An Expert System for Raising Pigs

Tim Menzies
Artificial Intelligence Lab, University of New South Wales, Australia
School of Computer Science and Engineering,
University of New South Wales, P.O. Box 1, Kensington, NSW, Australia, 2033.
timm@spectrum.cs.unsw.oz.au.

John Black, Joel Fleming
DSL Systems Centre, CSIRO Division of Animal Production, Australia
Commonwealth Scientific Industrial Research Organisation.

Murray Dean
Zwiggan Consulting, Australia

1. INTRODUCTION

An intelligent back-end to a DOS-based
mathematical modelling package written in
ARITY PROLOG is described. The model:
¢ simulates the growth and reproduction of
pigs;
« identifies factors that limit optimal perfor-
mance of the pig;
« identifies management strategies that max-
imise enterprise profit.

The expert system:

« presents an abstracted description of the out-
put of the model in a form that a non-
mathematician can understand;

e suggests dietary, housing, genotype, or
resource input changes that can improve the
profitability of the herd.

Verification studies have demonstrated that the
expert system can significantly out-perform
human experts interpreting the output of the
model (performance measured in dollars per
square metre per day). In a usual case, the
improvement is of the order of 10%. The system
is in routine use in America, Holland, Belgium,
France, Spain and Australia.

2. THE DOMAIN

Raising pigs is big business. In Australia alone,
300 kilotonnes of pig meat worth some $500 mil-
lion dollars is produced annually. The Aus-
tralian pig herd represents one-third of one per-
cent of the international herd.

In response to commercial interest in pig pro-
duction, CSIRO’s Division of Animal Production
designed AUSPIG, an MS-DOS tool for studying
the performance of pigs growing in pens in a pig-
gery. The pig farmer enters information con-
cerning the pigs’ diet, genotype, and housing, as
well as certain data concerning the local buyers

of pigs. AUSPIG’s grower pig and breeder pig
models then simulate the growth of the pig and
report its economic and biological characteristics
(e.g. live weight, backfat thickness, amino acid
utilisation, profit at sale) at various times dur-
ing its life [Black 87al.

As well as being useful for studying the pig’s
performance, AUSPIG can be used for experi-
menting with different ways of improving the
profit of a piggery. Once a growing regime has
been developed to optimise the growth of one
pig, AUSPIG’s PIGMAX optimisation model can
be used to study the effects of this regime on the
profitability of the entire herd. Typically, when
analysising a piggery, an initial simulation run
is made to ensure that the performance of the
pigs under their current environment is
predicted accurately. If inefficiencies in the pig’s
diet or environment are detected, a set of poten-
tially beneficial alterations are identified. These
alterations are tested by a second run of the
AUSPIG and/or the PIGMAX model. The results
of the first and second runs are then compared
to see if the tested alterations were successful or
if they could be further improved. This process
of:

anal ysis => nodification => test

could repeat any number of times. Experience
has shown, however, that there is little utility in
repeating the process any more than about five
times.

Using AUSPIG, it is possible to identify simple
changes to the pig’s diet, feeding regimes, or
environment that can significantly increase the
performance and profitability of the herd. For
example:

« In one spectacularly successful study of a pig-
gery, CSIRO scientists used AUSPIG to
develop a growing regime that increased a
piggery’s net return from $40,992 to

$202,321 (i.e. 496 percent) [Black 88].

¢ AUSPIG demonstrated that increasing the
flow of air over a pig in a hot shed (e.g. 32
degrees Celcius) from 0.2 metres per second
to 0.6 metres per second can double the
animal’s growth rate [Black 87b]. Such an
increase in air flow would be barely percepti-
ble to a human being.

The potential of the AUSPIG system is enor-
mous. The current system has an international
market. Some modern piggeries have installed
computer-controlled liquid feeding systems for
their pigs. Such piggeries can alter a pig’s diet
every day of the pig’s life. With such systems,
the challenge is to decide how to best capitalise
on this control and systems like AUSPIG are
essential. Further, the techniques developed for
AUSPIG could be generalised to produce an
AUS-COW, AUS-FARM, and a AUS-SHEEP
system.

