
C O V E R F E A T U R E

0018-9162/07/$20.00 © 2007 IEEE54 Computer P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

software’s internal complexities, that it doesn’t crash
routinely is very strange.

We propose that software works because internally it
is surprisingly simple. This proposal is based on recent
results from artificial intelligence research. AI has dis-
covered certain previously unrecognized regularities that
developers can use to quickly find solutions. A careful
reading of the software engineering literature shows that
these regularities have also been seen in conventional
software. For problems with those regularities, much of
what we can find via complex and costly methods, we
can also find by random search. This is an important
result because an incomplete randomized algorithm
might be the simplest one available, the fastest, or both.2

COLLARS
Because AI has historically endured a bad reputation,

it might seem strange to assert that AI can help software
analysis. To explain this assertion, we begin with a
review of some interesting results from that field.
AI researchers have repeatedly concluded that a small

number of key variables determine the behavior of the
rest of the system. We call these collar3 variables. When
collars are present, the problem of controlling software
reduces to just the problem of controlling the variables
in the collar. Consequently, a developer searching for bugs
only needs to test just enough to sample the range of the
collar variables (and sampling the rest of the code is far
less cost-effective since it has much less influence on pro-
gram behavior). Collars have been discovered and redis-
covered in AI many times and given different names,

Although there are times when random search is dangerous and should be avoided,
software analysis should start with random methods because they are so cheap, moving
to the more complex methods only when random methods fail.

Tim Menzies and David Owen, West Virginia University

Julian Richardson, Research Institute for Advanced Computer Science

T he physicist John Archibald Wheeler advised
that “in any field, find the strangest thing and
explore it.” Accordingly, we explore the
strangest thing about software—that it ever
works at all.

Modern software is so complex that it should never
work. For example, we once wrote a search engine that
tried to find all the unreachable goals in a model
(http://menzies.us/pdf/95thesis.pdf). Our first imple-
mentation was impractically slow and a little mathe-
matics showed us why: We were searching a model with
300 Boolean variables. Such a model has up to 2300 ! 2
" 1090 different states. To put that number in perspective,
astronomers estimate that the universe holds 1024 stars.
That is, this little model had more internal states than
stars in the sky.
It is impossible to rigorously search software imple-

mentations of such complex models, as the “Exponen-
tial Cost of Traditional Assessment” sidebar shows. Any
software assessment or verification and validation
process must negotiate this complexity by effectively
covering only a fraction of the software’s possible inter-
nal configurations.

So why does software work? Why aren’t our incom-
plete test methods missing all too many critical errors?
One response might be to deny the premise and argue
that software rarely works as well as it should. To be
sure, software sometimes crashes—perhaps at the most
awkward or dangerous moment. See, for example, the
depressing litany of mistakes documented in Peter
Neumann’s Computer-Related Risks.1 However, given

The Strangest Thing
About Software

January 2007 55

including variable subset selection,4 narrows,5 master
variables,6 and back doors.7 For example, many
researchers have examined what happens when a data
miner deliberately ignores some of the variables in the
training data. In one study, Ron Kohavi and George John
studied a specific variable subset selection method.4 Their
experiments on eight real-world data sets show that an
average 81 percent of variables can be ignored. Further,
ignoring those variables doesn’t degrade the learner’s clas-
sification accuracy. On the contrary, it results in an aver-
age increase in accuracy, as Table 1 shows.

Saul Amarel observed that search problems contain
tiny collars—which he called narrows—in their search
space that must be traversed in any solution.5 In such a
space, what matters is not so much how we get to these
collars, but what decision we make when we get there.
Since the route between collars is not important, Amarel’s
work defined macros that encode paths between them in
the search space, effectively permitting a search engine to
jump between them. Amarel’s narrows would explain
the variable subset selection results: We can ignore vari-
ables from outside the narrows without losing control
of a system.
James Crawford and Andrew Baker observed collars,

which they called master variables, while investigating dif-
ferent scheduling methods.6 They built Tableau, a very
fast, complete search engine and compared its perfor-
mance to Isamp, a simple randomized search engine. Both
algorithms assign a value to one variable, then infer some
consequences with forward checking. If the algorithms
detect contradictions, Tableau backtracks while Isamp
simply starts over and reassigns other variables randomly,
giving up after MAX-TRIES number of times. Otherwise,
as Figure 1 shows, both algorithms continue looping until
all variables are assigned. Surprisingly, Isamp took less
time than Tableau to find more scheduling solutions using
just a small number of TRIES.

