
4 Search Problem formulation (23 points)

Consider a Mars rover that has to drive around the surface, collect rock samples, and return to the
lander. We want to construct a plan for its exploration.

• It has batteries. The batteries can be charged by stopping and unfurling the solar collectors
(pretend it’s always daylight). One hour of solar collection results in one unit of battery
charge. The batteries can hold a total of 10 units of charge.

• It can drive. It has a map at 10-meter resolution indicating how many units of battery charge
and how much time (in hours) will be required to reach a suitable rock in each square.

• It can pick up a rock. This requires one unit of battery charge. The robot has a map at
10-meter resolution that indicates the type of rock expected in that location and the expected
weight of rocks in that location. Assume only one type of rock and one size can be found in
each square.

The objective for the rover is to get one of each of 10 types of rocks, within three days, while
minimizing a combination of their total weight and the distance traveled. You are given a tradeoff
parameter α that converts units of weight to units of distance. The rover starts at the lander with
a full battery and must return to the lander.

Here is a list of variables that might be used to describe the rover’s world:

• types of rocks already collected

• current rover location (square on map)

• current lander location (square on map)

• weight of rocks at current location (square on map)

• cost to traverse the current location (square on map)

• time since last charged

• time since departure from lander

• current day

• current battery charge level

• total battery capacity

• distance to lander

• total weight of currently collected rocks
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1. Use a set of the variables above to describe the rover’s state. Do not include extraneous
information.

• types of rocks already collected

• current rover location (square on map)

• time since departure from lander

• current battery charge level

• total weight of currently collected rocks (optional, depending on your choice
of cost function)

2. Specify the goal test.

• All types of rocks have been collected

• rover at lander location

• time since departure less than 3 days

3. Specify the actions. Indicate how they modify the state and any preconditions for being used.

charge : precondition: none; effects: increases battery voltage by 1 unit, increases
time-since-departure by 1 hour

move : precondition: enough battery voltage to cross square; effects: decreases
battery voltage by amount specified in map; increases time by amount spec-
ified in map; changes rover location

pick-up-rock : precondition: enough battery voltage; effects: decreases battery
voltage by 1 unit; changes types of rocks already collected

4. Specify a function that determines the cost of each action.

charge : 0

move : 10 meters

pick-up-rock : α * weight-of-rocks-at-current-location
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5. This can be treated as a path search problem. We would like to find a heuristic. Say whether
each of these possible heuristics would be useful in finding the optimal path or, if not, what’s
wrong with them. Let l be the number of rocks already collected.

H1: The sum of the distances (in the map) from the rover to the 10− l closest locations for
the missing types of rocks.
This heuristic is inadmissible.

H2: The length of the shortest tour through the 10− l closest locations for the missing types
of rocks.
This heuristic would take an impractical amount of time to compute; and
while more reasonable than H1 is also inadmissible.

H3: The distance back to the lander.
This heuristic is admissible, but very weak.
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5 Search traces (21 points)

Consider the graph shown in the figure below. We can search it with a variety of different algorithms,
resulting in different search trees. Each of the trees (labeled G1 though G7) was generated by
searching this graph, but with a different algorithm. Assume that children of a node are visited in
alphabetical order. Each tree shows all the nodes that have been visited. Numbers next to nodes
indicate the relevant “score” used by the algorithm for those nodes.

For each tree, indicate whether it was generated with

1. Depth first search

2. Breadth first search

3. Uniform cost search

4. A* search

5. Best-first (greedy) search

In all cases a strict expanded list was used. Furthermore, if you choose an algorithm that uses a
heuristic function, say whether we used

H1: heuristic 1 = {h(A) = 3, h(B) = 6, h(C) = 4, h(D) = 3}

H2: heuristic 2 = {h(A) = 3, h(B) = 3, h(C) = 0, h(D) = 2}

Also, for all algorithms, say whether the result was an optimal path (measured by sum of link
costs), and if not, why not. Be specific.

Write your answers in the space provided below (not on the figure).
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G1: 1. Algorithm: Breadth First Search
2. Heuristic (if any): None
3. Did it find least-cost path? If not, why? No. Breadth first search is only guaranteed
to find a path with the shortest number of links; it does not consider link cost at
all.

G2: 1. Algorithm: Best First Search
2. Heuristic (if any): H1
3. Did it find least-cost path? If not, why?
No. Best first search is not guaranteed to find an optimal path. It takes the first
path to goal it finds.

G3: 1. Algorithm: A*
2. Heuristic (if any): H1
3. Did it find least-cost path? If not, why? No. A* is only guaranteed to find an optimal
path when the heuristic is admissible (or consistent with a strict expanded list).
H1 is neither: the heuristic value for C is not an underestimate of the optimal
cost to goal.

G4: 1. Algorithm: Best First Search
2. Heuristic (if any): H2
3. Did it find least-cost path? If not, why? Yes. Though best first search is not guar-
anteed to find an optimal path, in this case it did.

G5: 1. Algorithm: Depth First Search
2. Heuristic (if any): None
3. Did it find least-cost path? If not, why? No. Depth first search is an any-path
search; it does not consider link cost at all.