A problem identified with the prototype versions
of AUSPIG was that it required an expert to
fully utilise the output of the mathematical
models. Early versions of AUSPIG produced
dozens of screens reports which the end-user
browsed to find ways to optimise the pig growth.
Each report was a 20 by 40 array of numbers
filling many screens. Trials showed that most
users examined few of these reports. In order to
make the system more acceptable to the average
pig farmer, and to increase its market potential,
it required an intelligent post-processor to
analyse the output. Ideally, the non-expert user
should be able to by-pass the screens of reports
and access a single screen that identifies any
biological inefficiencies and recommends
changed management strategies. The imple-
mented post-processor was called PigE®.

3. WHY PROLOG?

The choice of PROLOG as the expert system
implementation language was made after a con-
sideration of the required delivery environment.
¢ CSIRO’s primary concern was to keep the
cost of the AUSPIG package to a minimum.
AUSPIG already contained third-party
software which could only be distributed
under licence. CSIRO did not want to use a

1. The running gag of the project was the name PigE.
AUSPIG could be called a Management
Information System so the expert system could
have been called MISs PigE. The file transfer
utility KERMIT could have been used to move files
from developer to developer. And so on.

commercial expert system shell that would
attract more licensing fees and so inflate the
cost of the package.

When the expert system was first considered,
AUSPIG was targetted for a IBM-AT or AT-
clone running MS-DOS?. An AT configured
for AUSPIG leaves 420K of RAM free for
other processes. The expert system would
need to be able to execute within this
memory constraint.

o CSIRO wanted to allow for the extension of
any software written during the feasibility
study. CSIRO’s AUSPIG development team
includes programmers and it was hoped that
this programming team could continue the
development of the expert system after the
feasibility study.

The early version of the system was
developed using a prototyping methodology.
Initially, we were not sure how to reason
about the system. The developers wanted a
high-level symbolic-processing language that
could be easily modified to handle a variety
of inferencing techniques.

After a survey of the available tools, PROLOG
was selected as the high-level symbolic process-
ing language. At the time of the initial proto-
type, it was known that certain DOS-based
PROLOGs supported the generation of stand-
alone executables (i.e. no runtime license fees)
as well as memory management tools for DOS.
A major factor in the decision was the available
programming skills. Menzies and Dean both had
extensive PROLOG programming experience.

4. DEVELOPMENT

At first, a rapid prototyping methodology was
adopted. The two PROLOG developers (Menzies
& Dean) would work on the examples prepared
by the experts (Black & Fleming). Rules were
written, initially on paper, and a notation was
developed that reflected the native idiom of the
domain experts (a standard application lan-
gauge development approach [Bustany 88]). In
between the sessions, the experts would work on
further examples or attempt to write rules. The
PROLOG developers would work on an inter-
preter for the notation. Whenever the PROLOG
developers recognized that the domain-experts
where having to contort the expression of the
logic because of limitations with the interpreter,
the interpreter was altered to allow for a more

2. This has now changed. AUSPIG runs on a 386
DOS box with 2MB of RAM.

natural expression of the logic.

At the end of the prototype period, the domain
experts could write rules and the rules could
execute. Verification studies (see section 7) were
most encouraging. Testing revealed that the sys-
tem consistently out-performed the human
experts®. This "over-performance” of the system
is remarkable. We conjecture that a human
expert must look at many numbers from the
model before making a recommendation. The
amount of information that has to be processed
is large and it appears to exceed the capacity of
human beings. An expert system has no such
limitations to its short-term memory. The expert
system can therefore successfully study more
factors than a human being. Hence the superior
performance of the expert system.

Funding was obtained for a continuation of the
project. The utility of continuing with PROLOG
was reviewed. It was decided:

1. To stay with PROLOG while the
specification was under development.

2. To move away from PROLOG if the run-
times became unacceptably slow. This has
not happened. The PROLOG reasoning
executes at least as fast as the mathemati-
cal models so the user doesn’t perceive the
expert system as being the slowest part of
the system®. Also, during the reasoning,
interim conclusions are displayed to the
user. Hence, the user is not left with a
blank screen during the reasoning.

