the reuse benefit, we are encouraged by the
guidance benefit of patterns. Patterns may be best viewed as tools for structuring an argument, rather
than recording a conclusion.

Objectivism vs Constructivism
Education theorists are turning away from objectivist and towards constructivist approaches to edu-

cation 38. In objectivism, the teacher presents canonical forms of truth to students. In constructivism,
the teacher presents a range of different viewpoints on the one issue to students. The training session
and the students’ role is different in both approaches. In objectivism, students must memorise facts or
models which they will apply later. In constructivism, (i) teachers support students as they explore a
debate over some issue; and (ii) students try to build their own views of best practice.

An objectivist teacher may present some impressive theoretical mental framework summarising their
own view of a field. This summary may have taken years to synthesis. An constructivist teacher knows
that while such summaries marked a significant watershed in their own understanding of a field, they
may not be the final goal for the students. Rather, such theoretical frameworks may be useful to students
only as guides to reviewing a field while each student constructs their own personal mental frameworks.

Our reading of the current and OO patterns literature is that it is tacitly objectivist: i.e. the
libraries are assumed to be canonical forms of best solutions and a source of power in their own right.
The constructivist process of using a pattern to explore options has not been a major focus of the current
OO or patterns literature.

A Constructivist use of OO Patterns
A hypothetical constructivist patterns toolkit would support the following features:

Practioners could browse a library of or OO solutions to the same problem. Instead of
reading up on “one” solution, a constructivist patterns text would present multiple solutions to

20 T.J. MENZIES

(e.g.) the diagnostic problem (as done above when we discussed are abstractions reusable?)
or the update problem between multiple views. Techniques from case-based reasoning may be
relevant here 39.
Each alternative solution to a problem is annotated with its strengths and weaknesses. Within the
OO world, the Fowler, Coad, and Riel 40 texts are a first step in this direction. Fowler presents
his patterns in an evolutionary form. From some similar initial design, Fowler takes the reader
through a discussion of when the current form would suffice and when it should be made more
intricate. Coad takes a simpler “extend, discuss, refine” approach, but in greater detail. Riel
presents small designs (less than ten classes) along with a dialogue describing the strengths and
weaknesses of those design. He then makes some preliminary remarks about patterns in design
modifications which he calls transformational design patterns (chapter 10 of 40).
Practioners can try parts of those models on their own problem and when they do, some tool
encourages them to explore the strengths and weaknesses of that approach. Exactly how this
is done is an open research issue. Riel’s design heuristics might be suitable for small-designs
(though they are far from being universally accepted). However, heuristics for assessing larger-
scale 00 architectures or alternative inference skeletons are still poorly documented.

Interim Advice on Using Patterns
The open issues in the last two points of the previous section could be the basis for an research

programme that could take many years to terminate. Practioners cannot wait on the outcomes of such
a programme. In the interim, we offer the following advice on how to use the current generation of OO
or patterns in a constructivist manner:

Seek alternative patterns for the same context.
When studying the alternatives, form a group and argue each alternative with respect to some
concrete design problem.
Record not only the resolution of the debate, but the steps in the argument that resulted in that
resolution.
Heuristics suitable for your local institution will be found within those argument steps. Whenever
options are being considered, try and discover how your group explores and evaluates options.
Seek techniques for optimising this exploration/evaluation process.

We speculate that these locally-generated heuristics for reviewing a design may become a tool at
least as powerful as reading patterns.

CONCLUSION

We have distinguished three potential benefits from OO patterns: reuse, guidance, and communica-
tion. Based on our experience with similar patterns research in expert systems, we doubt the reuse
benefit, but endorse the communication and guidance benefit. The real power of patterns is how they
encourage practioners to succinctly describe and review the essence of complex architectures. Pat-
terns should not be viewed as objective canonical knowledge, but tools for supporting a constructivist
approach to analysis and design.

