
Some Prolog Macros for Rule-Based Programming: Why? How?

Tim Menzies
Lane Department of Computer Science,

West Virginia University,
tim@menzies.com

Lindsay Mason
Electrical & Computer Engineering,

University of British Columbia, Canada;
lmason@interchange.ubc.ca

Abstract

The history, benefits, and drawbacks to pure rule-based program-
ming is discussed. A simple extension to pure rule-based program-
ming is described. The extensions are very quick to code and can
be easily customized to support a range of knowledge engineering
applications.

Categories and Subject Descriptors

D.1.6 [Programming Techniques]: Logic Programming; D.2.1
[Software Engineering]: Requirements/Specifications—Lan-
guages; D.2.M [Software Engineering]: Miscellaneous Rapid
Prototyping; D.3.2 [Programming Languages]: Language Classi-
fications—Constraint And Logic Languages; D.3.2 [Programming
Languages]: Language Classifications—Extensible Languages;
D.3.2 [Programming Languages]: Language Classifications—
Specialized Application Languages; D.3.2 [Programming Lan-
guages]: Language Classifications—Very High-Level Languages

General Terms

Human Factors,Languages ,Design

Keywords

Rule-Based Programming, History, Prolog

1 Introduction

At a workshop on rule-based programming (hereafter, RBP), it may
be heresy to say that there is more to knowledge than just rules.
However, after many years of commercial and research work on
RBP, we assert that this is so.

This article reviews some of the history of RBP and the need
to extend certain aspects of RBP. These extensions are simple to

ACM acknowledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to do so, for
Government purposes only.
Third ACM SIGPLAN Workshop on Rule-Based Programming (RULE’02)Pitts-
burgh, PA, October 5, 2002
Copyright 2002 ACM 1-58113-604-4/02/10 ...$5.00

implement- so simple in fact that the entire source code for those
extensions can be presented in this article.

2 A Dummies Guide to RBP

2.1 Origins & Early Successes

This article focuses on rule-based knowledge engineering. Hence,
by “RBP”, we really mean “how rules were used in classical knowl-
edge engineering”.

Much of the early 1980s hype surrounding commercial applications
of artificial intelligence came from early successes with rule-based
production systems. Such systems were rule-based systems that
queried and updated objects in aworking memoryusing a MATCH-
SELECT-ACT cycle:
• MATCH: find the rules with conditions satisfied by the current

contents of working memory;
• SELECT: pick one rule from the MATCHed set using acon-

flict resolution strategy;
• ACT: perform the action of the picked rule.

There are many advantages to pure RBP. For example, the unifor-
mity of the RPG paradigm makes it amenable to:
• formal analysis of their reliability, e.g. [5];
• powerful learning schemes and languages, e.g. [8];
• the rapid creation of high-productivity programming environ-

ments, e.g. [7,11,12];
• the rapid training of business users so that they can create their

own rule bases, e.g. [14,15];
• powerful maintenance environments, e.g. [6,19].

Further, RBP is an insightful theoretical tool for cognitive psychol-
ogy. Pure RBP can replicate certain expert and erroneous behav-
ior of experts. For example, one way to explain the difference be-
tween expert and novice performance is that novices fill their work-
ing (human) memory with an excess of active goals. This leaves
no room for any intermediaries of any particular calculation. On
the other hand, experts have compiled their experience into high-
priority rules that select the next best action. Hence, the working
memory of an expert has less active goals which means experts are
free to use their memory to run computations [9].

Not only is RBP useful for cognitive theory, it is a useful tool for
pragmatic software engineers. RBP enables a novel iterative and
exploratory software development methodology. Iterative and ex-
ploratory software development is very useful when prototyping
software. Such prototyping is not required for well-defined tasks.
Such well-defined tasks can be implemented via a “waterfall” de-

velopment process; i.e.

water f all = analysis→ design→ code→ test

For less-defined tasks, waterfall development can stagnate in the
analysis stage since not enough is known about the domain. An
alternative approach is to use RBP to generate an executable ver-
sion of the current conceptualization of a system. Since each rule
is a separate chunk of knowledge, it is easy to quickly add more
rules. On execution, the interaction of these rules can lead to sur-
prising results that prompt clarifications and extensions of domain
knowledge. This approach has been called various things including
“knowledge elicitation via irritation” or the RUDE model; i.e.

RUDE = Run→Understand→ Debug→ Edit

RBP methods resulted in the “AI spring” of the 1980s. Many well-
documented, mature, and optimized RBP systems were developed
such as ART1, CLIPS2, and OPS5 [3] (just to name a few). Numer-
ous significant RBP systems were developed including the commer-
cially successful XCON computer configuration system [13].

2.2 Problems with Rules

The blossoming of RBP in the AI spring was not followed by an
RBP summer. An assumption underlying the RUDE approach was
theRUDE assumption; i.e:

Rules are independent chunks of knowledge which can
be easily added or changed or removed.

This proved not to be the case. For example, once XCON grew
to 10,000 rules, the developers of XCON had a RUDE3 awak-
ening: maintaining XCON’s rules had become fiendishly compli-
cated. To some extent, this was due to the density of knowledge
within XCON:
• The expertise within XCON’s rules reflected DEC’s state-of-

the-art knowledge in configuring computers.
• Such a rich library of knowledge will be intricate to maintain,

no matter how it is expressed.

However, another factor that complicated XCON’s maintenance
was that its rules violated the RUDE assumption. Real-world rule
bases often contained groups of rules with significant interactions.
For example:
• A careful reverse engineering of XCON showed that the sys-

tem executed though severaloperator spaceswhere methods
for improving the design of a computer were carefully col-
lected, rejected, elaborated, or assessed, before the appropri-
ate bestoperatorwas finally selected [1].

• Figure 1 shows three rules that check for certain special cases
of bagging groceries. These rules are not independent. Rule
b11 tries to sneak small items into grocery bags that aren’t
full and which don’t contain bottles. Ifb11 fails, then rule

1From Inference Corporation
2The “C” Language Integrated Production System, developed

by NASA [18]
3Pun. Function: noun. Etymology: perhaps from Italian

”puntiglio” which means fine point or quibble. Definition: the usu-
ally humorous use of a word in such a way as to suggest two or more
of its meanings or the meaning of another word similar in sound.

smallitems.pl
b11
in bag_small_items
if order=I with ‘items has N and

grocery with ‘name=N with ‘size=small and
bag=B with *notFull and % J 5
not (bag=B with ‘contents has C and

grocery with ‘name=C with *type(bottle))
then change order=I with select(N,‘items,!items) and

change bag=B with ‘contents takes N
since ’best to avoid bottles and small items’.

b12
in bag_small_items
if order=I with ‘items has N and

grocery with ‘name=N with ‘size=small and
bag=B with *notFull

then change order=I with select(N,‘items,!items) and
change bag=B with ‘contents takes N

since ’sneaking a small item into a not full bag’.

newbag4small
in bag_small_items
if order with ‘items has N and

grocery with ‘name=N with ‘size=small
then make bag with *nothing
since ’need a new bag’.

Figure 1. Three rules in the PIKE language (a STARLOG vari-
ant). These rules access the object defined in Figure 2, Figure 3,
and Figure 4. Example adapted from Winston’s BAGGER ap-
plication [24].

grocery.pl
groceryDB(1, bread, bag(plastic), medium, n).
groceryDB(2, glop, jar, small, n).
groceryDB(3, granola, box(cardboard), large, n).
groceryDB(4, iceCream, carton(cardboard), medium, y).
groceryDB(5, pepsi, bottle, large, n).
groceryDB(6, potatoChips, bag(plastic), medium, n).
groceryDB(7, pizza, box(cardboard), large, y).

% GROCERY has five fields, none of which are indexed
grocery=groceryDB(id,name,type,size,frozen). % J 10

% define GROCERY types
grocery*type(T) --> functor(‘type,T,_). % J................... 13

% size symbols to numbers
grocery*volumes([small/1, medium/2, large/3]).

% accessing the numeric size of a particular size symbol
grocery*volume(V) --> *volumes(Vs), ‘size=S, Vs has S/V.

Figure 2. A PIKE definition of the GROCERY object.

b12 just places small items into any grocery bag at all. Rule
b13creates a new bag when neither of the other two rules can
find a bag for small items. Note the tacit reliance ofb12 on
b11handling a certain special case (bags with bottles). Note
also the tacit reliance ofb13on the other two rules: creating
empty grocery bags is a nonsense actionunlesssome other
agent tries tofirst fill those bags.

The use of such coordinating rules violates the RUDE assumption
since every addition to the rule base has to be assessed with respect
to its effect on the rest of the rules.