3. To move away from the in-house PROLOG
used in the prototype to ARITY PROLOG.
With ARITY, we gained:

¢ Memory management under DOS. Our
PROLOG programs were no longer
bound to the 640K DOS limit.

e Screen management tools. These screen
tools proved to be less-than-ideal (see
section).

A interface was developed between ARITY
and PASCAL to simplify data transfer and
allow for the seamless embedding of the
expert system into the AUSPIG package.

3. The developers were somewhat alarmed at this
finding. Would the experts take offence at the
system Dbeating them at their own game?
Fortunately, the experts’ pride in their rule-
writing ability out-weighed any other
considerations.

4. To the user, data entry is the most tedious and
slowest part of using the system.

Using the experience gained during the proto-
type, it was possible to estimate the times
required to build the remaining system. A pro-
ject plan was developed for the next year’s work.
The rule set was extended from 72 rules to 486
rules and is currently stable.

The system was developed and fielded using
PROLOG. Occasionally, some thought was
given to re-coding the rules in PASCAL. How-
ever, other enhancements were considered to be
of higher priority than a rewrite of a sub-system
that was performing adequately. Currently,
AUSPIG/PigE is in use in Australia, Holland,
Belgium, France, Spain, and America.

The domain experts report that maintaining the
system is not a major problem. Experts can
access reports generated by the inference engine
on rules that never fire or rules that fire too
much. Hence, they have some automated sup-
port for detecting inappropriate logic. The 486
rules divide up into 9 knowledge bases (KB).
Each KB consists of several rule groups of
between 5 to 15 rules. Within a group, asser-
tions can be made that other rules require.
Between rule groups, there exists a coarse-grain
level of communication (e.g. some areas of
management are not altered until others are
resolved). However, in general, rules remained
modular chunks of knowledge and can be edited
freely without unwanted side-effects to the rest
of the system®.

5. SHELL DESIGN

The domain is data-driven so a forward chaining
rule interpreter was written to process the
expert’s rules. As a technique for allowing the
succinct expression of generic queries and
meta-level logic, PigE’s rules support variables.
Rule conditions can be instantiated in numerous
ways and the associated rule actions are applied
for each different instantiation of the condition.
All the source code for the project was written
especially for CSIRO and CSIRO’s programmers
were trained in the maintenance of this code.
Where ever possible, procedural attachments
were used to implement commonly performed
tasks. Such procedural attachments could be
called from the RHS or LHS of a rule.

5. This is in marked contrast with the rest of the
AUSPIG system. The maintainers of the
mathematics models are somewhat envious of the
rule system. No portion of the models can be
changed without extensively effecting the rest of
the model.

At start up, PigE converts the AUSPIG report
files into Prolog facts. For example, if three lines
in the first grower report where:

32 11.0 462 425 4.2 1.75 1.71 18 28 38

39 14.5 535 465 7.3 1.89 1.78 17 27 37
45 18.0 606 498 9.4 1.98 1.84 16 27 37

then PigE would load in the Prolog facts:
g1(32,11. 0, 462,425,4.2,1.75,1.71, 18, 28, 38) .

g1(39, 14. 5, 535, 465, 7. 3, 1. 89, 1. 78, 17, 27, 37).
g1(45, 18. 0, 606, 498, 9. 4, 1. 98, 1. 84, 16, 27, 37).

PigE refers to these files via a set of database
selectors defined using a data dictionary. The
data dictionary for g1 gives each column in this
report file a succinct label. For example, Figure
One shows the data dictionary for report gI
defines "live weight (kg)" as lwt.

dd(gl, [
want age @ "age (days)",
want I wt "live weight (kg)",
Iwt_gain :
"live weight gain (g/day)",
want Iwt_av_gain :
"average daily gain (g/day)",
want p2 : "backfat thickness (mm)",
want fcr : "fat conversion ratio: fer",
want fcr_av : "average fcr",
want I ct "lct (degrees Q",
want ect "ect (degrees Q",
uct : "uct (degrees O)"

1.