Crawford and Baker explained this effect by assuming
that a small set of master variables set the remaining vari-
ables in a system. They hypothesized that the solutions
are not uniformly distributed throughout the search space.
Tableau’s depth-first search sometimes wanders into
regions containing no solutions by making an early
unlucky choice in the master variables. On the other hand,
Isamp’s randomized sampling effectively searches in a
smaller space because it restarts on every contradiction.

Crawford and Baker argued that the collars play an
important role in controlling how long it takes to find a
solution. A similar conclusion comes from the work of
Ryan Williams, Carla Gomes, and Bart Selman, who
discuss how to use collars—which they call back
doors—to optimize search.7 Constraining the collars
constrains the rest of the program as well, by definition.
So, to quickly search a program, they suggest imposing
some setting on the collar variables. This reduces the
remaining search space within a program, which can
then be explored quickly. Some researchers argue that

Exponential Cost of Traditional Assessment
If x is the probability that a randomly selected pro-

gram input finds a fault, then after N random inputs,
the chance of the inputs not revealing a fault is (1 # x)N.
Hence, the chance C of seeing the fault is 1 # (1 # x)N,
which can be rearranged to N ! log(1 # C)/ log(1 # x).
This expression shows that a linear increase in C
requires exponentially more tests. For example, for one-
in-a-thousand detects (x ! 0.001), moving
C from 90 to 94 to 98 percent requires 2,301, 2,812,
and 3,910 black-box probes, respectively.1

The problem of requiring exponential resources to
evaluate software cannot be solved using more
informed evaluation methods. For example, the infa-
mous state-space explosion problem imposes strict

limits on how much a system can be explored via, say,
automatic formal methods.2 With Bojan Cukic, we have
explored many other examples in which assessment
effectiveness is exponential on effort.3

References
1. J.M. Voas and K.W. Miller, “Software Testability: The New

Verification,” IEEE Software, May 1995, pp. 17-28.
2. M. Lowry, M. Boyd, and D. Kulkarni, “Towards a Theory for

Integration of Mathematical Verification and Empirical Test-
ing,” Proc. Automated Software Eng. (ASE 98), 1998, pp. 322-
331.

3. T.J. Menzies and B. Cukic, “How Many Tests Are Enough?”;
http:/ /menzies.us/pdf/00ntests.pdf.

Table 1.Variable subset selection results.4

Average number Accuracy change
of variables After Before

Data set Before After (percentage) (percentage)

Breast cancer 10 2.9 29 +0.14
Cleve 13 2.6 2 +5.89
Crx 15 2.9 19 +4.49
DNA 180 11.0 6 +3.63
Horse colic 22 2.8 13 +1.63
Pima 8 1.0 13 +0.79
Sick-euthyroid 25 4.0 16 +0.38
Soybean 35 12.7 36 +0.15
Average 38.5 4.99 19 +2.14

56 Computer

this policy can reduce exponential time problems to
polynomial time—providing that it’s possible to cheaply
locate the collars.7

EVIDENCE FROM SOFTWARE ENGINEERING
If collars are present in conventional—that is, non-AI

software—then a few collar variables determine a soft-
ware package’s overall behavior. If so, then we would
expect three effects:

• Software testing should quickly saturate—most pro-
gram paths will be exercised early, with little further
improvement seen as testing continues.

• Random mutation will be more likely to affect the
many non-collar variables compared to the few collar
variables, so the net effect of those mutations would be
small (a mutant of a program is a syntactically valid
but randomly selected variation to a program, such as
swapping all plus signs to a minus sign). If so, then
most random mutations of a program containing col-
lars will not change the program’s behavior.

• Software states should clump so that only a small
number of states will be reached at runtime. Collars
imply clumps because the number of reachable states
in an application will be quite small, containing just
the number of possible settings to the collar.

Actually, clumps can also cause collars. Collars store the
differences between the states reached at runtime. If the
number of states is small, the number of differences will
also be small.
All these effects can be found in the software engi-

neering literature. Joseph Horgan and Aditya Mathur
reported the saturation effect.8 As to mutation testing,
Christoph Michael found that in 80 to 90 percent of
cases, there were no changes in the behavior of a range
of programs despite numerous perturbations on data
values using a program mutator.9 In similar results, Eric
Wong compared results using X percent of a mutator
library, randomly selected (X $ {10%, 15%, … 40%,
100%}).10 Most of what could be learned from the pro-
gram could be learned using only X ! 10 percent of the