G6: 1. Algorithm: A*
2. Heuristic (if any): H2
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3. Did it find least-cost path? If not, why? Yes. A* is guaranteed to find an optimal
path when the heuristic is admissible (or consistent with a strict expanded list).
H2 is admissible but not consistent, since the link from D to C decreases the
heuristic cost by 2, which is greater than the link cost of 1. Still, the optimal
path was found.

G7: 1. Algorithm: Uniform Cost Search
2. Heuristic (if any): None
3. Did it find least-cost path? If not, why? Yes. Uniform Cost is guaranteed to find a
shortest path.
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1.2 Algorithms

1. You are faced with a path search problem with a very large branching factor, but where the
answers always involve a relative short sequence of actions (whose exact length is unknown).
All the actions have the same cost. What search algorithm would you use to find the optimal
answer? Indicate under what conditions, if any, a visited or expanded list would be a good
idea.

Progressive deepening (PD), with no visited or expanded list would probably be
the best choice. All the costs are the same, so breadth-first (BF) and PD both
guarantee finding the shortest path in that situation, without the overhead of
uniform-cost search. Since the branching factor is high, space will be an issue,
which is why we prefer PD over BF. If we were to use a visited list with PD,
the space cost would be the same as BF and it would not make sense to pay the
additional run-time cost of PD (repeated exploration of parts of the tree) if we
give up the space advantage.

2. You are faced with a path search problem with a very large branching factor, but where the
answers always involve a relative short sequence of actions (whose exact length is unknown).
These actions, however, have widely varying costs. What search algorithm would you use to
find the optimal answer? Indicate under what conditions, if any, a visited or expanded list
would be a good idea.

Since we have variable link costs, we should use Uniform Cost search to guarantee
the optimal answer. The fact that the costs are highly variable is good, since we
expect that we might be able to avoid exploring sub-trees with high cost. Note
that we don’t necessarily have a useful heuristic and so A* may not be applicable.
Using an expanded list would make sense if the search space involves lots of loops,
which would lead us to re-visit the same state many times. However, since we
know that there’s a relatively short path to the goal, it might not be worth the
extra space.
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6.034 Quiz 1, Spring 2004 — Solutions
Open Book, Open Notes

1 Tree Search (12 points)

Consider the tree shown below. The numbers on the arcs are the arc lengths.

Assume that the nodes are expanded in alphabetical order when no other order is specified
by the search, and that the goal is state G. No visited or expanded lists are used. What
order would the states be expanded by each type of search? Stop when you expand G. Write
only the sequence of states expanded by each search.
Search Type List of states
Breadth First A B C D E G

Depth First A B D F K L E C G

Progressive Deepening Search A A B C A B D E C G

Uniform Cost Search A B D E C F G

1



2 Graph Search (10 points)

Consider the graph shown below where the numbers on the links are link costs and the
numbers next to the states are heuristic estimates. Note that the arcs are undirected. Let
A be the start state and G be the goal state.

Simulate A* search with a strict expanded list on this graph. At each step, show the path
to the state of the node that’s being expanded, the length of that path, the total estimated
cost of the path (actual + heuristic), and the current value of the expanded list (as a list
of states). You are welcome to use scratch paper or the back of the exam pages to simulate
the search. However, please transcribe (only) the information requested into the table given
below.
Path to State Expanded Length of Path Total Estimated Cost Expanded List
A 0 5 (A)
C-A 3 4 (C A)
B-A 1 5 (B C A)
H-C-A 5 6 (H B C A)
G-H-C-A 6 6 (G H B C A)
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3 Heuristics and A* (8 points)

1. Is the heuristic given in Problem 2 admissible? Explain.

Yes. The heuristic is admissible because it is less than or equal to the actual shortest
distance to the goal.

2. Is the heuristic given in Problem 2 consistent? Explain.

No, the heurstic is not consistent. There are two places in the graph where consistency
fails. One is between A and C where the drop in heuristic is 4, but the path length is
only 3. The other is between B and C where the drop in heuristic is 3 but the path
length is only 1.

3. Did the A* algorithm with strict expanded list find the optimal path in the previous
example? If it did find the optimal path, explain why you would expect that. If it
didn’t find the optimal path, explain why you would expect that and give a simple
(specific) change of state values of the heuristic that would be sufficient to get the
correct behavior.

A* with a strict expanded list will not find the shortest path (which is ABCHG with
cost 5). This is because the heuristic is not consistent. We can make the heuristic
consistent by changing its value at C to be 3. There are other valid ways to make the
graph consistent (change h(B) to 2 and h(A) to 3, for example) and those were right
as well.
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4 Search problem formulation (10 points)

A Mars rover has to leave the lander, collect rock samples from three places (in any order)
and return to the lander.

Assume that it has a navigation module that can take it directly from any place of
interest to any other place of interest. So it has primitive actions go-to-lander, go-to-rock-1,
go-to-rock-2, and go-to-rock-3.

We know the time it takes to traverse between each pair of special locations. Our goal is
to find a sequence of actions that will perform this task in the shortest amount of time.