Selectors are automatically generated by the
shell for each want-ed column. The use of selec-
tors makes calls to the database easier and insu-
lates programs from database changes. If pro-
grams talk to the database via the selectors,
then queries to the database can be made
without having to remember how many parame-
ters each clause has and without a lot of tedious
typing. Also, if the database structure is
changed, or more selectors are required, then
the data dictionary is edited and the selectors
generation program is called again. Any pro-
grams that access this database via the selectors
would not need changing.

To alter the rule set, CSIRO’s experts edited an
ASCII file storing special Prolog facts. These
facts are entered using pseudo-English Prolog
operators. For example, if browsing this ASCII
file, the domain expert could read the rule
shown in Figure One.

Line 1 of Figure One is the rule label. The rule
label has a unique identification number and a
brief synopsis of the function of the rule. Lines 2
to 7 are the rule condition. The keyword if indi-
cates that this rule condition can only be
satisfied once. If this keyword was replaced by
forall, then PigE would attempt to find all the
different instantiations of the variables that

rule # 6000 - 'use tenperature option ?’
i f climate(off) and % 2
| ower _piggery_tenp := L and % 3
upper _pi ggery_tenp := U and % 4
lct is (LCT, RONand % 5
ect is (ECT, RONand % 6
(L < LCT or U > ECT) % 7

t hen
observe
"When next you run the nodel,
turn on the tenperature option." %8
and zap pig is ok. % 9

Figure 1. A sample rule.

satisfy this rule condition. The rule action would
be applied for each different instantiation. Vari-
ables set in the condition can be accessed by the
rule action. Rule conditions and actions consist
of executable Prolog code separated by the key-
words and, or and not.

Rule number 6000 tests to see if the user should
have run the AUSPIG model with the climate
response option turned on. If this option is on,
the model studies the pig’s growth hour by hour
instead of day by day. This increases execution
time of the system considerably, but is useful for
investigating pigs under hot or cold conditions.
After testing that the climate option is off, lines
3 to 6 gather the information required to test if
the pig was under stress. Lines 3 and 4 ask the
user for the extremes of temperature in the pig-
gery. The procedure X := Y uses a question fact
to generate a question to the user; e.g.:

questi on(

| ower _pi ggery_tenp,
"How col d does your piggery get ? ",
0 to 50

).

The user is prompted with the text shown here
and is pestered until they provide a numeric
value in the range 0 to 50.

The actual logic of the rule is in line 7. The tem-
perature option should be turned on if the lower
piggery temperature is less than the pig’s lower
critical temperature (the point at which the pig
is forced to increase its energy expenditure by
shivering) or if the upper piggery temperature is
greater than the pig’s evaporate critical tem-
perature (the point at which the pig starts pant-
ing).

The procedure zap X (line 9 of rule # 6000)
removes an assertion made at start up. Asser-
tions are made by a ++ X rule action. These
assertions can be tested for by a call to { X }. At
start up, ++ pig is ok is asserted. Certain rules
test for not { pig is ok}. If this is true, i.e. a rule

like rule # 6000 has fired, then certain remedies
are explored. PigE tests its rules in a top-down
manner. This allows for a prioritisation of possi-
ble remedies. The rules are ordered in such a
way that important problems are resolved first,
regardless of their consequences on less impor-
tant problems.

6. SYSTEM VALIDATION

The primary motivation for attempting an
expert system was to make the system more
accessible to the average user. Hence, an assess-
ment criteria was chosen that reflected the per-
spective of such a user.

PigE is assessed according to the speed at which
it reaches a conclusion and how much its recom-
mendations can improve the profit per pig.
Speed is defined in terms of the number of runs
of the model required to eliminate biological
inefficiencies. Profit is defined as dollars per pig
per day (if the model’s housing option is off) or
as dollars per square metre per day (if the hous-
ing option is on). By graphing profit vs runs for
both PigE and a CSIRO expert, a simple visual
impression can be gained of the level of exper-
tise reached by the program (see Figure Two).
The expert system out performed the human
expert by 6.5 percent and increased the profit
per pig by 227 percent (using the example in
[Black 88]).