ACKNOWLEDGEMENTS
Ralph Johnson’s enthusiasm for exploring an alternative view made this paper possible. Norm Kerth

pointed out the guidance benefit of patterns. The comments of the anonymous reviewers prompted the

OBJECT-ORIENTED PATTERNS: LESSONS FROM EXPERT SYSTEMS 21

creation of half of the discussion section and a significant clarification of our mapping from to OO
patterns.

REFERENCES

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

2. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, A System of Patterns: Pattern-Oriented
Software Architecture, John Wiley & Sons, 1996.

3. M. Fowler, Analysis Patterns: Reusable Object Models, Addison Wesley, 1997.
4. P. Coad, D. North, and M. Mayfield, Object Models: Strategies, Patterns, and Applications, Prentice Hall,

1997.
5. W. Cunningham, ‘The

checks pattern language of information integrity’, J. Coplien and D. Schmidt (eds.), Pattern Languages of
Program Design. Addison-Wesley, 1995. Also available at http://c2.com/ppr/checks.html.

6. N. Kerth, ‘Caterpillar’s fate: A pattern language for transformation from analysis to design’, J. Coplien
and D. Schmidt (eds.), Pattern Languages of Program Design. Addison-Wesley, 1995. Also available from
http://c2.com/ppr/catsfate.html.

7. B. Chandrasekaran, ‘Towards a Taxonomy of Problem Solving Types’, AI Magazine, 9–17 (1983).
8. T.J. Menzies, ‘Limits to Knowledge Level-B Modeling (and KADS)’, Proceedings of AI ’95, Australia.

World-Scientific, 1995.
9. G. Booch, I. Jacobsen, and J. Rumbaugh, Version 1.0 of the Unified Modeling Language, Rational, 1997.

http://www.rational.com/ot/uml/1.0/index.html.
10. W.J. Clancey, ‘Model Construction Operators’, Artificial Intelligence, 53, 1–115 (1992).
11. T.E. Rothenfluh, J.H. Gennari, H. Erikson, A.R. Puetra, W. Tu, and M.A. Musen, ‘Reusable ontologies,

knowledge-acquisition tools and performance systems: Protege-II solutions to sisyphus-2’, B.R. Gaines and
M. Musen (eds.), Proceedings of the 8th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop, 1994, pp. 43.1–43.30.

12. R. Benjamins, ‘On a role of probem solving methods in knowledge acquisition- experiments with diagnostic
strategies’, Proceedings of the European Knowledge Acquisition Workshop, 1994, 1994.

13. D. Marques, G. Dallemagne, G. Kliner, J. McDermott, and D. Tung, ‘Easy Programming: Empowering Peo-
ple to Build Their own Applications’, IEEE Expert, 16–29 (1992).

14. B.J. Wielinga, A.T. Schreiber, and J.A. Breuker, ‘KADS: a Modeling Approach to Knowledge Engineering.’,
Knowledge Acquisition, 4, 1–162 (1992).

15. B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley, 1984.

16. V.L. Yu, L.M. Fagan, S.M. Wraith, W.J. Clancey, A.C. Scott, J.F. Hanigan, R.L. Blum, B.G. Buchanan, and
S.N. Cohen, ‘Antimicrobial Selection by a Computer: a Blinded Evaluation by Infectious Disease Experts’,
Journal of American Medical Association, 242, 1279–1282 (1979).

17. D.S.W. Tansley and C.C. Hayball, Knowledge-Based Systems Analysis and Design, Prentice-Hall, 1993.
18. M. Linster and M. Musen, ‘Use of KADS to Create a Conceptual Model of the ONCOCIN task’, Knowledge

Acquisition, 4, 55–88 (1992).
19. J.O. Coplien, ‘Idioms and patterns as architectural literature’, IEEE Software, 36–42 (1997).
20. C. Alexander, S. Ishikawa, S. Silverstein, I. Jacobsen, I. Fiksdahl-King, and S. Angel, A Pattern Language,

Oxford University Press, 1977.
21. M. Shaw and D. Garlan, Software Architecture: Perspectives on an Emerging Discipline, Prentice Hall, 1996.
22. W. Clancey, ‘Heuristic Classification’, Artificial Intelligence, 27, 289–350 (1985).
23. A.T. Schreiber, B.J. Wielinga, and J.M. Akkermans, ‘Using KADS to Analyse Problem Solving Methods’, in

J. Balder and H. Akkermans (eds.), Formal Methods for Knowledge Modeling in the CommonKADSMethod-
ology: A Compilation (KADS-EE/T1.2/TR/ECN/014/1.0), Netherlands Energy Research Foundation, 1992,
pp. 53–90.