Another problem with pure RBP is that the paradigm can confuse,
not clarify, certain types of procedural knowledge. Consider for ex-
ample, the process of finding the total volume of items in a grocery
bag. Onegenerator ruleis required for transferring pairs of grocery
items from that set to a temporary space of “candidate sums”. An-
otherintermediary rulematches and deletes each pair, then asserts
the sum of their sum as another member of the “candidate sums”.

order.pl
% ORDER has two fields and the first one is indexed
order=orderDB(+id, % "+" denotes indexing J................. 2

items).

order*size(20). % max number of items in an order
order*active. % ORDER is "active";

% i.e. delete all at reset

% Accessing the GROCERY term with a certain Name.
% GROCERY defined in Figure 2
order*item(Name,X) --> grocery with ‘name=Name

with ‘self=X.

% backtracks through all GROCERY items that are items
% in this ORDER
order*item(Item) --> ‘items has Name, *item(Name,Item).

Figure 3. A PIKE definition of the ORDER object.

bag.pl
bag=bagDB(+id,contents). % J 1

bag*active.
bag*capacity(20).
bag*empty --> ‘contents=[].

bag*newBag(Id,Contents) --> flag(ids,Id,Id+1),
!id=Id, % J........................... 8
!contents=Contents.

bag*nothing --> *newBag(_,[]).

bag*largeItem(I) --> grocery with ‘name=I
with ‘size=large.

bag*largeItems1(Item,1) --> *largeItem(Item),!.
bag*largeItems1(_,0).

bag*largeItems([H|T],N0+N) --> *largeItems1(H,N0),
*largeItems(T,N).

bag*largeItems([],0).

bag*largeItems(N) --> ‘contents=Items,
*largeItems(Items,N0),
N is N0.

bag*volume([Item|Items],V0+V) --> % J 26
grocery with ‘name=Item with *volume(V0),
*volume(Items,V).

bag*volume([],0). % J 29

bag*volume(V) -->
‘contents=Items, *volume(Items,V0), V is V0.

bag*full --> * volume(V), *capacity(S), V >= S. % J 34

bag*notFull --> not (* full). % J........................... 36

Figure 4. A PIKE definition of the BAG object.

A final report rule waits till the generator and intermediary rule
stop firing, then accesses the surviving “candidate sum” as the total
volume of the grocery bag. A more succinct representation of this
procedural summation knowledge that does not use rules is shown
in the list summation procedure in Figure 4 between line 26 and
line 29.

Many other researchers argued that rules were not the appropri-
ate primitive construct of knowledge engineering. Despite care-
ful attempts to generalize the early RBP knowledge engineer-
ing work (e.g. [23]), the construction of knowledge-based sys-
tems remained a somewhat hit-and-miss process. By the end of
the 1980s, it was recognized that design concepts such as RBP
were incomplete [4]. For example, Bobrow’s reverse engineering
of real-world knowledge-based systems [2] found that numerous
paradigms were being employed including rule-based, logic-based,

business logic
(rules & objects)

services (usually raw Prolog)

super-
business
users

knowledge
engineers

sa
ni

tiz
ed

,
si

m
pl

ifi
ed

,
pa

ra
m

et
er

iz
ed

in
fe

re
nc

e
cl

ic
he

s

Figure 5. The “iceberg model” of knowledge engineering.

functional, object-oriented, and “access-based” (which, these days,
we might call implicit invocation [22]). The 1990s was character-
ized by an extensive search forhigher-level reusable patterns of
inferencesuch as:
• Propose-and-revise (e.g. as done by [21]).
• Recursive descent of “problem spaces” (e.g. as done

by [25]).

2.3 Beyond RBP

The above problems, and our own commercial knowledge engi-
neering (e.g. [14, 15]), lead us to extent RBP. As done in many
other shells (e.g. ART, CLIPS), the need to use both procedural
and declarative rule knowledge made us combine RBP with a sim-
ple object-oriented approach. Rule conditions and actions could
use verbs defined in the object-language. For example, ruleb12on
line 5 of Figure 1 checks that a bag isnotFull, wherenotFull is a
procedure defined at the end ofbagon line 36 of Figure 4.

Also, for a while, we tried coding up knowledge engineering lan-
guages based on the supposedly reusablehigher-level reusable pat-
terns of inference. However, there was a problem. Our repeated ex-
perience was that while small communities of experts might reuse
an inference pattern, that pattern was not widely endorsed else-
where. That is, while designing a rule-base around a certain in-
ference pattern was useful, each new application needed a new in-
ference pattern (an effect reported elsewhere [10]). More gener-
ally, while many higher-level inference patterns have been identi-
fied (e.g. propose-and-revise, heuristic classification, recursive de-
scent of “problem spaces’), the reusability of these patterns is ques-
tionable since there never was widespread and stable agreement of
the internal structure of these patterns [16,17].

Even though inference patterns may not be reusable between do-
mains, they may be useful within a particular domain. Our de-
fault architecture for a new knowledge based system was theice-
berg modelof Figure 5. In that architecture, knowledge engineers
work “under the waterline” to build infrastructure to support the “in
view” knowledge bases created by advanced business users. Our
role as knowledge engineers was to:
• Identify cliches in the expert’s approach to different problems.

Such cliches may include the supposedly reusable inference
pattern.

• Craft support code for each such cliches.

Where possible, the support code was heavily parameterized so that

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9

T
ot

al
 n

um
be

r
of

 w
ri

tte
n

ru
le

s

Weeks

ke
users

Figure 6. Patterns of rule growth. KE= knowledge engineers

it could be extensively customized. These customization parame-
ters then became the “tip of the iceberg” that was visible to our
business users. These users then used these upper-most drivers in
their rules and objects. Our cliches included low-level idioms such
as summing all items in a list as well as domain-specific high-level
inference patterns.

Figure 6 shows a typical pattern of authoring rules using this iceberg
approach. Note that the knowledge engineers write some rules in
the initial stages while, by the end of the development, the users
have written most of the rules. This pattern of rule authoring arises
from the following development methodology:

Language development:Initially, the knowledge engineers strug-
gle to understand the domain and identify the relevant cliches.
After a week or two, some of these cliches are found and im-
plemented as support code.

Transition: The knowledge engineer then builds a few sample
rules to demonstrate the usage of the support code. These
sample rules are then used to train the business users.

Development:Business users go on to write most of the knowledge
base.

Language elaboration:The knowledge engineer watches their
progress to identify common inference cliches that are awk-
ward or clumsy or error prone to encode. The knowledge en-
gineers then (i) augment the support code and (ii) show the
business users how to simplify their rules using the augmented
support code. As a result, the business users learn how to en-
code and update their own rule base using a knowledge lan-
guage that has been heavily customized to their domain.

Maintenance: Maintenance in this approach is relatively simple
since business users can update their own knowledge even
when the knowledge engineer is unavailable.

3 STARLOG

The iceberg model is only possible when the practitioner can
quickly craft a new set of inference cliches. The rest of this pa-
per discusses STARLOG, a customization tool kit for knowledge
engineering.

The STARLOG system is a set ofload-time macrosthat con-
vert sentences in some domain-specific terminology into a simple
clause-based logic. Since these macros are called at load time then,

in many cases, the overheads of interpretation is incurred once at
load time and never at runtime.

STARLOG is a Prolog-based framework for building different lan-
guages for knowledge engineering. Prolog was chosen as the un-
derlying implementation language for several reasons. Firstly, the
iceberg model demands that the high-level knowledge structure be
implemented on top of routines written in a general purpose lan-
guage. Prolog is a general programming langauge with facilities
for defining user-friendly structures in a pseudo-English style; e.g.
the rules shown in Figure 1. That is it can handle both the low-
level routines and the high-level structures. Also, in the authors’
experience, Prolog is easier to customize than the other languages
they know well such as Lisp, Scheme, C, Pascal, Smalltalk, Perl,
Awk, or JAVA. Further, Prolog’s built-in search and match simpli-
fies much of the implementation of a RBP shell.

This paper presents 367 lines of Prolog that implements a simple,
but useful rule/object interpreter/optimizer. Of this code, 127 lines
are support utilities; 153 implement an optimized simple object lan-
guage and 87 lines implement a forward chaining rule-based sys-
tem. Such a small set of utilities can easily be customized for new
domains. One such customization is the PIKE language4 used for
the rules and objects shown in Figure 1, Figure 2, Figure 3 and
Figure 4.

PIKE supports three main constructs shown: objects, methods, and
rules. These constructs are discussed below, after introducing a
sample PIKE application and reviewing some Prolog technology.

