
COMP9414: Artificial Intelligence

Reasoning Under Uncertainty

Wayne Wobcke

Room J17-433
wobcke@cse.unsw.edu.au

Based on slides by Maurice Pagnucco

COMP9414 c©UNSW, 2007

COMP9414, 1 May, 2007 Reasoning Under Uncertainty 1

Reasoning Under Uncertainty

! One drawback of the logical approach to reasoning is that an agent
can rarely ascertain the truth of all propositions in the environment

! In fact, propositions (and their logical structure) may be inappropriate
for modelling some domains – especially those involving uncertainty

! Rational decisions for a decision theoretic agent depend on importance
of goals and the likelihood that they can be achieved

! References:
" Ivan Bratko, Prolog Programming for Artificial Intelligence,
Addison-Wesley, 2001. (Chapter 15.6)

" Stuart J. Russell and Peter Norvig, Artificial Intelligence: A
Modern Approach, Second Edition, Pearson Education, 2003.
(Chapters 13, 14)
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Overview

! Problems with Logical Approach

! What do the numbers mean?

! Review of Probability Theory

! Conditional Probability and Bayes’ Rule

! Bayesian Belief Networks
" Semantics of Bayesian Networks
" Inference in Bayesian Networks

! Conclusion
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Problems with Logical Approach

! Consider trying to formalise a medical diagnosis system:

∀p(Symptom(p, AbdominalPain) → Disease(p, Appendicitis))

! This rule is not correct since patients with abdominal pain may be
suffering from other diseases

∀p(Symptom(p, AbdominalPain) →

Disease(p, Appendicitis)∨Disease(p, Ulcer)∨Disease(p, Indig) . . .)

! We could try to write a causal rule:

∀p(Disease(p, Ulcer) → Symptom(p, AbdominalPain))
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Sources of Uncertainty

! Difficulties arise with the logical approach due to:
incompleteness agent may not have complete theory for domain
ignorance agent may not have enough information about domain
noise information agent does have may be unreliable
non-determinism environment itself may be inherently unpre-
dictable

! Probability gives us a way of summarising this uncertainty
" e.g. may believe that there is a probability of 0.75 that patient
suffers from appendicitis if they have abdominal pains
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What Do the Numbers Mean?

Statistical/Frequentist View Long-range frequency of a set of “events”
e.g. probability of the event of “heads” appearing on the toss of a coin
— long-range frequency of heads that appear on coin toss

Objective View Probabilities are real aspects of the world

Personal/Subjective/Bayesian View Measure of belief in proposition
based on agent’s knowledge, e.g. probability of heads is measure of
your belief that coin will land heads based on your belief about the
coin; other agents may assign a different probability based on their
beliefs (subjective)
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Sample Space and Events

! Flip a coin three times

! The possible outcomes are:
TTT TTH THT THH

HTT HTH HHT HHH

! Set of all possible outcomes:

S= {TTT, TTH, THT, THH, HTT, HTH, HHT, HHH}

! Any subset of the sample space is known as an event

! Any singleton subset of the sample space is known as a simple event
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Sample Space and Events

TTT

TTH

HTH

THT
THH

HTT

HHT

HHH

Simple Event

Event

Sample Space
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Prior Probability

! P(A) prior or unconditional probability that proposition A is true

! For example, P(Appendicitis) = 0.3

! In the absence of any other information, agent believes there is a
probability of 0.3 (30%) of the event of the patient suffering from
appendicitis

! As soon as we get new information we must reason with conditional
probabilities
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Random Variables

! Propositions are random variables that can take on several values
P(Weather = Sunny) = 0.8
P(Weather = Rain) = 0.1
P(Weather =Cloudy) = 0.09
P(Weather = Snow) = 0.01

! Every random variable X has a domain of possible values
〈x1, x2, . . .xn〉

! Probabilities of all possible values P(Weather) = 〈0.8, 0.1, 0.09, 0.01〉
is a probability distribution

! P(Weather, Appendicitis) is a combination of random variables
represented by cross product (can also use logical connectives
P(A∧B) to represent compound events)
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Axioms of Probability

1. 0≤ P(A) ≤ 1
! All probabilities are between 0 and 1

2. P(True) = 1 P(False) = 0
! Valid propositions have probability 1
! Unsatisfiable propositions have probability 0

3. P(A∨B) = P(A)+P(B)−P(A∧B)

! Can determine probabilities of all other propositions
! For example, P(A∨¬A) = P(A)+P(¬A)−P(A∧¬A)
P(True) = P(A)+P(¬A)−P(False)
1= P(A)+P(¬A)−0
Therefore P(¬A) = 1−P(A)
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Conditional Probability