Figure 1. Average performance of Tableau versus Isamp on six scheduling problems, A through F, with different levels of
constraints and bottlenecks.6 Isamp’s unit_propagationprocedure is a special linear-time case of resolution.

for i :! 1 ttoo MAX TRIES {
try:
set all variables to unassigned
loop {

if all variables are valued
then return current assignment
else{ v % random unvalued variable

assign v a randomly chosen value
unit_propagate()
if contradiction goto try

}}}
return failure

Tableau: Full search Isamp: Partial, random search
Success Time in Success rate Time in
rate seconds (percent) seconds Tries

A 90% 255.4 100 10 7
B 100% 104.8 100 13 15
C 70% 79.2 100 11 13
D 100% 90.6 100 21 45
E 80% 66.3 100 19 52
F 100% 81.7 100 68 252

Expected Distribution of Reachable States in Software
If software has n variables, each with its own assign-

ment probability distribution of pi, then the probability
that software will fall into a particular state is

By taking logs of both sides, this equation becomes

The central limit theorem addresses the asymptotic
behavior of such a sum of random variables. In the case
where we know little about software, pi is uniform and
many states are possible. However, the more we know
about software, the more varied are individual distribu-
tions. Given enough variance in the individual priors
and conditional probabilities, or pi, we expect that the
frequency with which we reach states will exhibit a log-
normal distribution, in which we can expect a small
fraction of states to cover a large portion of the total
probability space, and the remaining states have practi-
cally negligible probability.

1n p =1n = pi
i = 1

n

∏ = 1n pi
i = 1

n

∑

p = p1p2p3 … pn = pi
i = 1

n

∏ .

mutators. After a very small number of mutators, new
mutators acted the same as previously used ones.
Timothy Budd11 and Allen Acree12 also have made this
observation.

Marek Druzdzel (www.pitt.edu/~druzdzel/abstracts/
uai94.html) observed clumping in a diagnosis appli-
cation for monitoring patients in intensive care.
Although the software had 525,312 possible internal
states, the application reached few of them at runtime:
One of the states occurred 52 percent of the time, and
49 states appeared 91 percent of the time. Druzdzel
could show mathematically that there is nothing
unusual about his application. Thus, we should always
expect that software will clump, as the “Expected
Distribution of Reachable States in Software” sidebar
describes.
Empirical evidence for clumping also comes from

Radek Pelanek’s detailed review of the structures of
dozens of formal models.13 He found that, on aver-
age, their internal structure was remarkably simple.
Formal models often comprised one large, strongly

connected component (where if state u connects to
state v, v also connects to u) and small diameters (the
largest, shortest path between two states was quite
short). A program executing around such a space
would repeatedly arrive back at a small number of
states, thus clumping.

USING COLLARS AND CLUMPS
To exploit collars and clumps, we must first note that

they dramatically reduce the search space within a pro-
gram. The number of variables in a collar should be very
small, as the “Likelihood of Clumps” sidebar explains.
The collar variables set the number of reachable states,
so small collars also mean that the number of clumping
states will be small. Hence, theoretically, random search
will quickly find most of what can be found via a more
complete search.

We have been testing this theoretical speculation since
1999 (http://menzies.us/pdf/99seke.pdf). Currently, we
are experimenting with two random search algorithms
that show much promise: LURCH and TAR3.

January 2007 57

Likelihood of Clumps
Suppose the output space of software has been

bunched together into a small number of equivalence
classes (for example, numerous numeric outputs all
scored “low number of errors”). In such software, there
are many ways to reach equivalent output. Consider
the space of possible inference chains within such soft-
ware. Some of these intersect and can clash over the
value of a variable at the intersection. We say that col-
lars contain the clashes that were not dependent on
any other clashes. Let some goal in software be reach-
able by a narrow collar M or a wide collar N:

Let the cardinality of the narrow funnel and wide
funnels be m and n respectively. Each m member of M is
reached via a path with probability a i, while each n
member of N is reached via a path with probability bi.
Two paths exist from the funnels to this goal: one from
the narrow neck with probability c and one from the
wide neck with probability d.

The probability of reaching the goal via the narrow
pathway is

while the probability of reaching the goal via the wide
pathway is

For what values of m and n are the odds
narrow >> wide? In the case of uniform distributions
of a i, bi where

then we have shown that at, for example, m ! 3, the
wider collar pathway is very unlikely. Precisely, the
wider collar pathway is favored when

that is, only in the unlikely case that the d pathway is
thousands of times more likely than c.