4 A Sample Application

This paper contains full source code for a PIKE rule/object system
that extends Patrick Winston’s BAGGER problem [24]. BAGGER
is Winston’s allegory for XCON: XCON configures computers by
checking the right components are combined together while BAG-
GER checks that the right grocery orders are combined together in
grocery bags. Our extension includes rules, objects and methods
for groceries, bags, and orders.

PIKE’s BAGGER is loaded in Figure 7. The system contains five
rule groups:

Global: This is the initial group. It creates a sample order; see
Figure 7. The current group is then changed to...

Check order: Checks if any items are missing from the order;
see Figure 8. The current group is then changed to...

Bag large items: Handles the bagging of the bulky items; see
Figure 9. The current group is then changed to...

Bag medium items: Handles the bagging of the mid-sized
items; see Figure 10. The current group is then changed to...

Bag small items: Tries to sneak the small items into the bags
created above; see Figure 1.

Figure 11 shows what happens when the whole system is loaded

4Why “Pike”? For Star Trek aficionados, we offer the fol-
lowing notes (and others need not read any further). STAR-
LOG variants should be named, in order, after the captains of
the Rodenberry-class star ships: i.e. PIKE KIRK, SPOCK, PI-
CARD, SISKO, JANEWAY, DA’AN and ARCHER. The names
STOCKER, DECKER, KAHN and ZO’OR are reserved for throw-
away crazy prototypes, for obvious reasons.

ruleseg.pl
:- [starlog]. % see Figure 32

:- [grocery % see Figure 2
,order % see Figure 3
,bag % see Figure 4
].

:- [checkrules % see Figure 8
,largeitems % see Figure 9
,mediumitems % see Figure 10
,smallitems % see Figure 1
].

startup
in global
if true
then make bag with *nothing and

make order
with ‘id=1
with ‘items= [bread,glop, pizza,

granola,iceCream,
potatoChips] and

goto check_order
since ’BAGGER v3.0 is up and running!!’.

ruleseg :- time(fchain),
listing(orderDB),
listing(bagDB).

:- demos(ruleseg).

Figure 7.

checkrules.pl
b1
in check_order
if order=I with ‘items has potatoChips and

not (order=I with ‘items has N and
grocery with ‘name=N with *type(bottle)
)

then change order=I with ‘items takes pepsi
since ’order ’ and I and ’ has chips, but needs pepsi’.

b2
in check_order
if true
then goto bag_large_items
since ’all done with checking orders’.

Figure 8.

and executed. Given the ORDER

[bread, glop, pizza, granola,
iceCream, potatoChips]

PIKE’s BAGGER generates two bags:

bagDB(1, [glop, potatoChips, iceCream, bread]).
bagDB(0, [granola, pizza, pepsi]).

5 Inside Prolog and PIKE

This section discusses some details of Prolog and PIKE. For space
reasons, this discussion misses certain details. A longer version of
this paper is under preparation and will contain more information.

5.1 Prolog

5.1.1 Terms

The basic building block of Prolog is aterm. Terms have functors
and arguments. For example, the term

largeitems.pl
bottles
in bag_large_items % J ... 2
if order=I with ‘items has N and

grocery with ‘name=N
with ‘size=large
with *type(bottle) and

bag = B with *largeItems(L) and
L < 6

then change order=I with select(N,‘items,!items) and
change bag = B with ‘contents takes N

since ’there’’s room in bag ’ and B and
’ for a large bottle’.

largeitems
in bag_large_items
if order=I with ‘items has N and

grocery with ‘name=N
with ‘size=large and

bag = B with *largeItems(L) and
L < 6

then change order=I with select(N,‘items,!items) and
change bag = B with ‘contents takes N

since ’there’’s room in bag ’ and B and
’ for one ’ and N.

newbag
in bag_large_items
if order with ‘items has N and

grocery with ‘name=N
with ‘size=large

then make bag with *nothing
since ’need a new bag’.

endlarge
in bag_large_items
if true
then goto bag_medium_items
since ’all done with large items’.

Figure 9.

mediumitems.pl
b8
in bag_medium_items
if order=I with ‘items has N and

grocery with ‘name=N with ‘size=medium and
(bag=B with *empty or

(bag=B with ‘contents has C and
grocery with ‘name=C with ‘size=medium)

)
then change order=I with select(N,‘items,!items) and

change bag=B with ‘contents takes N
since ’bag ’ and B and ’ can hold item ’ and N.

newbag4medium
in bag_medium_items
if order with ‘items has N and

grocery with ‘name=N
with ‘size=medium

then make bag with *nothing
since ’need a new bag’.

endmedium
in bag_medium_items
if true
then goto bag_small_items
since ’all done with small items’.

Figure 10.

carried(variables(who,age,cheer)).

has a functorcarried with one argument which, in turn, has the
functor variables with three arguments. Terms with only one or
two arguments need not use brackets if the functor is declared to be
anoperator.

ruleseg.out
% output from ruleseg.pl

[global::startup]
BAGGER v3.0 is up and running!!

[check_order::b1]
order [1] has chips, but needs pepsi

[check_order::b2]
all done with checking orders

[bag_large_items::bottles]
there’s room in bag [0] for a large bottle

[bag_large_items::largeitems]
there’s room in bag [0] for one pizza

[bag_large_items::largeitems]
there’s room in bag [0] for one granola

[bag_large_items::endlarge]
all done with large items

[bag_medium_items::newbag4medium]
need a new bag

[bag_medium_items::b8]
bag [1] can hold item bread

[bag_medium_items::b8]
bag [1] can hold item iceCream

[bag_medium_items::b8]
bag [1] can hold item potatoChips

[bag_medium_items::endmedium]
all done with small items

[bag_small_items::b11]
best to avoid bottles and small items

:- dynamic orderDB/2.

orderDB(1, []).

:- dynamic bagDB/2.

bagDB(1, [glop, potatoChips, iceCream, bread]).
bagDB(0, [granola, pizza, pepsi]).

% runtime = 0.04 sec(s)

Figure 11.

ops.pl
:- op(999, xfx , if).
:- op(998, xfx , then).
:- op(997, xfx, since).
:- op(996, fx, say).
:- op(990, xfy , or).
:- op(989, xfy , and).
:- op(988, fy , not).
:- op(980, fx, [make,change,zap]).
:- op(970, xfy , with).
:- op(969, xfx , takes).
:- op(968, xfx , has).
:- op(1, fx , goto).
:- op(1, xfy , [at,in]).
:- op(1, fx , [‘,!,*]).

Figure 12.

Figure 12 defines some operators which lets the Prolog reader input
pseudo-English statements without requiring tedious; e.g.

a if b and c or d then l and m.

Internally, these operators become standard terms:

:- [ops].
:- Rule = ((a if b and c or d then l and m)),write_canonical(Rule).

if(a, then(or(and(b, c),
d),

and(l, m)))

This term seems fearsomely complex but can easily be processed
by Prolog’s pattern matching facility. For example, the query

Label if OR1 or OR2 then Action

will search for any rule and, if the above example had been asserted
into the Prolog database, it would yield

LABEL= a
OR1= b and c
OR2= d
ACTIOn= l and m

5.1.2 Clauses

A Prolog program is a set of clauses of the form

Head :- SubGoal1, SubGoal2,...

whereHead, Subgoalx are terms. To prove aHead, Prolog seeks
clauses whose head matchSubGoali . The subgoals are explored
left-to-right in the order in which they appear in the source code.
Prolog is hence often called a backward-chaining language since
the Prolog interpreter from heads back to subgoals that might
prove that head. Nevertheless, it is simple to implement in Prolog
forward-chaining rules. For example, if we rewrite

RuleId if Condition then Action

as

rule(RuleId) :- Condition, Action

then the call

:- rule(X).

will forward chaining through the rules trying the conditions before
the actions.

PIKE will use a small variant of the above scheme: rule conditions
and rule actions will be separated into two clauses that share vari-
ables in the head; e.g.:

cond(RuleId) :- Condition.
act(RuleId) :- Action.

This “two clause” trick enables MATCH-SELECT-ACT since it lets
us test conditions without necessarily firing any actions.

5.1.3 Term expansion

The “two clause” trick is implemented by an adjustment to the Pro-
log reader that performs certain processing at load time. The fol-
lowing code

term_expansion(X if Y then Z,[(cond(X) :- Y), (act(X) :- Z)]).

tells Prolog that if ever a rule is read, the appropriatecond,act
clauses should be assertedinstead ofthe rule.