! When new information is gained we can no longer use prior
probabilities

! Conditional or posterior probability
P(A|B) is the probability of A given that all we know is B
" e.g. P(Appendicitis|AbdominalPain) = 0.75

! Product Rule: P(A∧B) = P(A|B).P(B)

! Therefore P(A|B) = P(A∧B)
P(B) provided P(B) > 0

! P(X |Y ) = P(X = xi|Y = y j) for all i, j
P(X , Y ) = P(X |Y ).P(Y )— a set of equations
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Joint Probability Distribution

! Complete specification of probabilities to all propositions in the
domain

! Suppose we have random variables X1, X2, . . . , Xn
! An atomic (simple) event is an assignment of particular values to all
variables

! Joint probability distribution P(X1, X2, . . . , Xn) assigns probabilities
to all possible atomic events

! For example, a simple medical domain with two Boolean random
variables:

AbdominalPain ¬AbdominalPain
Appendicitis 0.04 0.06
¬Appendicitis 0.01 0.89
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Joint Probability Distribution

! Simple events are mutually exclusive and jointly exhaustive

! Probability of complex event is sum of probabilities of compatible
simple events
P(Appendicitis) = 0.04+0.06= 0.10
P(Appendicitis∨AbdominalPain) = 0.04+0.06+0.01= 0.11
P(Appendicitis|AbdominalPain) = P(Appendicitis∧AbdominalPain)

P(AbdominalPain) =
0.04

0.04+0.01 = 0.8

! Problem: With many random variables the number of probabilities is
vast
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Normalisation

TTT

TTH

HTH

THT
THH

HTT

HHT

HHH

0.1/0.45=2/9

0.15/0.45=3/9

0.1/0.45=2/9

0.1/0.45=2/9

0.0

0.0

0.0

0.0

! Conditional probability distribution given that first coin is H
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Bayes’ Rule

P(B|A) =
P(A|B)P(B)

P(A)

! Modern AI systems abandon joint probabilities and work with
conditional probabilities utilising Bayes’ Rule

! Deriving Bayes’ Rule:
P(A∧B) = P(A|B)P(B) (Definition)
P(B∧A) = P(B|A)P(A) (Definition)
So P(A|B)P(B) = P(B|A)P(A) since P(A∧B) = P(B∧A)

Hence P(B|A) = P(A|B)P(B)
P(A) if P(A) )= 0

! Note: If P(A) = 0, P(B|A) is undefined
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Applying Bayes’ Rule

! Example (Russell & Norvig, 1995)

! Doctor knows that
– meningitis causes a stiff neck 50% of the time
– chance of patient having meningitis is 1

50000
– chance of patient having a stiff neck 1

20

! P(Sti f f Neck|Meningitis) = 0.5
P(Meningitis) = 1

50000
P(Sti f f Neck) = 1

20

! P(Meningitis|Sti f f Neck) = P(Sti f fNeck|Meningitis).P(Meningitis)
P(Sti f fNeck) =

0.5 1
50000

1
1
20

= 0.0002
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Using Bayes’ Rule

! Suppose we have two conditional probabilities for appendicitis
P(Appendicitis|AbdominalPain) = 0.8

P(Appendicitis|Nausea) = 0.1

! P(Appendicitis|AbdominalPain∧Nausea) =
P(AbdominalPain∧Nausea|Appendicitis).P(Appendicitis)

P(AbdominalPain∧Nausea)

! Need to know P(AbdominalPain∧Nausea|Appendicitis)
With more symptoms that is a daunting task
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Conditional Independence

! Observe: Appendicitis is direct cause of both abdominal pain and
nausea

! If we know patient is suffering from appendicitis, then probability
of nausea should not depend on the presence of abdominal pain;
likewise probability of abdominal pain should not depend on nausea

! We say that nausea and abdominal pain are conditionally independent
given appendicitis

! An event X is independent of an event Y conditional on the
background knowledge K if knowing the probability of Y does not
affect the probability of X

P(X |K) = P(X |Y,K)
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Bayesian Belief Networks

! A Bayesian belief network (also Bayesian Network, probabilistic
network, causal network, knowledge map) is a directed acyclic graph
(DAG) where:
" Each node consists of a set of random variables
" Directed links connect pairs of nodes – a directed link from node

X to node Y means that X has a direct influence on Y
" Each node has a conditional probability table quantifying effect of
parents on node

! Independence assumption of Bayesian networks:
Each random variable is (conditionally) independent of its
nondescendants given its parents
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Bayesian Belief Networks