1. Formulate this problem as a search problem by specifying the state space, initial state,
path-cost function, and goal test. Try to be sure that the state space is detailed enough
to support solving the problem, but not redundant.

• States: 〈 current-location, have-rock1?, have-rock2?, have-rock3? 〉
These are state variables. The variable current-location ranges over the set {lander,
rock1, rock2, rock3 }. The other variables are binary.

• Initial state: 〈 lander, no, no, no 〉
• Path cost: sum of arc costs; arc cost = distance between locations

• Goal test: 〈 lander, yes, yes, yes 〉

2. Say what search technique would be most appropriate, and why.

We want a shortest path, so we need UCS or A*. We might as well use A*, since it
will probably be faster and there’s a reasonable heuristic available.

3. One possible heuristic evaluation function for a state would be the distance back to
the lander from the location of the state; this is clearly admissible. What would be
a more powerful, but still admissible, heuristic for this problem? (Don’t worry about
whether it’s consistent or not.)

This should have read “One possible heuristic evaluation function for a state would be
the amount of time required for the robot to go back to the lander from the location
of the state...”

So, because of the typo, we gave everyone a free two points on this problem.

The answer we had in mind was the maximum, over uncollected rocks r, of the time to
get from the current location to r, and the time to get from r to the lander.
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6.034 Quiz 1, Spring 2003: Solutions v. 1.1
Open Book, Open Notes

1 Tree Search (10 points)

Consider the tree shown below. The numbers on the arcs are the arc lengths; the numbers
near states B, C, and D are the heuristic estimates; all other states have a heuristic estimate
of 0.

A

E F G H I J

DCB

5 2 4

6 3 4 9 6 3

1 6 3

Assume that the children of a node are expanded in alphabetical order when no other order
is specified by the search, and that the goal is state J . No visited or expanded lists are used.
What order would the states be expanded by each type of search. Write only the sequence
of states expanded by each search.

Search Type List of states
Breadth First A B C D E F G H I J

Depth First A B E F G C H D I J

Progressive Deepening Search A A B C D A B E F G C H D I J

Best-First Search A B E F G D I J

A* Search A B D J
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2 Graph Search (8 points)

Consider the graph shown below. Note that the arcs are undirected. Let A be the start state
and G be the goal state.

A

C

B

G

2
5

6 2

2

Simulate uniform cost search with a strict expanded list on this graph. At each step,
show the state of the node that’s being expanded, the length of that path, and the current
value of the expanded list (as a list of states).

State Expanded Length of Path Expanded List
A 0 (A)

B 2 (B A)

C 4 (C B A)

G 6 (G C B A)
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3 A∗ Algorithm (12 points)

1. Let’s consider three elements in the design of the A∗ algorithm:

• The heuristic, where the choices are:

– arbitrary heuristic

– admissible heuristic

– consistent heuristic

• History:

– none

– visited list

– strict expanded list

– non-strict expanded list

• Pathmax

– Use pathmax

– Don’t use pathmax

In the table below, indicate all the combinations that guarantee that A∗ will find
an optimal path. Not all rows have to be filled. If multiple values works for any of
Heuristic, History and Pathmax, independent of the other choices, you can write the
multiple values in one row. So

Heuristic History Pathmax
A,B C D,E

can be used to represent all of: A,C,D; A,C,E; B,C,D; and B,C,E.

Heuristic History Pathmax
Admissible None, Non-Strict Use, Don’t Use

Consistent None, Non-Strict, Strict Use, Don’t Use
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2. In the network of problem 2, assume you are given the following heuristic values:

A = 5; B = 4; C = 0; G = 0

Is this heuristic:

• Admissible? Yes No

• Consistent? Yes No

Justify your answer very briefly.

It is admissible because it is always less than the length of the shortest path. It is not
consistent because the difference between the heuristic values at B and C is 4, which is
greater than the arc-length of 2.

3. With the heuristic above will A* using a strict expanded list find the optimal path?

Yes No

Justify your answer very briefly.

We will visit C first from A with estimated cost of 5, and because it’s on the expanded
list, even when we later find a path to C with estimated cost of 4, we won’t expand it
again.
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Problem 1 – Search (30 points) 
 
Below is a graph to be searched (starting at S and ending at G).   Link/edge 
costs are shown as well as heuristic estimates at the states.  You may not 
need all the information for every search. 

h=5
S

1 
3 

Bh=2 
A 

2 h=32 
1

G C

h=0 h=2  
 
Draw the complete search tree for this graph.  Label each node in the tree 
with the cost of the path to that node and the heuristic cost at that node.  
When you need to refer to a node, use the name of the corresponding state 
and the length of the path to that node. (5 points) 

 

C is path cost,  
C=0, h=5 S h is heuristic 

C=1, h=3  C=3, h=2  A B 

C=5, h=2  C=2, h=2  
C=5, h=0 C G C 

C=6, h=3  
B 

C=4, h=2  A 

C=6, h=0  G 

S 
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For each of the searches below, just give a list of node names (state name, 
length of path) drawn from the tree above.  Break ties using alphabetical 
order.  (2 points each) 
 

1. Perform a depth-first search using a visited list.  Assume children of a 
state are ordered in alphabetical order.  Show the sequence of nodes 
that are expanded by the search. 