24. V.R. Benjamins, ‘Problem-solving methods for diagnosis and their role in knowledge acquisition’, Interna-
tional Journal of Expert Systems: Research & Applications, 8(2), 93–120 (1995).

25. R. Johnson, ‘Documenting frameworks using patterns’, Proceedings of OOPSLA’92, ACM SIGPLAN, 1992.

22 T.J. MENZIES

26. H. Akkermans, F. van Harmelen, G. Schreiber, and B. Wielinga, ‘A Formalisation of Knowledge-Level Mod-
els for Knowledge Acquisition’, in J. Balder and H. Akkermans (eds.), Formal Methods for Knowledge Mod-
eling in the CommonKADS Methodology: A Compilation (KADS-EE/T1.2/TR/ECN/014/1.0), Netherlands
Energy Research Foundation, 1992, pp. 53–90.

27. C. Corbridge, N.P. Major, and N.R. Shadbolt, ‘Models Exposed: An Empirical Study’, Proceedings of the
9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge Based Systems, 1995.

28. M. Linster, ‘A review of sisyphus 91 and 92: Models of problem-solving knowledge’, in N. Aussenac, G. Boy,
B. Gaines, M. Linser, J.-G. Ganascia, and Y. Kordratoff (eds.), Knowledge Acquisition for Knowledge-Based
Systems, Springer-Verlag, 1992, pp. 159–182.

29. B. Bredeweg, ‘Expertise in qualitative prediction of behaviour’, Ph.D. Thesis, University of Amsterdam,
1992.

30. T.J. Menzies, ‘Applications of abduction: Knowledge level modeling’, International Journal of Human Com-
puter Studies, 45, 305–355 (September, 1996).

31. J. DeKleer and B.C. Williams, ‘Diagnosing Multiple Faults’, Artificial Intelligence, 32, 97–130 (1987).
32. D. Poole, ‘Probabilistic Horn abduction and Bayesian networks’, Artificial Intelligence, 64(1), 81–129

(1993).
33. W. Hamscher, L. Console, and J. DeKleer, Readings in Model-Based Diagnosis, Morgan Kaufmann, 1992.
34. T.J. Menzies and P. Compton, ‘Applications of abduction: Hypothesis testing of neuroendocrinological qual-

itative compartmental models’, Artificial Intelligence in Medicine (1997). To appear.
35. Z. Zdrahal and E. Motta, ‘An In-Depth Analysis of Propose & Revise Problem Solving Methods’, R. Mi-

zoguchi, H. Motoda, J. Boose, B. Gaines, and P. Compton (eds.), Proceedings of the Third Japanese Knowl-
edge Acquisition for Knowledge-Based Systems Workshop: JKAW ’94, 1994.

36. E. Motta and Z. Zdrahal, ‘The trouble with what: Issues in method-independent task specifications’, Pro-
ceedings of the 9th AAAI-Sponsored Banff Knowledge Acquisition for Knowledge-Based Systems Workshop
Banff, Canada, 1995.

37. R. Johnson. (personal communication).
38. T.C. Reeves, ‘Evaluating what really matters in computer-based education’, in M. Wild and D. Kirkpatrick

(eds.), Computer education: New Perspectives, MASTEC, 1994, pp. 219–246.
39. J.L. Kolodner, ‘Improving Human Decision Making Through Case-Based Decision Aiding’, AI Magazine,

68 (1991).
40. A.J. Riel, Object-Oriented Design Heuristics, Addison-Wesley, 1996.

Note that some of the Menzies references can be obtained from
.