! Example (Pearl, 1988)

! You have a new burglar alarm at home that is quite reliable at
detecting burglars but may also respond at times to an earthquake.
You also have two neighbours, John and Mary, who promise to call
you at work when they hear the alarm. John always calls when he
hears the alarm but sometimes confuses the telephone ringing with
the alarm and calls then, also Mary likes loud music and sometimes
misses the alarm. Given the evidence of who has or has not called,
we would like to estimate the probability of a burglary.
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Bayesian Belief Networks

! Example (Pearl, 1988)

Burglary
P(Burglary)
0.001

Earthquake
P(Earthquake)
0.002

Alarm
Burglary
True
True
False
False

Earthquake
True
False
True
Flase

P(Alarm)
0.95
0.94
0.29
0.001

JohnCalls MaryCalls
Alarm
True
False

P(JohnCalls)
0.90
0.05

Alarm
True
False

P(MaryCalls)
0.70
0.01

! Probabilities summarise potentially infinite set of possible circum-
stances
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Conditional Probability Table

! Row contains conditional probability of each node value for a
conditioning case (i.e. possible combination of values for parent
node)

P(Alarm|Burglary∧Earthquake)
Burglary Earthquake True False
True True 0.950 0.050
True False 0.940 0.060
False True 0.290 0.710
False False 0.001 0.999
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Semantics of Bayesian Networks

! Bayesian network provides a complete description of the domain

! Joint probability distribution can be determined from the belief
network
" P(x1, x2, . . . , xn) =∏n

i=1P(xi|Parents(Xi))

! For example, P(J∧M∧A∧¬B∧¬E) =
P(J|A).P(M|A).P(A|¬B∧¬E).P(¬B).P(¬E) =
0.90×0.70×0.001×0.999×0.998= 0.000628

! Bayesian network is a complete and non-redundant representation
of domain (and can be far more compact than joint probability
distribution)
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Semantics of Bayesian Networks

! Factorisation of joint probability distribution

! Chain Rule: Use conditional probabilities to decompose conjunctions
P(X1∧X2∧ . . .∧Xn) = P(X1).P(X2|X1).P(X3|X1∧X2). . . . .P(Xn|X1∧
X2∧ . . .∧Xn−1)

! Now, order the variables X1, X2, . . . , Xn in a belief network so that
a variable comes after its parents – let πXi be the tuple of parents of
variable Xi (this is a complex random variable)
Using the chain rule we have P(X1∧X2∧. . .∧Xn) =P(X1).P(X2|X1).P(X3|X1∧
X2). . . . .P(Xn|X1∧X2∧ . . .∧Xn−1)
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Semantics of Bayesian Networks

! Each P(Xi|X1 ∧X2 ∧ . . .∧ Xi−1) has the property that it is not
conditioned on a descendant of Xi (given ordering of variables in
belief network)

! Therefore, by conditional independence we have P(Xi|X1∧X2∧ . . .∧
Xi−1) = P(Xi|πXi)

! That is, rewriting the chain rule P(X1, X2, . . . , Xn) =∏n
i=1P(Xi|πXi)
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Calculation using Bayesian Networks

! Fact 1: Consider random variable X with parents Y1, Y2, . . . , Yn:

P(X |Y1∧ . . .∧Yn∧Z) = P(X |Y1∧ . . .∧Yn)

if Z doesn’t involve a descendant of X (including X itself)

! Fact 2: If Y1, . . . ,Yn are pairwise disjoint and exhaust all possibilities:

P(X) = ΣP(X ∧Yi) = ΣP(X |Yi).P(Yi)

P(X |Z) = ΣP(X ∧Yi|Z)

" e.g. P(J|B) = P(J∧B)
P(B) = ΣP(J∧B∧e∧a∧m)

ΣP( j∧B∧e∧a∧m) where j ranges over J,¬J,
e over E,¬E, a over A,¬A and m over M,¬M
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Calculation using Bayesian Networks

! P(J ∧B∧E ∧A∧M) = P(J|A).P(B).P(E).P(A|B∧E).P(M|A) =
0.90×0.001×0.002×0.95×0.70= 0.00000197

! P(J∧B∧¬E ∧A∧M) = 0.00591016

! P(J∧B∧E ∧¬A∧M) = 5×10−11

! P(J∧B∧¬E ∧¬A∧M) = 2.99×10−8

! P(J∧B∧E ∧A∧¬M) = 0.000000513

! P(J∧B∧¬E ∧A∧¬M) = 0.000253292

! P(J∧B∧E ∧¬A∧¬M) = 4.95×10−9

! P(J∧B∧¬E ∧¬A∧¬M) = 2.96406×10−6
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Calculation using Bayesian Networks