 
S0, A3, C5, G5  note that B6 is not expanded because B is on visited list 
(placed there when S0 was expanded). 

  
 

2. Perform a best-first (greedy search) without a visited or expanded list.  
Show the sequence of nodes that are expanded by the search. 

 
S0 (h=5), A3(h=2), G5(h=0) 

 
 

3. Perform a Uniform Cost Search without a visited or expanded list.  
Show the sequence of nodes that are expanded by the search. 

 
S0, B1, C2,  A3, A4, C5, G5  note that nodes are ordered first by cost 
then alphabetically when tied for cost. 

 
 

4. Perform an A* search (no pathmax) without an expanded list.  Show 
the sequence of nodes that are expanded by the search. 

 
S0(0+5), B1(1+3), C2(2+2), A3(3+2), G5(5+0) 

 
 
Is the heuristic in this example 

1. admissible?   Yes 
 
2. consistent?   No 

Justify your answer, briefly. (3 points) 
 
All the h values are less than or equal to actual path cost to the goal and so 
the heuristic is admissible. 
The heuristic drops from 5 at S to 3 at B while the path cost between S and B 
is only 1, and so the heuristic is not consistent. 
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For each of the following situations, pick the search that is most appropriate 
(be specific about visited and expanded list).  Give a one sentence reason 
why you picked it.  If you write a paragraph, we will not read it. 
 

1. We have a very large search space with a large branching factor and 
with possibly infinite paths.  We have no heuristic.  We want to find 
paths to the goal with minimum numbers of state. 

 
Iterative deepening is the best choice, it uses little memory (like DFS) 
but guarantees finding the path with minimum number of states (like 
BFS). 

 
2. We have a space with a manageable number of states but lots of 

cycles in the state graph.  We have links of varying costs but no 
heuristic and we want to find shortest paths. 

 
Uniform Cost Search with a strict expanded list is the best choice, it 
guarantees finding shortest paths and the expanded list limits the cost 
to a function of the number of states, which is reasonable in this case.  
Recall that a visited list will interfere with the correct operation of 
UCS. 

 
3. Our search space is a tree of fixed depth and all the goals are the 

leaves of the tree.  We have a heuristic and we want to find any goal 
as quickly as possible. 

 
This has a typo which makes it ambiguous.  If you read it as "all the 
leaves are goals", then depth-first search is the best choice (gets to the 
leaves fastest).  If you read it as "all the goals are at the leaves", then 
the best choice is a greedy search (best first), which uses the heuristic 
to guide you to the part of the tree with the goals.  In neither case is a 
visited or expanded list advisable since we are searching a tree (no 
loops). 

 
4. We have a space with a manageable number of states but lots of 

cycles in the state graph.  We have links of varying costs and an 
admissible heuristic and we want to find shortest paths. 

 
This calls for A* and a non-strict expanded list and, since we don't 
know that the heuristic is consistent, using pathmax.  This allows us to 
use all the information we have and to avoid the extra cost due to 
cycles. 
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Problem 1: Search (25 points) 
 

S 
1 2

A B 2 1

1 1

C D 

3 2
G 

 
A. Construct the search tree for the graph above, indicate the path length to each node.   
The numbers shown above are link lengths.  Pay careful attention to the arrows; some are 
bi-directional (shown thick) while some are uni-directional. 
 

S 

A B 1 2

C D C 32 3

B G 4 5

C C 85
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B. Using the following search tree, perform the searches indicated below (always from S 
to G).  Each node shows both the total path cost to the node as well as the heuristic value 
for the corresponding state. 
 

C=0 h=5 S 

C=2 h=3 C=3 h=2 C=4 h=3 A B C 

B C G C=3 h=3 C=7 h=0 C=6 h=1 D 

C=4 h=2 

D D C=5 h=1 C=8 h=1 C=7 h=0 G 

G C=6 h=0 

 
For each of the searches below, write the sequence of nodes expanded by the search.  
Specify a node by writing the name of the state and the length of the path (C above), e.g. 
S0, B3, etc.  Break ties using alphabetical order. 
 

1. Depth First Search (no visited list) 
 

S0, A2, B4, C3, D5, G6 
 
 

2. Breadth First Search (with visited list) 
 

S0, A2, B3, C4, G7 
 
 

3. Uniform Cost Search (with strict expanded list) 
 

S0, A2, B3, C3, D5, G6 
 
 

4. A* (without expanded list) 
 

S0(+5), A2(+3), B3(+2), B4(+2), C3(+3), D5(+1), G6(+0) 
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C. Choose the most efficient search method that meets the criteria indicated below.  
Explain your choice. 
 

1. You are given a state graph with link costs.  The running time of the algorithm 
should be a function of the number of states in the graph and the algorithm should 
guarantee that the path with shortest path cost is found. 

 
UCS + expanded list 
UCS guarantees shortest paths, expanded list makes sure that the running time 
depends only on the number of states not the number of paths. 