One way to recognize the user-level constructs in a Prolog program
is to look for theterm expansion definitions. PIKE’s definitions
are shown in Figure 13. The constructs shown there will be dis-
cussed below, after we see a little more Prolog and PIKE.

hooks.pl
% METHODS:
% Implemented in Figure 19
term_expansion((Helper*Head --> Body), X) :-

ecg((Helper*Head --> Body),X).
term_expansion(Helper*Head, X) :-

ecg((Helper*Head --> true),X).

% OBJECTS:
% Implemented in Figure 21
term_expansion(Helper=Spec, X) :-

spec(Helper=Spec,X).

% RULES:
% Implemented in Figure 23
term_expansion(Label if Condition then Action,X) :-

rules(Label if Condition then Action,X).

Figure 13.

sharedvars.pl
sharedVars(T1,T2,V) :- vars(T1,V1), vars(T2,V2),

sharedVars1(V1,V2,V),!.
sharedVars(_,_,[]).

sharedVars1([],_,[]).
sharedVars1([H|T0],L,[H|T]) :- member(X,L),H == X,!,

sharedVars1(T0,L,T).
sharedVars1([_|T0],L, T) :- sharedVars1(T0,L,T).

vars(Term,All) :- setof(One,vars1(Term,One),All).

vars1(Term,V) :- subterm(Term,V), var(V).

subterm(X,X).
subterm(In, X) :- compound(In), arg(_,In,Arg),

subterm(Arg,X).

Figure 14.

5.1.4 Variables

The two clausescond andact require some extension in order to
support the conflict resolution of RBP. For example, it may be re-
quired that actions are never fired twice in the same situation. It is
therefore useful to check that the bindings passed to the action are
unique.

Figure 14 shows code that can find the variables shared by two
terms: this will be used later by PIKE to ensure that actions are
only fired on new bindings. These shared variables are computed
once at load time, then cached. More specifically, PIKE stores rules
internally not ascond/2 andact/2 but aslhs/4 andrhs1/4 :

lhs(Group,Priority,Id,Memory) :- Condition
rhs1(Group,Id,Memory) :- Action

whereMemory are the shared variables found by Figure 14, and
the other variables locate a rule within a particular ruleGroup at a
Priority set by the user.

5.1.5 DCGs

Another useful Prolog trick, used extensively by PIKE, are the
carry variablesof thedefinite clause grammars, or DCGs. DCGs
are special clauses of the form:

head --> subgoal1, subgoal2,... subgoalN.

which, at load time, are converted byterm expansion into the
standard format; e.g.

oldNew.pl
oldNew(Field,Old,New,C0,C1) :-

carried(Term),
functor(Term,F,A), Term =.. [F|Fields],
functor(C0, F,A), C0 =.. [F|L0],
functor(C1, F,A), C1 =.. [F|L1],
oldNew1(Fields,Field,Old,New,L0,L1).

oldNew1([Field|_],Field,Old,New,[Old|T],[New|T]) :- !.
oldNew1([_|Fields],Field,Old,New,[H|T1],[H|T2]) :-

oldNew1(Fields,Field,Old,New,T1,T2).

Figure 15.

head(In, Out) :-
subgoal1(In,C1),
subgoal2(C1,C2),
subgoal3(C2,C3),
...
subgoalN(Cn,Out).

where the variablesIn,C1,C2... Out arecarry variablesthat are
passed from head to subgoals, then back to the head (note that the
last subgoal containsOut which is also in the head of the clause).
These carry variables can be used to carry around modifiable state
information. For example,subgoal2 can generate a newC2 from
theC1 variable passed to it.

PIKE uses DCGs to simplify accessing named data fields. For ex-
ample, in the following code, we are performing calculations using
carry variables held by a term with three named fieldswho, age
andcheer :

carried(variables(who,age,cheer)).
birthday --> +age, -cheer.

That is, every birthday we get a little older and a little less cheerful.
Internally, the DCG definition ofbirthday becomes:

birthday(In, Out) :- +(age, In, C1), -(cheer, C1, Out).

This clause requires a implementation of+ and- which increment
and decrement (respectively), the named fieldsage andcheer . To
handle that process, we create a new term and copy over nearly all
the variables from the old term to the new term. The only variable
not copied verbatim is the field referenced in the code (e.g.age)
which we modify before inserting into the new term.

+(Field,C0,C) :- oldNew(Field,Old,New,C0,C), New is Old + 1.
-(Field,C0,C) :- oldNew(Field,Old,New,C0,C), New is Old - 1.

OldNew is defined in Figure 15 and, reading through it, the reader
might protest “That’s a lot of work just to add one plus one!”. PIKE
uses a much faster method to access named variables (see later,
in §5.2.4) but for pedagogical reasons lets assume that we must
optimizeoldNew .

5.1.6 Goal expansion

Recall from the above thatterm expansion pre-processes an en-
tire clause. A simpler expansion facility isgoal expansion which
only works on individual subgoals.

Using goal expansion it is trivial to perform (e.g.) all the
oldNew processingonceat load time andneverat runtime. Suppose
the followinggoal expansion s were assertedbeforeloading our
birthday definition:

goal_expansion(+(F,C0,C), New is Old + 1) :- oldNew(F,Old,New,C0,C).
goal_expansion(-(F,C0,C), New is Old - 1) :- oldNew(F,Old,New,C0,C).

If so, then the definition ofbirthday is highly optimized since its
internal form now becomes:

birthday(variables(A, B, C), variables(A, D, E)) :- D is B+1, E is C-1.

Note in the above form, thewho variable (A) is copied over unmod-
ified to the output term.

While this scheme seems overkill for adding one plus one, it has
certain advantages. For example, if the number of the carried vari-
ables every grows, then the rest of the code will adjust automati-
cally. Also, as we shall see, this simple scheme can be extended to
implement an interesting object-based system.

5.2 PIKE

This section describes the high-level details of PIKE (and the lower-
level details are shown in the appendix).

5.2.1 Named Fields

The discussion above offered a simple introductory example of us-
ing named fields within a term. PIKE’s usage extends that sim-
ple example in several ways. Firstly, PIKE’s definition of named
fields will allow multiple name spaces. To make the user’s life eas-
ier, we call each name space aclass. For example, the example
shown in this file defines one class called GROCERY with named
fields id, name, type, size, frozen and another class called
ORDER with named fieldsid, items :

grocery=groceryDB(id,name,type,size,frozen).
order=orderDB(+id, items).

The syntax for defining the named fields is a little different to the
carried fact used above. In the PIKE syntax, classes are defined
using:

Handle=Functor(Field1,Field2,...)

whereHandle is how user code refers to the class andFunctor is
an internal name used by PIKE. Fields can optionally be marked
with an+ symbol denoting that it is an indexed term.

5.2.2 Get References and Starred Clauses

Another way PIKE extends the above example aboutbirthday is
that named fields can appearanywherein a term. For example:

who=person(height,weight).
who*bodySurfaceArea(A) --> A is 0.20247 * ‘heightˆ0.725 * ‘weightˆ0.425.

Here,‘X (e.g. ‘height) is aget referenceand are shorthand for “go
get the value of the field namedX beforerunning this subgoal”.

Note the use ofwho*bodySurfaceArea(A) . These starred
clauses denotes a clause that should be called assuming that the
carried variables contain the named fields of thewho class.

5.2.3 Set References

Apart from‘X , another useful PIKE trick is theset reference!X . Set
references are shorthand for “go set the value of the field namedX to
the variableafter running this subgoal”. So, in PIKE, it is possible
to write

..., append(‘siblings,‘newBornBabies,!siblings), ...

That is, the new value ofsiblings will be the old value appended
to newBornBabies . Hence, in PIKE-Prolog, it is finally possible to
write x = x+1 as follows:

..., !x is ‘x + 1, ...

5.2.4 Accessors

Get and set methods need knowledge of how to reach variables
within a term. This is implemented viaaccessor predicateswhich
take the form

Handle(Field, OldValue, NewValue, OldTerm, NewTerm).

These accessors copy every member ofOldTerm to NewTermexcept
for the variable for the field namedField . The value of that binding
in OldTerm is OldValue and the value of that binding inNewTerm
is NewValue . For example, if PIKE reads

who=person(name,age, height,jobs).

then it would useterm expansion to generate:

who(name, Old, New, person(Old,X,Y,Z), person(New,X,Y,Z)).
who(age, Old, New, person(X,Old,Y,Z), person(X,New,Y,Z)).
who(height,Old, New, person(X,Y,Old,Z), person(X,Y,New,Z)).
who(jobs ,Old, New, person(X,Y,Z,Old), person(X,Y,Z,New)).