We have built a small simulator to study the nonuni-
form case and reached the same conclusions: narrow
collars were millions of times more likely.1

Reference
1. T. Menzies and H. Singh, “Many Maybes Mean (Mostly) the

Same Thing”; http:/ /menzies.us/pdf/03maybe.pdf.

d
c

 ≥ 1,728,

ai
i = 1

m

∑ =1, bi
i = 1

n

∑ =1, ai = 1
m

, bi = 1
n

wide = d bi
i = 1

n

∏

narrow = c ai
i = 1

m

∏

a1 M1

a2 M2

 …
am Mm













 c goali d

N1 b1

N2 b2

N3 b2

N4 b1

 …
Nn bn

















58 Computer

TAR3
A randomized version of the TAR2 data miner14

(http://unbox.org/wisp/tags/tar/3.0), TAR3 inputs a set
of scored examples and outputs contrast rules that dis-
tinguish highly scored examples from the others. The
rule generation algorithm seeks the smallest set of rules
that most select for the highest scoring examples.

To find the collar variables, TAR3 assumes that if col-
lars exist, they control software’s behavior. So, a ran-
dom selection of the software behaviors must, by
definition, sample the collars. That is, we need not search
for the collars—they’ll find us.
If we generate scenarios at random, such as Monte

Carlo simulations, then score each run as good or bad
using some domain knowledge such as number of goals
reached, the collar variables will be those with attribute
ranges that occur with very different frequencies in good
rather than bad runs. TAR3 builds its rules randomly,
favoring attribute ranges that occur more in high-scor-
ing examples than in lower-scoring ones.

Dustin Geletko (http://menzies.us/pdf/03radar.pdf)
applied TAR3 to a version of the Limits to Growth15

model. This model studies the effects of the world’s expo-
nentially growing population and economy. The full
model contains 295 variables and more than 100 nodes.
MIT faculty studied this model for several years to find
factors that prevented global population overshoot and
collapse, such as desired completed family size normal !
0..2 and industrial capital output ratio ! 3.5.

To check TAR3’s conclusions, Geletko conducted
another simulation that constrained the inputs accord-
ing to TAR3’s recommendations. Because TAR3 returns

the collar variables, and we expect that number
to be very small, TAR3’s learned theories should
be more succinct than standard learners. To test
this, Geletko gave an entropy decision tree
learner the same data that TAR3 used. That
learner returned a decision tree with 200 tests.
In a result consistent with the collar hypothesis,
TAR3’s theory, learned from the same data,
needed to test only two variables: desired com-
pleted family size normal and industrial capital
output ratio.

The study’s two main effects were that TAR3
returned very small theories and that these the-
ories proved effective in changing the distribu-
tion of some system. Ying Hu16 describes many
studies with the algorithm and multiple data sets
from the standard University of California, Irvine
data mining data sets,17 plus some software engi-
neering domains. The two effects seen in the
Limits to Growth Study also appeared in the UCI
data. TAR3 always produced theories that tested
less than five variables, and those theories, when
applied as a SELECT statement to the data sets,
selected examples with a greatly changed class

distribution.

LURCH
A random testing and debugging tool for finite-

state models18 (http://unbox.org/wisp/tags/lurch/1.0),
LURCH works by simulating the execution of the mod-
els—choosing randomly when more than one transition
is possible. LURCH never backtracks; it simply runs
until some termination condition (such as path end,
depth limit, or error detected), and then starts over until
a user-specified number of paths have been explored.
For example, Figure 2 compares the times and mem-

ory required for a complete search and randomized
search to solve the “N-queens” problem: Place N queens
on an N " N chess board such that no queen can take
any other. For the complete search, we ran the SPIN
model checker19 in six modes, each using a different set
of options to improve that search. For the random
search, we used LURCH to explore a finite-state model
of N-queens.
As Crawford and Baker noted, a complete search looks

into everything and can get stuck in some irrelevant cor-
ner of the problem. This effect can be seen in Figure 2:
SPIN’s complete search gave up and died on anything
larger than a 15 " 15 board, shown by the vertical dashed
line. Just like Isamp, however, LURCH’s random search
has a built-in get-out-of-jail-free card: When it gets stuck,
it can jump over a wall and start afresh somewhere else.
Observe how LURCH scaled to much larger problems
than SPIN.
Figure 2 also demonstrates the order effects that

plague deterministic search. For deterministic algo-

Figure 2. Solving the N-queens problem using complete (SPIN) versus
random (LURCH) search. SPIN was run in six modes, each using a differ-
ent set of efficiency-improving options.The one horizontal line on the
memory graph for SPIN, running up to only board size 14, was
generated using SPIN’s lossy supertrace compression option.This
saves a great deal of memory in many cases but was not accurate for
models larger than board size 14.