 
 
 
 

2. You are given a state graph with link costs and consistent heuristic values on the 
states.  The running time of the algorithm should be a function of the number of 
states in the graph and the algorithm should guarantee that the path with shortest 
path cost is found. 

 
A* + expanded list 
A* with consistent heuristic guarantees shortest paths, expanded list keeps the 
running time a function of number of states. 

 
 
 
 

3. You are given a state graph with no link costs or heuristic values.  The algorithm 
should find paths to a goal with the least number of states and the space 
requirements should depend on the depth of the first goal found. 

 
Iterative deepening 

Guarantees minimum number of states on path to goal and the memory requirements are 
determined by the last depth-first search (at the level of the first goal found).
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5 CSP (17 points)

Let’s look at the problem of scheduling programs on a set of computers as a constraint
satisfaction problem.

We have a set of programs (jobs) Ji to schedule on a set of computers (machines) Mj.
Each job has a maximum running time Ri. We will assume that jobs (on any machines) can
only be started at some pre-specified times Tk. Also, there’s a Tmax time by which all the
jobs must be finished running; that is, start time + running time is less than or equal to
max time. For now, we assume that any machine can execute any job.

Let’s assume that we attack the problem by using the jobs as variables and using values
that are each a pair (Mj, Tk). Here is a simple example.

• Running time of J1 is R1 = 2

• Running time of J2 is R2 = 4

• Running time of J3 is R2 = 3

• Running time of J4 is R4 = 3

• Starting times Tk = {1, 2, 3, 4, 5}

• Two available machines M1 and M2.

• The max time is Tmax = 7.

• An assignment would look like J1 = (M2, 2), that is, run job J1 on machine M2 starting
at time 2.

1. What are the constraints for this type of CSP problem? Write a boolean expression
(using logical connectives and arithmetic operations) that must be satisfied by the
assignments to each pair of variables. In particular:

• Ji with value (Mj, Tk)

• Jm with value (Mn, Tp)

There is a unary constraint on legal values for a single variable: Tk + Ri ≤ Tmax. This
is not a binary constraint on pairs of values.

The binary constraint is the one that says that jobs on the same machines must not
overlap in time. It can be expressed as:

Mj = Mn → Tk + Ri ≤ Tp ∨ Tp + Rm ≤ Tk

So, either the machines are different or the times don’t overlap.
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2. Write down a complete valid solution to the example problem above.

• J1 = (M1, 1)

• J2 = (M1, 3)

• J3 = (M2, 1)

• J4 = (M2, 4)

Several other answers are also legal.

3. Which variable would be chosen first if we did BT-FC with dynamic ordering of vari-
ables (most constrained)? Why?

J2 would be chosen since it has the smallest domain of legal values. That job since it
takes 4 time steps can only be started at times less than or equal to 3 so that it will
finish before Tmax = 7.

4. If we do constraint propagation in the initial state of the example problem, what
domain values (if any) are eliminated? Explain.

If one assumes that domain values inconsistent with the unary (Tmax) constraint have
been eliminated from the domains before constraint propagation, then no further domain
values are eliminated. We can always run a pair of jobs on different machines and so
the binary constraints do not reduce the domain further. Many people assumed that the
unary constraints were checked durning propagation and we allowed that.

5. If we set J2 = (M1, 1), what domain values are still legal after forward checking?

• J1 ∈ (M1, 5), (M2, t)t ∈ {1, ..., 5}
• J2 ∈ (M1, 1)

• J3 ∈ (M2, t)t ∈ {1, ..., 4}
• J4 ∈ (M2, t)t ∈ {1, ..., 4}

6



6. We could have formulated this problem using the machines Mj as the variables. What
would the values be in this formulation, assuming you have N machines and have K
jobs to schedule?

A value would be a complete schedule for each machine, that is, a list of all the jobs
to run on the machine. One could also specify the starting times of each job but that’s
redundant, since the running time could be used.

7. What are some disadvantages of this formulation (using machines as variables)? There
would be an very large number of possible values in the domain of each variable (every
way of splitting K jobs among M machines so that the sum of the running times is less
than Tmax).

7



6 Game Search (10 points)

Consider the game tree shown below. The top node is a max node. The labels on the arcs
are the moves. The numbers in the bottom layer are the values of the different outcomes of
the game to the max player.

1. What is the value of the game to the max player?

4

2. What first move should the max player make?

R

3. Assuming the max player makes that move, what is the best next move for the min
player, assuming that this is the entire game tree?

L

4. Using alpha-beta pruning, consider the nodes from right to left, which nodes are cut
off? Circle the nodes that are not examined.

The nodes that are not examined are the left-most node labeled “2” and the node labeled
“1.”
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6.034 Quiz 1, Spring 2005

1 Search Algorithms (16 points)

1.1 Games

The standard alpha-beta algorithm performs a depth-first exploration (to a pre-specified depth) of
the game tree.

1. Can alpha-beta be generalized to do a breadth-first exploration of the game tree and still
get the optimal answer? Explain how or why not. If it can be generalized, indicate any
advantages or disadvantages of using breadth-first search in this application.