These accessors can be used as follows. The call

... , who(age, OldValue, OldValue, OldTerm, OldTerm), ...

accessesage without changing it. Also, the call

... , who(age, _, NewValue, OldTerm, NewTerm), ...

throws away theOldValue of age and replaces it withNewValue .
Further, the call

... , who(age,OldValue, NewValue, OldTerm, NewTerm),
NewValue is OldValue+1, ...

places a value one more than theOldValue of age into NewValue .
Lists can be updated the same way. For example, the following call
pushesx onto the current list of jobs:

... , who(job,OldValue, [x | OldValue], OldTerm, NewTerm), ...

5.2.5 ECGs: extended clause grammars

PIKE’s extension to DCGs are called ECGs (extended clause gram-
mars) and include classes, starred clauses, set references and get
references.

To implement the set and get references of ECGs, PIKE has to parse
a term and generate two lists: named fields to access before calling
a goal, and named fields to change after calling a goal. This parser
is shown in Figure 16. This code generates as a side-effect the
actually callable term with the named fields changed for the get/set
references. For example:

wrapper.pl
wrapper(X,F,Out) :-

wrap(X,F,Before,[],After,[],Goal),
append(Before,[call(Goal)|After],Out).

wrap(X,F,B0,B,A0,A,Y) :-
once(wrap0(X,Z)),
wrap1(Z,F,B0,B,A0,A,Y).

wrap0(X, leaf(X)) :- var(X).
wrap0(X, leaf(X)) :- atomic(X).
wrap0([], leaf(true)).
wrap0([H|T], [H|T]).
wrap0(‘X, ‘X).
wrap0(!X, !X).
wrap0(X, term(X)).

wrap1(leaf(X), _,B, B, A, A, X).
wrap1([H0|T0], F,B0,B, A0,A, [H|T]) :-

wrap(H0, F,B0,B1,A0,A1,H),
wrap(T0, F,B1,B, A1,A, T).

wrap1(term(X), F,B0,B, A0,A, Y) :-
X =.. L0,
wrap(L0,F,B0,B,A0,A,L),
Y =.. L.

wrap1(‘X, F,[H|B],B,A,A,Y) :- H=..[F,X,Y,Y].
wrap1(!X, F,B,B,[H|A],A,Y) :- H=..[F,X,_,Y].

Figure 16.

?- wrapper(append(‘siblings,‘newBornBabies,!siblings),who,W).

W = [who(siblings, A, A)
, who(newBornBabies, B, B)
, call(append(A, B, C))
, who(siblings, _, C)
]

These wrapped calls are then placed into a DCG clause; e.g.

xx --> who(siblings, A, A), who(newBornBabies, B, B),
call(append(A, B, C)), who(siblings, _, C).

which means that, internally, these become

xx(In, Out) :-
who(siblings, A, A, In, C1)
who(newBornBabies, B, B, C1,C2)
call(append(A, B, C)),
who(siblings, _, C, C2, Out).

Note that thewho/3 facts have been expanded towho/5 facts; i.e.
they can now access using the accessors defined in the previous
section.

5.2.6 Unfolding

ECGs also include a simple unfolding optimizer where subgoals are
sometimes replaced by the body of the clause whose head matches
the subgoal. That’s quite a mouthful but is simple to show:

a(X) :- b,c(X),d(X).

c(X) :- X is pi* 2.

d(X) :- X > 10, print(big).
d(X) :- X <= 10, print(small).

If we unfold a(X) by replacing subgoals with other clause bodies,
we get:

a(X) :- b, X is pi*2,d(X).

In this example,d(X) was not unfolded since there are two clauses
for d(X) (these could be added as a disjunction, but there seems

singleton.pl
singleton(X) :-

copy_term(X,Y),
clause(X,_,Ref1),
not((

clause(Y,_,Ref2),
not(Ref1 =:= Ref2))).

one(X) :- singleton(X),X.

Figure 17.

tidy.pl
tidy(A,C) :-

option(brave)
-> once(tidy1(A,B)),once(tidy1(B,C))
; once(tidy1(A,C)).

tidy1(A, A) :- var(A).
tidy1(X=X, true) :- option(brave).
tidy1(X is Y, true) :- option(brave), ground(Y), % J 8

X is Y.
tidy1((A :- true), A).
tidy1((A :- B), R) :- tidy1(B,TB),

(TB=true -> R=A; R=(A:-TB)).
tidy1((A,B), (A,TB)) :- var(A), tidy1(B,TB).
tidy1((A,B), (TA,B)) :- var(B), tidy1(A,TA).
tidy1(((A,B),C), R) :- tidy1((A,B,C), R).
tidy1((true,A), R) :- tidy1(A,R).
tidy1((A,true), R) :- tidy1(A,R).
tidy1((A,B), R) :- tidy1(A,TA), tidy1(B,TB),

(TB=true -> R=TA; R=(TA,TB)).
tidy1((A;B), (TA;TB)) :- tidy1(A,TA), tidy1(B,TB).
tidy1((A->B), (TA->TB)) :- tidy1(A,TA), tidy1(B,TB).
tidy1(not(A), not(TA)) :- tidy1(A,TA).
tidy1(A, A).

Figure 18. Remove redundant trues.

little advantage in doing so). Figure 17 shows code that detects
subgoals that only match one head in the Prolog database . PIKE
calls these solo clausessingletons and only singletons are unfolded.

Note also that the subgoalX is pi*2 could also be executed a
compile time. Line 8 in Figure 18 shows code that looks for such
compile-time executable statements. These variables bound by this
compile-time call spread to the rest of the clause and the called sub-
goal is replaced withtrue . The rest of Figure 18 seeks out redun-
dant true s and removes them. Without this removal of redundant
trues, our definition ofa(X) would be:

a(6.28319) :- b, true, d(6.28319).

With this removal, the clause becomes

a(6.28319) :- b, d(6.28319).

One danger with unfolding isleft propagation; i.e. variables bound
in subgoali inappropriately effectingsubgoalj<i . For example, the
following code is meant to print some value before checking if it
satisfies some property:

e(X) :- print(X), c(X),X>10.

If we unfold c(X) as above, we get

e(6.28319) :- print(6.28319), 6.28319>10.

Note now that callinge(1) results in a different behavior depend-
ing on whether or not we call the original or the unfolded version:
the original version prints a number, then fails, while the unfolded
version fails before printing.

Left propagation is a well-studied problem [20]. Some of the so-
lutions are complex so, for simplicity sake, PIKE just has one flag
brave (see line 8 in Figure 18) that can disable this kind of unfold-
ing.

5.2.7 Objects, Methods, and Rules in PIKE

Giving the above tools, it is simple to now implement objects,
methods and rules for PIKE. For example, PIKE methods are ECG
clauses, which are implemented byecg/2 defined in Figure 19.
Also, PIKE’s classes were described above and are implemented
by Figure 21 (currently, PIKE’s objects support encapsulation and
polymorphism, but not inheritance). Example object files shown in
the article are the GROCERY class of Figure 2, the ORDER class
of Figure 3, and the BAG class of Figure 4. Figure 22 shows the in-
ternal Prolog representation of Figure 20. The accessor predicated
of grocery/5 start at line 15 in Figure 22.

PIKE’s rules can access the above described classes and methods.
The idiomLabel if Condition then Action is PIKE’s way of
defining forward chaining rules. Rules havepriorities andgroups
which can be specified within theLabelThe default group and pri-
ority is global and 10, respectively. For example, line 2 in Figure 9
shows a rule being entered into thebag large itemsrule group.

Internally, the rule

Id in Group at Priority if Condition
then Action

is converted into two Prolog predicates

lhs(Group,Priority,Id,Memory) :- Condition
rhs1(Group,Id,Memory) :- Action

(see line 14 in Figure 23 and line 16 in Figure 23). As described
above, this separation permits the extensive customization of the
forward chainer since rule conditions can be tested without trigger-
ing the rule action.

The variablesGroup,Priority,Id,Memory are used by PIKE’s
conflict resolution strategies. Recall that conflict resolution is the
process of selecting one rule from the space of rules of satisfied
conditions. PIKE employs the following conflict resolution strate-
gies:

Rule groups: PIKE maintains a pointer to the current group in the
group/1 fact (see line 36 in Figure 24). Only rules within the
current group are tested.

Priority ordering: Prior to forward chaining, PIKE gathers to-
gether a list of all the unique group names and rule priorities
within each group (see line 20 in Figure 24). At runtime, rules
are explored within a group in priority ordering starting with
priority one and continuing to lower priorities (see line 29 in
Figure 24 and line 35 in Figure 24).