Pi gE:
227% i ncr ease
0.3
0.2 Human expert:
Profit 192% i ncr ease
0.1
0

{ { { \
2 4 6 8

AUSPI G run nunber

Figure 2. Comparison of human expertise vs
PigE

When these figures are extended to cover the
profit of the entire piggery, then human expert’s
analysis increased the piggery’s net profit from

$40,992 to $202,321. The expert system
increased the piggery’s net profit to $273,300;
i.e. it outperformed the human expert by 34 per-
cent and made $70,979 extra dollars.

Note that in all the above cases, the expert sys-
tem out-performed the human expert.

7. LESSONS FROM THE SYSTEM

7.1 Heuristic optimisation

Traditionally, with many biological problems,
linear programs are used to optimise inputs to a
system, such as occurs in least-cost diet formula-
tion packages. However, with complex simula-
tion models like AUSPIG, the values of vari-
ables that must be satisfied during the optimisa-
tion procedure are widely depending on the con-
ditions of the simulation. This makes a linear
programming approach unsatisfactory. Other
approaches, such as selected variations in a few
main variables, with and without "hill climbing"
techniques have been used, but these are com-
putationally extremely time-consuming and
inefficient. The heuristic approach outlined in
this paper provides a far superior method of
optimising these complex systems than those
previously adopted because it uses information
indicating which factors are limiting biological
efficiency and the rules of "experts" to select and
remedy in order of importance of these limita-
tions.

7.2 Arity Prolog

This project gave us some insights into the
strengths and weaknesses of ARITY PROLOG.
In order to retain a balanced perspective, the
reader should view ARITY’s weaknesses (listed
below) the broader context. Using ARITY, we
rapidly built an extensive meta-interpreter and
fielded a DOS-based PROLOG product interna-
tionally.

7.2.1 Strengths

PigE made extensive use of meta-level program-
ming. ARITY preserved the semantics of our
code in both interpretative and compiled mode.

We had some difficulties implementing the
interface from ARITY to PASCAL. This prob-
lems proved to be with the PASCAL, not with
ARITY. Once we changed PASCALSs to one that
had a rational memory structure, the
ARITY/PASCAL interface went very smoothly.

ARITY’s memory management was quite tran-
sparent to our PROLOG developers. After some
initial parameter tuning, we could ignore
memory management altogether.

The ARITY compiler speed up our execution
times by a factor of five. This was an unex-
pected surprise since the rule-interpreter used
non-compiled rules (see below).

7.2.2 Weaknesses

The screen-management tools are overly-
complicated. The specification of each screen
required the assertion of numerous facts. One of
our design goals was that the CSIRO program-
mers could maintain the code. We realised this
goal, except with the ARITY screen drivers. In
the end, the CSIRO programmers replaced the
ARITY system with their own home-grown
interface toolkit. We were surprised that this
home-grown system was easier to use and more
sophisticated than the screen package distri-
buted with ARITY.

The ARITY compiler had a few limitations:

¢ Debugging compiled code is not fast. The
ARITY compiler produces one internal data-
base file (called a .idb file) for the whole
application. If a module is re-compiled, its old
.obj file is replaced but the .idb file is merely
appended to. In practice, this means that
edit-compile-link-test requires a re-
compilation of all modules in order to com-
pletely reset the .idb file; i.e. no incremental
compilation.
The conclusions of our rules could be very
long and they exceeded the maximum fact
size that the ARITY compiler could handle.
Hence, we had to distribute our knowledge
base in an interpreted form.
The declarations required at the top of each
compiled files were involved and awkward to
maintain.

7.3 Explanation

The standard view of expert systems is that
explicit knowledge representations (such as
rule-based systems) make an explanation of the
reasoning simple to implement. According to
this view, expert systems should have an expla-
nation facility since this makes the reasoning
more like a human (humans can explain their
reasoning) and it makes the system more accept-
able to the user. Humans will not accept, it is
argued, the recommendations of a black box and
need to have a justification for the conclusions.