No. The alpha-beta algorithm is an optimization on min-max. Min-max inher-
ently needs to look at the game-tree nodes below the current node (down to some
pre-determined depth) in order to assign a value to that node. A breadth-first
version of min-max does not make much sense. Thinking about alpha-beta in-
stead of min-max only makes it worse, since the whole point of alpha-beta is to
use min-max values from one of the earlier (left-most) sub-trees to decide that
we do not need to explore some later (right-most) subtrees.

Some answers suggested that min-max inherently needs to go all the way down
to the leaves of the game tree, where the outcome of the game is known. This
is not true. Typically one picks some depth of look-ahead depth and searches to
that depth, using the static evaluator to compute a score for the board position
at that depth.

2. Can alpha-beta be generalized to do a progressive-deepening exploration of the game tree and
still get the optimal answer? Explain how or why not. If it can be generalized, indicate any
advantages or disadvantages of using progressive-deepening search in this application.

Yes. Progressive-deepening involves repeated depth-first searches to increasing
depths. This can be done trivially with min-max and alpha-beta as well, which
also involve picking a maximum depth of lookahead in the tree. PD does waste
some work, but as we saw in the notes, the extra work is a small fraction of the
work that you would do anyways, especially when the branching factor is high,
as it is in game trees. The advantage is that in timed situations you guarantee
that you always have a reasonable move available.
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6 CSP Methods (15 points)

Let’s consider some combinations of CSP methods. For each of the combinations described
below say very briefly whether:

1. It would be well-defined to combine them, in the sense that none of the implementa-
tion assumptions of the methods as we defined them are violated in the combination.

2. It could be useful, that is, one would expect improved performance (over using only
the first method mentioned), at least in some problems. Improved performance could
be either from being better able to solve problems or improved efficiency (indicate
which).

In each case, circle Yes or No for each of Well-Defined? and Useful? and give a very brief
explanation of your answers.

Warning: Please pay careful attention to the definition of the methods being
combined, we are refering to the original definition of the methods – in isola-
tion. Almost any idea can be made to work with any other idea with sufficient
creativity - but that’s not what we are looking for in this problem.

• Full constraint propagation (CP) followed by pure backtracking (BT).

1. Well-Defined? Yes No

2. Useful? Yes No

After full CP, there may still be multiple solutions, and BT will choose one.

• Full constraint propagation (CP) combined with forward checking (FC).

1. Well-Defined? Yes No

2. Useful? Yes No

This doesn’t make sense; you still need to do some kind of search. Having done
CP, FC won’t rule out any more options, and you’re may be left with multiple
possible solutions.
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• Pure backtracking (BT) combined with dynamic variable (most constrained) and value
ordering (least constraining).

1. Well-Defined? Yes No

2. Useful? Yes No

Dynamic variable and value ordering only make sense if you’re doing FC to dis-
cover changes in legal variable domains.

• Min-conflict-hill-climb (MC) combined with dynamic variable (most constrained) and
value ordering (least constraining).

1. Well-Defined? Yes No

2. Useful? Yes No

MC always works with a complete assignment of values to variables.

• Pure backtracking (BT) combined with full constraint propagation (CP) after each
tentative assignment.

1. Well-Defined? Yes No

2. Useful? Yes No

Although full CP is expensive, uninformed BT can be even worse; so, in some
cases, this is an improvement.

7



Problem 5 – CSP (12 points) 
 
Assume we have four variables (A, B, C, D) and two values (1, 2).  We write 
variable/value assignments as A1, B2, etc.  Assume the only legal values are 
as listed below: 
 

! A-B: A1-B1, A2-B1, A2-B2 
 

! A-C: A1-C2, A2-C1 
 

! A-D: A2-D2 
 

! B-C: B1-C2, B2-C1 
 

! B-D: B2-D2 
 

! C-D: C1-D1, C1-D2 
 
An entry in the matrix below indicates a consistent assignment.  This is 
simply another way of presenting the same information in the list above. 
 

 A1 A2 B1 B2 C1 C2 D1 D2 
A1   X   X   
A2   X X X   X 
B1 X X    X   
B2  X   X   X 
C1  X  X   X X 
C2 X  X      
D1     X    
D2  X  X X    

 
 
Assume you do full constraint propagation in this problem.  Show the legal 
values for each variable after propagation: 
 

! A :  A2 
 
! B :  B2 

 
! C :  C1 

 
! D :  D2 
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Here's the search tree (as in the PS): 
 
                   ----------------()--------------- 
                   |                                | 
           -------A1-------                 -------A2------ 
           |               |                |              | 
       ---B1---        ---B2---         ---B1---        ---B2--- 
       |       |       |       |        |       |       |       | 
     -C1-    -C2-    -C1-    -C2-     -C1-    -C2-    -C1-    -C2- 
     |   |   |   |   |   |   |   |    |   |   |   |   |   |   |   | 
    D1  D2  D1  D2  D1   D2  D1  D2   D1  D2  D1  D2  D1  D2  D1  D2 
 
Assume that you do the backtracking with forward checking.  Show the 
assignments in order as they are generated during the search. 
 