Refraction: PIKE never fires the same rule action twice on the
same set of variable bindings. TheMemory argument of
lhs/4 andrhs1/3 contains all the variables passed from the
Condition to theAction . These shared variables are found
via sharedVars/3 shown in Figure 14 which is called at
line 29 in Figure 23.

Recency: When PIKE asserts anything, it is asserted above all
older assertions (e.g. see line 42 in Figure 22 and line 46 in
Figure 22). Hence, rules will fire more on newer assertions

ecg.pl
ecg((H*X0 --> Y0),Out) :-

ecg1(Y0,H,Y,W0,W),
X =.. [H,X0,W0,W],
expand_term((X :- Y),Temp),
tidy(Temp,Out).

ecg1(X,H,Y,W0,W) :- once(ecg0(X,Z)), ecg2(Z,H,Y,W0,W).

ecg0(X , leaf(X)) :- var(X).
ecg0(! , !).
ecg0((X -> Y) , two((->),X,Y)).
ecg0((X and Y) , two((,),X,Y)).
ecg0((X , Y) , two((,),X,Y)).
ecg0((X or Y) , two((;),X,Y)).
ecg0((X ; Y) , two((;),X,Y)).
ecg0(not X , one((not),X)).
ecg0(* Call0 , local(Call)) :- c2l(Call0,Call).
ecg0(H*Call0 , foriegn(Call,H)) :- c2l(Call0,Call).
ecg0(‘X takes Y, ‘X takes Y).

%J ... 21
ecg0(change X=Id with Y0, with(X,Id,Y,gets,sets)):-

w2c(Y0,Y).
ecg0(make X with Y0,with(X,_,Y,blank,makes)):-

w2c(Y0,Y).
ecg0(zap X=Id with Y0, with(X,Id,Y,gets,zaps)):-

w2c(Y0,Y).
ecg0(zap X=Id, with(X,Id,true,gets,zaps)).
ecg0(X=Id with Y0, with(X,Id,Y,gets,noop)):-

w2c(Y0,Y).
ecg0(X with Y0, with(X,_ ,Y,gets,noop)):-

w2c(Y0,Y).
%J ... 33

ecg0(X, wrap(X)).

ecg2(!, _,!) --> [].
ecg2(‘List takes Item,H,X) --> ecg1(!List=[Item|‘List],

H,X).
ecg2(one(O,A0), H,X) --> ecg1(A0,H,A), X=..[O,A].
ecg2(two(O,A0,B0),H,X) --> ecg1(A0,H,A),

ecg1(B0,H,B),
X =.. [O,A,B] .

ecg2(leaf(X), _,X) --> [].
ecg2(wrap(X0), H,X,W0,W) :- wrapper(X0,H,X1), % J 45

ecg3(X1,X,W0,W).
ecg2(local(L), H,X) --> calls(L,H,X).
ecg2(foriegn(L,H),_,X,W, W) :- calls(L,H,X,_,_).
ecg2(with(H,Id,X0,Pre,Post),_,(One,Two,Three),W1,W1) :-

One =..[Pre, H,W0,Id],
Three =..[Post,H,W,Id],
ecg1(X0,H,Two,W0,W).

noop(_,_,_).

ecg3([X0],X) --> add2(X0,X).
ecg3([X0,Y|Z],(X,Rest)) --> add2(X0,X),

ecg3([Y|Z],Rest).

add2(call(X),X,W,W) :- !.
add2(T0,T,W0,W) :- T0 =.. L0, append(L0,[W0,W],L1),

T =.. L1.

calls([Call0],H,Call,W0,W) :- Call =.. [H,Call0,W0,W].
calls([Call0,Call1|Calls0],H,(Call,Calls),W0,W) :-

Call =.. [H,Call0,W0,W1],
calls([Call1|Calls0],H,Calls,W1,W).

w2c(A with B,(A,C)) :- !,w2c(B,C).
w2c(A,A).

Figure 19.

than older assertions.

PIKE’s MATCH-SELECT process assumes that the order in which
PIKE’s rules are to be tested can be determined via the rule priority
number. If rules are tested in this order, then thefirst rule with a
satisfied condition would be the highest priority satisfied rule. By

speceg.pl
:- [starlog]. % see Figure 32

:- [grocery].

portray(’:spec’(A, B, C, D, E, F)) :-
format(’’’:spec’’(˜p, ˜p, ˜p’,[A,B,C]),nl,
format(’ ˜p, ˜p, ˜p).’,[D,E,F]).

speceg :-
listing(grocery),
spec(grocery=groceryDB(id,name,type,size,frozen),

List0),
none(List0,grocery,List),
show(List).

none([],_,[]).
none([(H:-_)|T],F, Rest) :- functor(H,F,_), !,

none(T,F,Rest).
none([H|T], F, Rest) :- functor(H,F,_), !,

none(T,F,Rest).
none([H|T], F,[H|Rest]) :- none(T,F,Rest).

:- demos(speceg).

Figure 20. Starlog sample; generates Figure 22.

exploring rules in this order, PIKE avoids a computationally expen-
sive MATCH process.

Rules are operations that can move across class boundaries. Hence,
the PIKE programmer needs a way to easily access and switch be-
tween the name spaces of different classes. Thewith statement
enables this accessing and switching. The idiom

Class=Id with Method1 with Method2 with ...

is expanded these to multiple method calls invoked over the same
object. Important variants of this idiom are:
• change Class=Id with Method1 with ...

The Methodsare prefixed by a match to the object and are
followed by an update to the object.

• make Class with Method1 with ...
TheMethods are run on a new object of the specifiedClass
and are followed by an assertion of the resulting object.

• zap Class=Id with Method1 with ...
The Methods are prefixed by a match to the object and are
followed by deletion of the object. TheMethod s are called
prior to deletion.

• zap Class=Id
The Methods are prefixed by a match to the object and are
followed by deletion of the object.

The prefix and following code is added between line 21 in Figure 19
and line 33 in Figure 19

6 Conclusion

Pure rule-based programming (RBP) had many proponents (such as
the first author) in the early days of knowledge engineering. These
proponents became fewer in number as developers found them-
selves forced to extend RBP. Such extensions are easy to imple-
ment. Consider Figure 23 and Figure 24. These two files are all
that is required to convert a Prolog-based OO system written into
a RBP system. These files are very short and are our evidence that
extending other systems into RBP is very simple. We therefore cau-
tion against an over-devotion to pure rule-based programming. The
spirit of rule-based systems can be captured and usefully extended
very simply in other programming paradigms.

spec.pl
spec(Helper=Spec,

[’:spec’(Helper,F,Term1,Ids,Indicies,Names)
, (:- index(Index))
, (:- dynamic F/Arity)
, (portray(Term1) :- write(F/Arity))
, (touch(Touched,Com1,Final):- Toucher)
, (gets(Helper,Term1,Ids) :- Term1)
, (sets(Helper,Term2,Ids) :- bretract(Term1),

bassert(Term2))
, (makes(Helper,Term1,Ids) :- bassert(Term1))
, (zaps(Helper,Term1,Ids) :- bretract(Term1))
, (goal_expansion(H3,Body) :-

singleton(H3), % J 13
clause(H3,Body))

, goal_expansion(H4,H5a)
, (goal_expansion(H5,true) :- one(H5)) % J........... 16
, (H1 :- H3)
, Self
| Rest
]) :-

Spec =.. [F|Fields],
length(Fields,Arity),
makeIndex(Fields,1,Indicies,Ids,Args,Names),
H1 =.. [Helper,Com],
H3 =.. [Helper,Com,_,_],

% H3a =.. [Helper,Com,Initial,Final],
H4 =.. [Helper,Field,Old ,In,In],
H5a =.. [Helper,Field,Old,Old,In,In],
H5 =.. [Helper,_,_,_,_,_],
functor(Touched,F,Arity),
Toucher=..[Helper,Com1,Touched,Final],
Index =.. [F|Indicies],
Term1 =.. [F|Args],
Self =.. [Helper,self,In,Out,In,Out],
copy_term(Term1/Ids,Term2/Ids),
findall(One,spec1(Helper,Names,F,Arity,One),Rest).

spec1(Helper,Names,F,Arity,One) :-
nth1(Pos,Names,Item),
joinArgs(F,Arity,Pos,Old,New,T1,T2),
One =.. [Helper,Item,Old,New,T1,T2].

joinArgs(F,Arity,Pos,Old,New,Term1,Term2) :-
length(L1,Arity),
Pos0 is Pos - 1,
length(Before,Pos0),
append(Before,[Old|After],L1),
append(Before,[New|After],L2),
Term1 =.. [F|L1],
Term2 =.. [F|L2].

makeIndex([],_,[],[],[],[]).
makeIndex([+H|L],N,[1|Pos],[Arg|Ids],[Arg|Args],[H|T]):-

N1 is N + 1,
makeIndex(L,N1,Pos,Ids,Args,T).

makeIndex([H|L],N,[0|Pos],Ids,[_|Args],[H|T]) :-
atomic(H),
N1 is N + 1,
makeIndex(L,N1,Pos,Ids,Args,T).

blank(H,B,Id) :- ’:spec’(H,_,B,Id,_,_).