! P(¬J∧B∧E ∧A∧M) = 0.000000133

! P(¬J∧B∧¬E ∧A∧M) = 6.56684×10−5

! P(¬J∧B∧E ∧¬A∧M) = 9.5×10−10

! P(¬J∧B∧¬E ∧¬A∧M) = 5.6886×10−7

! P(¬J∧B∧E ∧A∧¬M) = 0.000000057

! P(¬J∧B∧¬E ∧A∧¬M) = 2.81436×10−5

! P(¬J∧B∧E ∧¬A∧¬M) = 9.405×10−8

! P(¬J∧B∧¬E ∧¬A∧¬M) = 5.63171×10−5
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Calculation using Bayesian Networks

! Therefore, P(J|B) = P(J∧B)
P(B) = ΣP(J∧B∧e∧a∧m)

ΣP( j∧B∧e∧a∧m) = 0.00849017
0.001

! P(J|B) = 0.849017

! Can often simplify calculation without using full joint probabilities
but not always
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Inference in Bayesian Networks

Diagnostic Inference From effects to causes
P(Burglary|JohnCalls) = 0.016

Causal Inference From causes to effects
P(JohnCalls|Burglary) = 0.85; P(MaryCalls|Burglary) = 0.67

Intercausal Inference Explaining away
P(Burglary|Alarm) = 0.376 but adding evidence, P(Burglary|Alarm∧
Earthquake) = 0.003; despite the fact that burglaries and earthquakes
are independent, the presence of one makes the other less likely

Mixed Inference Combinations of the patterns above
Diagnostic + Causal: P(Alarm|JohnCalls∧¬Earthquake)
Intercausal + Diagnostic: P(Burglary|JohnCalls∧¬Earthquake)
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Inference in Bayesian Networks

Q

Q

Q

Q

E

E E E

E

Diagnostic Causal

Intercausal

Mixed

! Q = query; E = evidence
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Example — Causal Inference

! P(JohnCalls|Burglary)

! P(J|B) = P(J|A∧B).P(A|B)+P(J|¬A∧B).P(¬A|B)
= P(J|A).P(A|B)+P(J|¬A).P(¬A|B)
= P(J|A).P(A|B)+P(J|¬A).(1−P(A|B))

! Now P(A|B) = P(A|B∧E).P(E|B)+P(A|B∧¬E).P(¬E|B)
= P(A|B∧E).P(E)+P(A|B∧¬E).P(¬E)
= 0.95×0.002+0.94×0.998= 0.94002

! Therefore P(J|B) = 0.90×0.94002+0.05×0.05998= 0.849017

! Fact 3: P(X |Z) = P(X |Y ∧Z).P(Y |Z)+P(X |¬Y ∧Z).P(¬Y |Z), since
X ∧Z ≡ (X ∧Y ∧Z)∨ (X ∧¬Y ∧Z) (conditional version of Fact 2)
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Example — Diagnostic Inference

! P(Earthquake|Alarm)

! P(E|A) = P(A|E).P(E)
P(A)

= P(A|B∧E).P(B).P(E)+P(A|¬B∧E).P(¬B).P(E)
P(A)

= 0.95×0.001×0.002+0.29×0.999×0.002
P(A) = 5.8132×10−4

P(A)

! Now P(A) = P(A|B∧E).P(B).P(E)+P(A|¬B∧E).P(¬B).P(E)+
P(A|B∧¬E).P(B).P(¬E)+P(A|¬B∧¬E).P(¬B).P(¬E)

And P(A|B∧¬E).P(B).P(¬E)+P(A|¬B∧¬E).P(¬B).P(¬E)
= 0.94×0.001×0.998+0.001×0.999×0.998= 0.001935122

So P(A) = 5.8132×10−4+0.001935122= 0.002516442

! Therefore P(E|A) = 5.8132×10−4
0.002516442 = 0.2310087
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Conclusion

! Due to noise or uncertainty it may be advantageous to reason with
probabilities

! Dealing with joint probabilities can become difficult due to the large
number of values involved

! Use of Bayes’ Rule and conditional probabilities may be a way
around this

! Bayesian belief networks allow compact representation of probabili-
ties and efficient reasoning with probabilities

! They work by exploiting the notion of conditional independence
! Elegant recursive algorithms can be given to automate the process of
inference in Bayesian networks

! This is currently one of the “hot” topics in AI
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