A1 (FC reduces domain of D to empty, so fail) 
A2 (FC reduces domain of C to C1 and domain of D to D2) 
B1 (FC reduces domain of D to empty, so fail) 
B2 (FC has no further effect) 
C1 (FC has no further effect) 
D2 (done) 
 
What is the first solution found in the search? 
 
A=2, B=2, C=1, D=2 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
The constraints – repeated for easy reference: 

! A-B: A1-B1, A2-B1, A2-B2 
! A-C: A1-C2, A2-C1 
! A-D: A2-D2 
! B-C: B1-C2, B2-C1 
! B-D: B2-D2 
! C-D: C1-D1, C1-D2 
 
 A1 A2 B1 B2 C1 C2 D1 D2 

A1   X   X   
A2   X X X   X 
B1 X X    X   
B2  X   X   X 
C1  X  X   X X 
C2 X  X      
D1     X    
D2  X  X X    
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Problem 5: CSP (15 points) 
 
Consider the following constraint graph for a graph coloring problem (the constraints 
indicate that connected nodes cannot have the same color).  The domains are shown in 
the boxes next to each variable node. 

 

1 R 

3 R,G,B 
2

R,G,B 
5

R,B
4

R,G.B 

 
1. What are the variable domains after a full constraint propagation? 

 
1 = {R} 
2 = {G, B} 
3 = {G, B} 
4 = {R, G, B} 
5 = {R, B} 

 
 
 

 14



1 R 

3 R,G,B 
2

R,G,B 
5

R,B
4

R,G.B 

 
 

2. Show the sequence of variable assignments during a pure backtracking search (do 
not assume that the propagation above has been done), assume that the variables 
are examined in numerical order and the values are assigned in the order shown 
next to each node.  Show assignments by writing the variable number and the 
value, e.g. 1R.  Don't write more than 10 assignments, even if it would take 
more to find a consistent answer. 

 
 

1R 2R 2G 3R 3G 3B 4R 5R 5B 4G [ 4B 2B 3R 3G 4R 5R 5B] 
 
 
 

3. Show the sequence of variable assignments during backtracking with forward 
checking, assume that the variables are examined in numerical order and the 
values are assigned in the order shown next to each node.  Show assignments by 
writing the variable number and the value, e.g. 1R. 

 
 

1R 2G 3B 4R 2B 3G 4R 5B 
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2 Constraints (16 points)

Consider assigning colors to a checkerboard so that squares that are adjacent vertically or horizon-
tally do not have the same color. We know that this can be done with only two colors, say red (R)
and black (B). We will limit our discussion to five squares on a 3x3 board, numbered as follows:

1 | 2 | 3
---------
4 | 5 |
---------

| |

Let’s look at the CSP formulation of this problem. Let the squares be the variables and the
colors be the values. All the variables have domains { R, B }.

1. If we run full constraint propagation on the initial state, what are the resulting domains of
the variables?

None of the variable domains change:

1 = {R,B} 2 = {R, B} 3 = {R,B}
4 = {R,B} 5 = {R, B}

2. Say, instead, the initial domain of variable 5 is restricted to { B }, with the other domains
as before. If we now run full constraint propagation, what are the resulting domains of the
variables?

1 = {B} 2 = {R} 3 = {B}
4 = {R} 5 = {B}

3. If in the initial state (all variables have domains { R, B }), we assign variable 1 to R and do
forward checking, what are the resulting domains of the other variables?

Forward checking is defined as a single iteration of constraint propagation only
on those edges that terminate at the variable whose value was just set, and that
do not originate from variables which have already been set. Therefore, after we
set 1 = R, forward checking affects the domains of variables 2 and 4 since they
are adjacent to variable 1 (and have not yet been assigned).

1 = {R} 2 = {B} 3 = {R,B}
4 = {B} 5 = {R,B}

Forward checking only does one step of propagation, only to the immediate neighbors of the
assigned variable.
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4. Assume that during backtracking we first attempt assigning variables to R and then to B.
Assume, also, that we examine the variables in numerical order, starting with 1. Also, let
the domain of variable 5 be { B }, the other domains are { R, B }. In the following tree,
which shows the space of assignments to the 5 variables we care about, indicate how pure
backtracking (BT) would proceed by placing a check mark next to any assignment that would
be attempted during the search and crossing out the nodes where a constraint test would fail.
Leave unmarked those nodes that would never be explored.

R

BR

B B

B

BR

B B

R

BR

B B

B

BR

B B

R

BR

B B

B

BR

B B

R

BR

B B

B

BR

B B

R RB B

R B1

2

3

4

5

5. If we use backtracking with forward checking (BT-FC) in this same situation, give a list of all
the assignments attempted, in sequence. Use the notation variable = color for assignments,
for example, 1=R.

We must keep track of the variable domains as we search since forward checking
modifies these domains based on the current assignment, and we will need to
restore the domain of earlier search nodes if we have to backtrack to them. We
fail at a node if (1) the current assignments violate some constraint, or (2) if
forward checking after the present assignment causes the domain of some variable
to become empty. The following lists (in order from left to right) each attempted
assignments and the resulting variable domains after forward checking.

