
11/22/2007 10:18 AMProduction Rules

Page 1 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

PRODUCTION RULES
Reference: Bratko ed. 3, chapter 15, page 347-

Aim:
To describe the systems that represent knowledge in the form of rules. Rule-based systems normally use a
working memory that initially contains the input data for a particular run, and an inference engine to find
applicable rules and apply them.
Keywords: backward chaining, condition-action rule, conflict resolution, expert system, fire, forward
chaining, inference engine, match-resolve-act cycle, ripple-down rules, rule-based system, working
memory
Plan:

condition-action rules can represent knowledge
backward and forward chaining
rules, facts, working memory, inference engine
match-resolve-act cycle: conflict resolution strategies
BAGGER example system

Introduction

"Production" in the title of these notes (or "production rule") is a synonym for "rule", i.e. for a condition-
action rule (see below). The term seems to have originated with the term used for rewriting rules in the
Chomsky hierarchy of grammar types, where for example context-free grammar rules are sometimes
referred to as context-free productions.

Rules

These are also called condition-action rules.
These components of a rule-based system have the form:

if <condition> then <conclusion>

or

if <condition> then <action>

Example:
if patient has high levels of the enzyme ferritin in their blood
 and patient has the Cys282→Tyr mutation in HFE gene
then conclude patient has haemochromatosis*

* medical validity of this rule is not asserted here

Rules can be evaluated by:

11/22/2007 10:18 AMProduction Rules

Page 2 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

backward chaining
forward chaining

Backward Chaining

To determine if a decision should be made, work backwards looking for justifications for the decision.
Eventually, a decision must be justified by facts.

Forward Chaining

Given some facts, work forward through inference net.
Discovers what conclusions can be derived from data.

Forward Chaining 2
Until a problem is solved or no rule's 'if' part is satisfied by the current situation:

. 1 Collect rules whose 'if' parts are satisfied.

11/22/2007 10:18 AMProduction Rules

Page 3 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

. 2 If more than one rule's 'if' part is satisfied, use a conflict resolution strategy to eliminate all but one.

. 3 Do what the rule's 'then' part says to do.

Production Rules
A production rule system consists of

a set of rules
working memory that stores temporary data
a forward chaining inference engine

Match-Resolve-Act Cycle

The match-resolve-act cycle is what the inference engine does.

loop

match conditions of rules with contents of working memory
if no rule matches then stop
resolve conflicts
act (i.e. perform conclusion part of rule)

end loop

BAGGER

Bagger is a simple rule-based system that describes how to pack items at a supermarket check-out.

While explaining Bagger, we shall describe a number of potential strategies for conflict resolution.

Bagger's working memory has an associated table of attributes of the objects (stock items) at the
supermarket.

There are 4 steps in Bagger, and Bagger uses a Working Memory item called "Step" to keep track of
where it is up to.

Each rule checks the value of "Step" as part of its if part, and will be applicable only to one of the
four steps.

This makes it easier to be sure that the rules will not interact in unexpected ways (a pitfall in creating
rule-based systems).

Steps in Bagger

. 1 Check order: Check what the customer has selected; look to see if something is missing, suggest

11/22/2007 10:18 AMProduction Rules

Page 4 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

additions.
. 2 Pack large items:Put the large items in the bag; put big bottles first.
. 3 Pack medium items:Put in the medium sized items; put frozen food in plastic bags.
. 4 Pack small items:Put in the small items wherever there is room.

Working Memory

Step: Check order
Bag1: <empty>
Unpacked: Bread
 Glop
 Granola (2)
 Ice cream
 Chips

Attributes of Objects

ITEM CONTAINER TYPE SIZE FROZEN?
Bread Plastic bag Medium No
Glop Jar Small No
Granola Cardboard box Large No
Ice cream Cardboard carton Medium Yes
Pepsi Bottle Large No
Chips Plastic bag Medium No

Rules for Step 1

B1:
if the step is check-order
and there is a bag of chips
and there is no soft-drink bottle
then add one bottle of soft drink to the order

B2:
if the step is check-order
then discontinue the check-order step
and start the pack-large-items step

Which of these rules should be chosen when in the check order step?

Conflict Resolution

Specificity Ordering
If a rule's condition part is a superset of another, use the first rule since it is more specialised for the
current task.

11/22/2007 10:18 AMProduction Rules

Page 5 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

Rule Ordering
Choose the first rule in the text, ordered top-to-bottom.

Data Ordering
Arrange the data in a priority list. Choose the rule that applies to data that have the highest priority.

Size Ordering
Choose the rule that has the largest number of conditions.

Conflict Resolution continued
Recency Ordering

The most recently used rule has highest priority or
the least recently used rule has highest priority or
the most recently used datum has highest priority or
the least recently used datum has highest priority.
More details

Context Limiting
Reduce the likelihood of conflict by separating the rules into groups, only some of which are active at
any one time. Have a procedure that activates and deactivates groups.