 0.01
 0.1

 1
 10

 100
 1000

Ti
m

e
(s

ec
on

ds
)

N Queens

 1

 10

 100

5 10 15 20 25

M
em

or
y

(M
B)

Board size

Lurch
SPIN (6 modes)

rithms, certain inputs always result in the slowest run-
times. For example, insertion sort runs slowest if the
inputs are already sorted in reverse order. In Figure 2,
to cite another example, SPIN’s complete search takes
exponentially less time and memory for boards of odd
size than for those of even size. The random search,
on the other hand, jumps around the input data, so it
can be difficult to find inputs that generate worst-case
runtimes.
A standard objection to using incomplete random

methods like LURCH for real-world problems is that
they can miss important behavior or critical errors in
the model. While certainly true, this objection assumes
that the model is small enough to be processed by com-
plete search. For larger models, random search may be
the only viable option. Also, our recent work with Dejan
Desovski and Bojan Cukic shows how random search
can be used to complement complete search to produce
a more reliable verification result.18 That study used
SPIN and LURCH to explore an error-seeded formal
requirements model. SPIN found errors not detected by
LURCH, which makes sense since SPIN carries out a
complete search. Surprisingly, LURCH found one error
not found by SPIN. We eventually found the cause of
this strange result—the automatic translation tool used
to generate the SPIN model. It implemented a memory
saving with an inappropriate assumption that portions
of the model were deterministic. This hid from SPIN
some of the model’s behavior, including the error found
by LURCH.

T o be sure, there are times when random search is
dangerous and should be avoided. For example, the
software controller of a manned spacecraft’s ascent

stage should be a deterministic algorithm with guaran-
teed performance properties. Using random search at this
stage of the mission is as crazy as not using random
search to assist in onboard diagnosis when the craft is in
deep space, in deep trouble, all other methods are fail-
ing, and it takes too long to ask for help from ground
control.

Complete methods and random methods should be
mixed and matched. For the software’s mission-critical
kernel, tools like SPIN should be used for complete val-
idation. But the rest of the software could be too big for
complete analysis, in which case a random search using,
for example, LURCH or TAR3, might be the only cost-
effective option.

We recommend starting with random software analy-
sis because it is so cheap, moving to the more complex
methods only when random methods fail. Writing nearly
two decades ago, Barry Boehm made an analogous pro-
posal for iterative software exploration.20 Writing at the
same time, Donald Norman argued that such iterative
exploration is essential in any human design process.21

Much has changed since 1988. We now know how to
write algorithms that exploit certain regularities internal
to software. LURCH can quickly sample the reachable
clumps, and TAR3 can find the smallest rules that most
select for them. This kind of randomized search and
learning shows great promise for finding the key deci-
sions within seemingly intricate software. !

Acknowledgments
This work was sponsored by the NASA Office of

Safety and Mission Assurance under the Software
Assurance Research Program led by the NASA IV&V
Facility and conducted at the West Virginia University
and at the NASA Ames Research Center. Reference
herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or oth-
erwise, does not constitute or imply its endorsement by
the United States Government or NASA.

References
1. P.G. Neumann, Computer-Related Risks, ACM Press/Addi-

son Wesley, 1995.
2. R. Motwani and P. Raghavan, Randomized Algorithms, Cam-

bridge Univ. Press, 1995.
3. T. Menzies and J. Richardson, “Making Sense of Require-

ments, Sooner,” Computer, Oct. 2006, pp. 112-114; http://
menzies.us/pdf/06qrre.pdf.

4. R. Kohavi and G.H. John, “Wrappers for Feature Subset Selec-
tion,” Artificial Intelligence, vol. 97, nos. 1-2, 1997, pp. 273-324.

5. S. Amarel, “Program Synthesis as a Theory Formation Task:
Problem Representations and Solution Methods,” Machine
Learning: An Artificial Intelligence Approach: Volume II, R.S.
Michalski, J.G. Carbonell, and T.M. Mitchell, eds., Morgan
Kaufmann, 1986, pp. 499-569.

6. J. Crawford and A. Baker, “Experimental Results on the
Application of Satisfiability Algorithms to Scheduling Prob-
lems,” Proc. American Assoc. Artificial Intelligence (AAAI
94), AAAI Press/MIT Press, 1994, pp. 1092-1097.