Assignment: None 1 = R 2 = B 1 = B 2 = R 3 = B 4 = R 5 = B
Domain of 1: {R,B} R R B B B B B
Domain of 2: {R,B} {B} B {R} R R R R
Domain of 3: {R,B} {R,B} {R} {R,B} {B} B B B
Domain of 4: {R,B} {B} {B} {R} {R} {R} R R
Domain of 5: {B} {B} {} {B} {B} {B} {B} B

⇓
FAIL

Note that when we fail at 2 = B, since there are no further values to try in the
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domain of variable 2, we backtrack to the assignment of variable 1. When this
happens, we restore the domains from before variable 1 was assigned, i.e. the
ones listed above under “None”.

6. If we use backtracking with forward checking (BT-FC) but with dynamic variable ordering,
using the most-constrained-variable strategy, give a list of all the variable assignments at-
tempted, in sequence. If there is a tie between variables, use the lowest-numbered one first.
Use the notation variable = color for assignments, for example, 1=R.

Use of the most-constrained-variable strategy entails assigning the variable first
whose domain is smallest. This ordering is not only performed at the start of the
search. Rather, it is updated after each variable is assigned and forward checking
modifies the domains of unassigned variables. For this problem, variable 5 has
the smallest domain initially. After assigning variable 5, the domains of variable
2 and 4 become smaller than those of variables 3 and 5. Since variable 2 has the
lowest index, it is assigned next. And so on, as shown below:

Assignment: None 5 = B 2 = R 1 = B 3 = B 4 = R
Domain of 1: {R,B} {R,B} {B} B B B
Domain of 2: {R, B} {R} R R R R
Domain of 3: {R,B} {R,B} {B} {B} B B
Domain of 4: {R, B} {R} {R} {R} {R} R
Domain of 5: {B} B B B B B
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3 Constraint satisfaction (24 points)

You are trying to schedule observations on the space telescope. We have m scientists who have each
submitted a list of n telescope observations they would like to make. An observation is specified by
a target, a telescope instrument, and a time slot. Each scientist is working on a different project so
the targets in each scientist’s observations are different from those of other scientists. There are k
total time slots, and the telescope has three instruments, but all must be aimed at the same target
at the same time.

The greedy scientists cannot all be satisfied, so we will try to find a schedule that satisfies the
following constraints:

C1. Exactly two observations from each scientist’s list will be made (the choice of the two will be
part of the solution).

C2. At most one observation per instrument per time slot is scheduled.

C3. The observations scheduled for a single time slot must have the same target.

Note that for some set of requested observations, there may not be any consistent schedule, but
that’s fine.
Consider the following three formulations of the problem.

A. The variables are the 3k instrument/time slots.

B. The variables are the m scientists.

C. The variables are the mn scientists’ requests.

For each formulation, specify

1. The value domain for the variables.

2. The size of the domain for the variables (in terms of k, m, and n).

3. Which of the constraints are necessarily satisfied because of the formulation.

4. Whether the constraints can be specified as binary constraints in this formulation. If they can,
explain how. If not, provide a counterexample.

6



Formulation A: The variables are the 3k instrument/time slots.
1. Domain: for each instrument/time slot, the set of observations requesting that in-
strument and time slot and the value “empty”
2. Size of domain: at most m*n+1 per variable
3. Satisfied constraints: C2, since each variable (instrument/time) gets at most one value,
an observation.
4. Binary constraints?:

• C1 is not a binary constraint in this formulation. It requires checking all the
variable assignments at once to make sure that exactly two observations from
each scientist’s list are made.

• C3 is a binary constraint in this formulation. Place a constraint between the 3
variables with the same time slot and require that the targets of the assigned
observation be equal if they are both non-empty.

Formulation B: The variables are the m scientists.
1. Domain: for each scientist, the set of all pairs of observations that scientist requested.
2. Size of domain:

(n
2

)
, approximately n2/2.

3. Satisfied constraints: C1, since we will guarantee that exactly two of the scientist’s
observations are scheduled.
4. Binary constraints?:

• C2 is a binary constraint in this formulation. Place a constraint between every
pair of variables and require that the instrument/time slot requests don’t conflict.

• C3 is a binary constraint in this formulation. Place a constraint between every
pair of variables and require that the targets for observations with the same time
slot don’t conflict.

Formulation C: The variables are the mn scientists’ requests.
1. Domain: {Granted, Rejected}
2. Size of domain: 2
3. Satisfied constraints: None
4. Binary constraints?:

• C1 is not a binary constraint in this formulation. It requires checking all the
variable assignments of Granted observations at once to make sure that exactly
two observations from each scientist’s list are granted.

• C2 is a binary constraint in this formulation. Place a constraint between every
pair of variables and require that the instrument/time slot requests don’t conflict
between any two Granted requests.

• C3 is a binary constraint in this formulation. Place a constraint between every
pair of variables and require that the targets of the Granted observations with
the same time slot don’t conflict.
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