Rules for Step 2

B3:
if the step is pack-large-items
and there is a large item to be packed
and there is a large bottle to be packed
and there is a bag with < 6 large items
then put the bottle into the bag

B4:
if the step is pack-large-items
and there is a large item to be packed
and there is a bag with < 6 large items
then put the large item into the bag

B5:
if the step is pack-large-items
and there is a large item to be packed
then get a new bag

Working Memory So Far

Step: pack-medium-items
Bag1: Pepsi
 Granola (2)

11/22/2007 10:18 AMProduction Rules

Page 6 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

Unpacked: Bread
 Glop
 Ice cream
 Chips

Rules for Step 3

B7:
if the step is pack-medium-items
and there is a medium item to be packed
and there is an empty bag or a bag with medium items
and the bag is not yet full
and the medium item is frozen
and the medium item is not in a freezer bag
then put the medium item in a freezer bag

B8:
if the step is pack-medium-items
and there is a medium item to be packed
and there is an empty bag or a bag with medium items
and the bag is not yet full
then put the medium item in the bag

B9:
if the step is pack-medium-items
and there is a medium item to be packed
then get a new bag

B10:
if the step is pack-medium-items
then discontinue the pack-medium-items step
and start the pack-small-items step

Working Memory So Far

Step: pack-small-items
Bag1: Pepsi
 Granola (2)
Bag2: Bread
 Ice cream (in freezer bag)
 Chips
Unpacked: Glop

Rules for Step 4

B11:

11/22/2007 10:18 AMProduction Rules

Page 7 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

if the step is pack-small-items
and there is a small item to be packed
and the bag is not yet full
and the bag does not contain bottles
then put the small item in the bag

B12:
if the step is pack-small-items
and there is a small item to be packed
and the bag is not yet full
then put the small item in the bag

B13:
if the step is pack-small-items
and there is a small item to be packed
then get a new bag

B14:
if the step is pack-small-items
then discontinue the pack-small-items step
and stop

Implementing Rules in Prolog
Click here to see Prolog code for a simple production rule system.

To use this code, copy it to your own directory, e.g. by

% cd
% cp ~cs9414/public_html/Examples/rules-swi.pro ~

then start Prolog and do the following dialogue:

Dialogue with rules-swi.pro

% prolog rules-swi.pro
?- wm(X).

[Prolog will tell you which facts it knows (a, b, and c). Don't forget to type ";" after each solution is
produced by Prolog.]

?- run.
Yes
?- wm(X).

[The answer tells you that Prolog still knows that a, b, and c are true, and also which other "facts" it now

11/22/2007 10:18 AMProduction Rules

Page 8 of 8http://www.cse.unsw.edu.au/~billw/cs9414/notes/kr/rules/rules.html

knows. Don't forget the ";"s.]

?- already_fired(X, Y).

[This time the answer tells you that two rules have fired, and gives their names and their conditions. A rule
with the name null is also mentioned - this is a workaround in the code to avoid Prolog complaining that
already_fired is undefined, in cases where no rules have yet been fired.]

You can also play with the code - e.g. by writing your own rules and facts, and running the system with
them.

Scaling Up

Two problems that became apparent in attempts at commercial use of rule-based systems were:

. 1 stopping the rules from interacting with each other in unexpected ways as the number of rules grew
large;

. 2 maintenance: adding extra rules to correct undesired behaviour (or deal with unusual cases) without
messing up the behaviour of the rest of the system.

A partial solution to the first problem is to use partitioned production systems where at any given time
only a subset of the rules are active, so someone building a system can concentrate on just those rules, and
hopefully understand their interactions. The Bagger system is effectively a partitioned production system,
with the value of step determining which rules are active at any given time.

The best known approach to the maintenance problem (and it also deals with the interaction problem) is to
use Ripple Down Rules (RDRs). If you plan to use rule-based systems in a large-scale application, you
should spend some time reading up on RDRs.

You can find material on RDRs at http://www.cse.unsw.edu.au/~cs9416/06s1/lectures/rdr/RDR_links.html
and Paul Compton's Home Page/ - the UNSW course COMP9416 Rule-based Systems covers these in more
detail, but may not be offered every year.

Summary: Rule-Based Systems
Rule-based systems consist of a set of rules, a working memory and an inference engine. The rules
encode domain knowledge as simple condition-action pairs. The working memory initially represents the
input to the system, but the actions that occur when rules are fired can cause the state of working memory
to change. The inference engine must have a conflict resolution strategy to handle cases where more than
one rule is eligible to fire.

CRICOS Provider Code No. 00098G
Copyright (C) Bill Wilson, 2003, except where another source is acknowledged. Much of the material on
this page is based on an earlier version by Claude Sammut.