7. R. Williams, C.P. Gomes, and B. Selman, “Backdoors to Typ-
ical Case Complexity,” Proc. IJCAI 2003; www.cs.cornell.
edu/gomes/papers/backdoors.pdf.

8. J. Horgan and A. Mathur, “Software Testing and Reliability,”
The Handbook of Software Reliability Engineering, M.R. Lyu,
ed., McGraw-Hill, 1996, pp. 531-565.

9. C.C. Michael, “On the Uniformity of Error Propagation in
Software,” Proc. 12th Ann. Conf. Computer Assurance
(COMPASS 97), 1997, pp. 68-76.

10. W.E. Wong and A.P. Mathur, “Reducing the Cost of Muta-
tion Testing: An Empirical Study,” J. Systems and Software,
vol. 31, no. 3, 1995, pp. 185-196.

11. T.A. Budd, “Mutation Analysis of Programs Test Data,” doc-
toral dissertation, Yale Univ., 1980.

12. A.T. Acree, “On Mutations,” doctoral dissertation, School of
Information and Computer Science, Georgia Inst. of Tech-
nology, 1980.

January 2007 59

60 Computer

13. R. Pelanek, “Typical Structural Properties of State Spaces,”
Proc. SPIN 04 Workshop, 2004.

14. T. Menzies and Y. Hu, “Data Mining for Very Busy People,”
Computer, Nov. 2003, pp. 22-29.

15. D.H. Meadows et al., The Limits to Growth, Potomac Asso-
ciates, 1972.

16. Y. Hu, “Treatment Learning: Implementation and Applica-
tion,” master’s thesis, Dept. Electrical Eng., Univ. of British
Columbia, 2003.

17. C.L. Blake and C.J. Merz, UCI Repository of Machine Learn-
ing Databases, 1998; www.ics.uci.edu/~mlearn/MLReposi-
tory.html.

18. D. Owen, D. Desovski, and B. Cukic, “Effectively Combin-
ing Software Verification Strategies: Understanding Different
Assumptions,” Proc. Int’l Symp. Software Reliability Eng.
(ISSRE 06), IEEE Press, 2006.

19. G.J. Holzmann, “The Model Checker SPIN,” IEEE Trans.
Software Eng., vol. 23, no. 5, 1997, pp. 279-295.

20. B. Boehm, “A Spiral Model of Software Development and
Enhancement,” Software Eng. Notes, vol. 11, no. 4, 1986,
pp. 61-72.

21. D.A. Norman, The Design of Everyday Things, Doubleday
Currency, 1989.

Tim Menzies is an associate professor at the Lane Depart-
ment of Computer Science and Electrical Engineering, West
Virginia University. His main research interests are data
mining for software engineering. Menzies received a PhD in
artificial intelligence from the University of New South
Wales, Sydney, Australia. He is a member of the IEEE. Con-
tact him at tim@menzies.us.

David Owen is a PhD student at the Lane Department of
Computer Science and Electrical Engineering, West Virginia
University. His research interests include model checking
and randomized algorithms. Owen received an MS fromWest
Virginia University. He is a student member if the IEEE.
Contact him at owen@csee.wvu.edu.

Julian Richardson is a research scientist working for RIACS
in the Reliable Software Engineering Group, NASA Ames
Research Center. His main research interests include soft-
ware risk assessment, verification and validation, and auto-
mated software engineering. He received a PhD in artificial
intelligence from the University of Edinburgh, Scotland. He
is a member of the ACM. Contact him at julian.richard-
son@gmail.com.

ISO 9001 provides a tried and tested framework for taking a systematic approach to
software engineering practices. Readers are provided with examples of over 55 common
work products. This in-depth reference expedites the design and development of the
documentation required in support of ISO 9001 quality activities. Also available:

& Practical Support for CMMI' - SW Software Project Documentation:
Using IEEE Software Engineering Standards

& Jumpstart CMM'/CMMI' Software Process Improvements:
Using IEEE Software Engineering Standards

Practical Support for ISO 9001
Software Project Documentation: Using
IEEE Software Engineering Standards

978-0-471-76867-8 • October 2006
418 pages • Paperback • $89.95
A Wiley-IEEE Computer Society Press

To Order:
1-877-762-2974 North America
+ 44 (0) 1243 779 777 Rest of World

15
 %

 o
ff
fo
r

CS
M
em
be
rs

www.wiley.com/ieeecs