This has not been the PigE experience. A full
explanation of PigE’s conclusions requires an
inspection of many screens. Users will happily
accept the expert system’s recommendations in
preference to viewing these screens and will
never elect to view the screens. So, expert sys-
tems may not need an explanation facility so

much as a facility to give the users the feeling
that they might be able to check the conclusions
should they wish to. The paradox we found is
that once the users know such a facility exists,
they may never use it.

7.4 Knowledge Acqusition

Knowledge acqusition is described as the
bottleneck in building expert systems. In the
case of PigE, the use of the application language
approach simplified knowledge acqusition. Our
domain experts (Black and Fleming) wrote the
486 rules in the knowledge base with extensive
initial support, some support in the post-
prototype period, and minimal support for the
on-going maintenance.

It should be noted that our experts were both
experienced programmers and had written tens
of thousands of lines of FORTRAN each for the
rest of the package. Perhaps this prior program-
ming experience made it easier for them to con-
struct rules. Also, our experts were not
"computer-scared". They were using the rules to
augment a package they had built entirely
themselves and, hence, were very motivated.
Still, the ease of knowledge acquisition was
surprising.

7.5 Knowledge Maintenance

Knowledge maintenance is a subject discussed
extensively in the expert systems literature. It
has not proved to be a problem with PigE. The
acid test for maintenance is when the develop-
ment crew changes and this has not happened in
the history of the current project. However, the
division of the rules into knowledge bases and
rule groups simplifies the maintenance problem
as does the application language approach. The
use of domain-specific procedural attachments
that mimic the natural language of the domain
experts significantly simplifies maintenance.

8. FUTURE DIRECTIONS

Following on from the success of AUSPIG,
CSIRO is now planning a version of the system
for beef cattle. The expert systems development
will continue. As the pig system is refined, the
expert system assumes a higher and higher
prominence. Originally developed by mathemat-
ical modelling experts, AUSPIG is an expert’s
tool more than a tool for the computer novice.
The expert system component, originally
developed as an intelligent back-end to the
mathematical model, is being assessed as a tool
for assisting the computer novice for all their
interaction with the system:

e Human users could be assessed on a contin-
uum of expertise and the environment could
adapt appropriately.

Much of the tedium of data entry could be
removed if an expert system could guess at
many of the parameters and offer these
guesses to the user for them to confirm or
override. A frame representation of the
screens is being considered. Generic screens
could be modelled as classes and the actual
screens could be instances, each entry field
being one slot. Default values for the slots
could be inherited from the class structure
and the user could override the slot values as
appropriate.

9. CONCLUSION

The logic programming language PROLOG was
chosen for business reasons as the implementa-
tion tool of choice for a DOS-based farm
management expert system. The use of a com-
piled PROLOG allowed for the rapid develop-
ment of a royalty-free high-level domain-specific
shell. Using PROLOG, we constructed a appli-
cation language system in which the knowledge
representations were customised to reflect the
natural idiom of the domain experts. Domain
experts have found no trouble in understanding,
developing, and maintaining this representa-
tion. embedded into an existing application, and
fielded around the world. The choice of PRO-
LOG as the expert system tool has been
reviewed and no pressing reason has been found
to move from this language. The system has
been a complete success, partially due to the
adaptablity and extendability of PROLOG.

10. REFERENCES

[Black 87a] Black J.L., Fleming J.F. & Davies
G.T. A Computer Modelling Package for the
Nutritional Management of Pigs, in Australian
Poultry and Food Convention, 1987, pp273-
278.

[Black 87b] Black J.L. & Davies G.T. Predicting
the Effects of Climate on the Performance of
Growing Pigs, in Proceedings of NSW Dept.
of Agriculture Pig Advisory Office Confer-
ence, 1987, pp1-13.

[Black 88] Black J.L. & Barron A. Application of
the AUSPIG Computer Package for the Manage-
ment of Pigs in Proceedings of the Aus-
tralian Farm Management Society, 15, 1988,
5-1 - 5-10.

[Bustany 88] Bustany A. & Skingle B
Knowledge-based Development via Application
Languages in Proceedings of the Fourth

Australian Conference on Applications of
Expert Systems, May 11-13, 1988, pp277-302.