Figure 21. See Figure 20 for sample usage.

Acknowledgements

This research was conducted at West Virginia University under
NASA contract NCC2-0979. The work was sponsored by the
NASA Office of Safety and Mission Assurance under the Software
Assurance Research Program led by the NASA IV&V Facility. Ref-
erence herein to any specific commercial product, process, or ser-
vice by trade name, trademark, manufacturer, or otherwise, does
not constitute or imply its endorsement by the United States Gov-
ernment.

speceg.out
% output from speceg.pl

grocery(A) :-
grocery(A, B, C).

grocery(type(A), groceryDB(B, C, D, E, F),
groceryDB(B, C, D, E, F)) :-

functor(D, A, G). % J 8
grocery(volumes([small/1, medium/2, large/3]), A, A).
grocery(volume(A), groceryDB(B, C, D, E, F),

groceryDB(B, C, D, E, F)) :-
E=G,
[small/1, medium/2, large/3]has G/A.

grocery(self, A, B, A, B). % J 15
grocery(id, A, B, groceryDB(A, C, D, E, F),

groceryDB(B, C, D, E, F)).
grocery(name, A, B, groceryDB(C, A, D, E, F),

groceryDB(C, B, D, E, F)).
grocery(type, A, B, groceryDB(C, D, A, E, F),

groceryDB(C, D, B, E, F)).
grocery(size, A, B, groceryDB(C, D, E, A, F),

groceryDB(C, D, E, B, F)).
grocery(frozen, A, B, groceryDB(C, D, E, F, A),

groceryDB(C, D, E, F, B)).

’:spec’(grocery, groceryDB, groceryDB/5, [],
[0, 0, 0, 0, 0], [id, name, type, size, frozen]).

:-index(groceryDB/5).
:-dynamic groceryDB/5.

portray(groceryDB(A, B, C, D, E)) :-
write(groceryDB/5).

touch(groceryDB(A, B, C, D, E), F, G) :-
grocery(F, groceryDB(A, B, C, D, E), G).

gets(grocery, groceryDB(A, B, C, D, E), []) :-
groceryDB(A, B, C, D, E).

sets(grocery, groceryDB(A, B, C, D, E), []) :- % J 42
bretract(groceryDB(F, G, H, I, J)),
bassert(groceryDB(A, B, C, D, E)).

makes(grocery, groceryDB(A, B, C, D, E), []) :- % J............. 46
bassert(groceryDB(A, B, C, D, E)).

zaps(grocery, groceryDB(A, B, C, D, E), []) :-
bretract(groceryDB(A, B, C, D, E)).

goal_expansion(grocery(A, B, C), D) :-
singleton(grocery(A, B, C)),
clause(grocery(A, B, C), D).

goal_expansion(grocery(B, C, D, D),
grocery(B, C, C, D, D)).

goal_expansion(grocery(A, B, C, D, E), true) :-
one(grocery(A, B, C, D, E)).

Figure 22. Output from Figure 20.

7 References

[1] J. Bachant and J. McDermott. R1 Revisited: Four Years in the
Trenches.AI Magazine, pages 21–32, Fall 1984.

[2] D. Bobrow. If prolog is the answer, what is the question? or what it
takes to support ai programming paradigms.IEEE Transactions on
Software Engineering, 11(11):1401–1408, November 1985.

[3] L. Brownston, R. Farell, E. Kant, and N. martin.Programming Ex-
pert Systems in OPS5: An Introduction to Rule-Based Programming.
Addison-Wesley, 1985.

[4] B. Buchanan and R. Smith. Fundamentals of Expert Systems. In
P. C. A. Barr and E. Feigenbaum, editors,The Handbook of Artificial
Intelligence, Volume 4, volume 4, pages 149–192. Addison-Wesley,
1989.

rules.pl
r=rule(group,id,wme,priority).

rules(In,Out) :- once(r(prep(In,Out),_,_)).

r*init --> !id=0,!group=global,!priority=10.

r*head(Id in G at P)--> !id = Id, !group=G, !priority=P.
r*head(Id at P in G)--> !id = Id, !group=G, !priority=P.
r*head(Id in G)--> !id = Id, !group=G.
r*head(Id at P)--> !id = Id, !priority=P.
r*head(Id)--> !id=Id.

r*prep(X if Y0 then Z0 since Why0,
[(lhs(G,P,Id,Mem) :- % J........................... 14

Y)
,(rhs1(G,Id,Mem) :- % J........................... 16

Z,
say(G,Id,Why))

]) --> !,
nl,print(X), write(’? ’),
* init,!,
call(ecgHack(Y0,Y)),
call(ecgHack(Z0,Z)),
call(c2l(Why0,Why)),
* head(X),
‘group=G,
‘id = Id,
‘priority=P,
call(sharedVars(Y,Z,Mem)), % J........................... 29
write(’ YES!’).

r*prep(X if Y0 then Z0,Out) -->
*prep(X if Y0 then Z0 since [],Out).

ecgHack(X0,X) :-
ecg1(X0,_,X1,_,_),
expand_term(X1,X2),
tidy(X2,X).

rshow(Group,Id) :-
clause(lhs(Group,P,Id,Mem),LHS),
clause(rhs1(Group,Id,Mem),RHS),
portray_clause((lhs(Group,P,Id,Mem) :- LHS)),
portray_clause((rhs1(Group,Id,Mem) :- RHS)).

Figure 23.

[5] I. Chen and T. Tsao. A reliability model for real-time rule-based expert
systems.IEEE Transactions on Reliability, pages 54–62, March 1995.

[6] P. Compton, G. Edwards, A. Srinivasan, P. Malor, P. Preston, B. Kang,
and L. Lazarus. Ripple-down-rules: Turning knowledge acquisi-
tion into knowledge maintenance.Artificial Intelligence in Medicine,
4:47–59, 1992.

[7] A. V. de Brug, J. Bachant, and J. McDermott. The Taming of R1.
IEEE Expert, pages 33–39, Fall 1986.

[8] P. S. Laird, R. J. E., and A. Newell. Chunking in SOAR: The anatomy
of a general learning mechanism.Machine Learning, 1(1):11–46,
1986.

[9] J. Larkin, J. McDermott, D. Simon, and H. Simon. Expert and novice
performance in solving physics problems.Science, 208:1335–1342,
20 June 1980.

[10] M. Linster and M. Musen. Use of KADS to Create a Conceptual
Model of the ONCOCIN task.Knowledge Acquisition, 4:55–88, 1
1992.

[11] D. Lukose, S. Nechab, S. Pritchard, A. Lee, S. Hussen, J. Clawley,
P. Jackson, C. Hare, T. Bayliss, M. Hawcutts, and A. Bdar. Taps:
Knowledge management system. InProceedings of the Banff Knowl-
edge Acquisition Workshop, 1999. Available fromhttp://sern.
ucalgary.ca/KSI/KAW/KAW99/papers/Lukose1/ .

[12] S. Marcus and J. McDermott. SALT: A Knowledge Acquisition Lan-

fchain.pl
refraction=alreadyUsed(+group,+id,mem).
refraction*active.

fchain :-
no(silent),
reset(X),
run(X).

reset(Info) :-
bagof(G/Ps,priorities(G,Ps),Info),
goto global,
forall(active(A),retractall(A)).

active(A) :-
blank(_,A,_), touch(A,active,_).

groups(All) :-
setof(One,AˆBˆCˆDˆclause(lhs(One,A,B,C),D),All).

priorities(Group,All) :- % J 20
groups(Groups),
member(Group,Groups),
setof(One,

GroupˆBˆCˆDˆclause(lhs(Group,One,B,C),D),All).

run(Info) :- step(Info),!, run(Info). run(_).

step(Info) :-
todo(Info,Group,Priority), % J 29
lhs(Group,Priority,Id,Mem), % J 30
not alreadyUsed(Group,Id,Mem),
assert(alreadyUsed(Group,Id,Mem)),
rhs(Group,Id,Mem). % J 33

todo(Info,Group,Priority) :- % J 35
group(Group), % J 36
member(Group/Orders,Info),
member(Priority,Orders).

rhs(Group,Id,Mem) :- rhs1(Group,Id,Mem),!.
rhs(Group,Id,_) :-

format(’% ?? failed rule action ˜w in ˜w’,[Id,Group]),
nl.

Figure 24.

guage for Propose-and-Revise Systems.Artificial Intelligence, 39:1–
37, 1 1989.

[13] J. McDermott. R1 (”xcon”) at age 12: lessons from an elementary
school achiever.Artificial Intelligence, 59:241–247, 1993.

[14] T. Menzies, J. Black, J. Fleming, and M. Dean. An expert system
for raising pigs. InThe first Conference on Practical Applications
of Prolog, 1992. Available fromhttp://tim.menzies.com/pdf/
ukapril92.pdf .

[15] T. Menzies and B. Markey. A micro-computer, rule-based prolog
expert-system for process control in a petrochemical plant. InPro-
ceedings of the Third Australian Conference on Expert Systems, May
13-15, 1987.

[16] T. Menzies. OO patterns: Lessons from expert systems.Software
Practice & Experience, 27(12):1457–1478, December 1997. Avail-
able fromhttp://tim.menzies.com/pdf/97patern.pdf .

[17] T. Menzies. Knowledge elicitation: the state of the art. In S. Chang,
editor,Handbook of Software Engineering and Knowledge Engineer-
ing, Volume II. World-Scientific, 2002. Available fromhttp://tim.
menzies.com/pdf/00getknow.pdf .

[18] NASA. CLIPS Reference Manual. Software Technology Branch, lyn-
don B. Johnson Space Center, 1991.

[19] P. Preston, G. Edwards, and P. Compton. A 1600 Rule Expert System
Without Knowledge Engineers. In J. Leibowitz, editor,Second World
Congress on Expert Systems, 1993.

[20] D. Sahlin. An Automatic Partial Evaluator for Full Prolog. PhD

egs.pl
:- [speceg].
:- [ecgeg].
:- [ruleseg].

Figure 25.

show.pl
show(X) :- show(X,_).

show([],_).
show(List,X) :-

member(X,List),
show2(X),fail;true.

show2((X :- Y)) :- !,portray_clause((X:-Y)).
show2(X) :- numbervars(X,1,_), print(X),

write(’.’), nl.

Figure 26. A simple pretty print.

thesis, The Royal Institute of Technology (KTH), Stockholm, Swe-
den, May 1991. Available fromfile://sics.se/pub/isl/papers/
dan-sahlin-thesis.ps.gz .

[21] A. T. Schreiber, B. Wielinga, J. M. Akkermans, W. V. D. Velde, and
R. de Hoog. Commonkads. a comprehensive methodology for kbs
development.IEEE Expert, 9(6):28–37, 1994.

[22] M. Shaw and D. Garlan.Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, 1996.

[23] M. Stefik, J. Aikins, R. Balzer, J. Benoit, L. Birnhaum, F. Hayes-Roth,
and E. Sacerdoti. The Organisation of Expert Systems, A Tutorial.
Artificial Intelligence, 18:135–127, 1982.

[24] P. Winston.Artificial Intelligence. Addison-Wesley, 1984.

[25] G. Yost. Acquiring knowledge in soar.IEEE Expert, pages 26–34,
June 1993.

Appendix: PIKE support routines

Figure 25 is a file which, if loaded, will exercise most of STAR-
LOG’s PIKE.

Figure 26 is a tool for printing lists of clauses.

Figure 27 defines some of the verbs used in rules.

Figure 28 contains certain Prolog hacks such as repair of over-
zealous DCG expansion.

Figure 29 is a tool for running a goal and trapping its output to a
file.

Figure 30 is the first file loaded, it sets certain global flags.

Figure 31 contains miscellaneous code.

Figure 32 is the main load file of STARLOG/PIKE.

verbs.pl
goto Group :- retractall(group(_)),

assert(group(Group)).

List has Item :- member(Item,List).

say(_,_,_) :- option(silent),!.
say(_,_,[]) :- !.
say(Group,Id,Words) :- !,

format(’[˜w::˜w] ’,[Group,Id]),nl,
write(’ ’),
forall(member(One,Words),write(One)),
nl.

Figure 27.
hacks.pl

goal_expansion(append(A,B,C,D,D), append(A,B,C)).
goal_expansion(once(A,B,B), once(A)).
goal_expansion(=..(A,B,C,C), =..(A,B)).
goal_expansion(=(A,B,C,C), =(A,B)).
goal_expansion(call(A,B,B), A).
goal_expansion(noop(_,_,_), true).

prolog_listing:put_tabs(N) :-
N > 0, !,
write(’ ’),
NN is N - 1,
prolog_listing:put_tabs(NN).

prolog_listing:put_tabs(_).

Figure 28.
demos.pl

demos(G) :-
sformat(Out,’˜w.out’,G),
(exists_file(Out) -> delete_file(Out) ; true),
write(Out),nl,nl,
tell(Out),
format(’% output from ˜w.pl’,G),nl, nl,
T1 is cputime,
ignore(forall(G,true)),
T2 is (cputime - T1),
nl,format(’% runtime = ˜w sec(s)’,[T2]),nl,
told,
format(’% output from ˜w.pl’,G),nl,
ignore(forall(G,true)),
nl,format(’% runtime = ˜w sec(s)’,[T2]).

Figure 29. Run a goal, trap its output to file and, also, show it
on the screen.

flags.pl
:- Stuff=(gets/3, sets/3, makes/3, zaps/3,

’:spec’/6,
lhs/4, rhs1/3,touch/3),

multifile(Stuff),
discontiguous(Stuff),
dynamic(Stuff).

:- index(gets(1,1,0)).
:- index(sets(1,1,0)).
:- index(makes(1,1,0)).
:- index(zaps(1,1,0)).
:- index(lhs(1,1,1,0)).
:- index(rhs1(1, 1,0)).

:- dynamic group/1,
option/1.

yes(X) :- option(X) -> true; assert(option(X)).
no(X) :- retractall(option(X)).

:- yes(brave). % compile time evaluation
:- no(loadSlowly). % never skip unchanged files on load
:- no(silent). % don’t suppress rule ’since’ text
:- yes(nervous). % check that fields, methods exist
:- yes(unfold). % replace sub-goals by true

Figure 30.

misc.pl
l2c([X,Y|Z],(X,Rest)) :- !, l2c([Y|Z],Rest).
l2c([X],X).

c2l(X,[X]) :- var(X),!.
c2l((X and Y),[X|Rest]) :- !, c2l(Y,Rest).

c2l((X,Y),[X|Rest]) :- !, c2l(Y,Rest).
c2l(X,[X]).

term2list(Term0, L) :-
Term0 =..L0,
once(maplist(term2list1, L0, L)).

term2list1(H,H) :- var(H).
term2list1(H,H) :- atomic(H).
term2list1(H0,H) :- term2list(H0,H).

ensure(X) :- X,!.
ensure(X) :- bassert(X).

bassert(C) :- asserta(C).
bassert(C) :- retract(C),!, fail.

bretract(C) :- retract(C) , bretract1(C).

bretract1(_).
bretract1(C) :- asserta(C), fail.

chars(F) :- see(F), ignore(chars1(10)), seen.

chars1(-1) :- !.
chars1(X) :- put(X), get_byte(Y), chars1(Y).

Figure 31.

starlog.pl
:- write(’% *(star)log v[1.0]’),nl.
:- [flags]. % see Figure 30

:- op(1,fx,@).

@ X :- (option(loadSlowly)
-> Options= []
; Options=[silent(true), if(changed)]),

load_files(X,Options).

:- @[%%% standard start up files
ops % see Figure 12

,hooks % see Figure 13
,hacks % see Figure 28

%%% some general library routines
,show % see Figure 26
,tidy % see Figure 18
,demos % see Figure 29
,singleton % see Figure 17
,misc % see Figure 31
,sharedvars % see Figure 14

%%% code specific to rules and objects in Prolog
% the object system:
,spec % see Figure 21, & Figure 22
,wrapper % see Figure 16
,ecg % see Figure 19
,verbs % see Figure 27
% the rule system:
,rules % see Figure 23, Figure 7 & Figure 11
,fchain % see Figure 24
%,egs % see Figure 25 (uncomment to see demos)
,aboutme % see Figure ??
,license % see §??
].

:- hello.

Figure 32. The idiom @[File1, File2,..] is shorthand for
“don’t load these files more that once unless they have not
changed on disc and, if loading, don’t print verbose load mes-
sages”.

