2

3

COMP9414: Artificial Intelligence Reasoning Under Uncertainty

Wayne Wobcke

Room J17-433 wobcke@cse.unsw.edu.au Based on slides by Maurice Pagnucco

Overview

- Problems with Logical Approach
- What do the numbers mean?
- Review of Probability Theory
- Conditional Probability and Bayes' Rule
- Bayesian Belief Networks
 - Semantics of Bayesian Networks
 - ► Inference in Bayesian Networks
- Conclusion

COMP9414		© UNSW, 2007	COMP9414	©UNSW, 2007	Generated: 17 April 2007
COMP9414, 1 May, 2007	Reasoning Under Uncertainty	1	COMP9414, 1 May, 2007	Reasoning Under Uncertainty	

Reasoning Under Uncertainty

- One drawback of the logical approach to reasoning is that an agent can rarely ascertain the truth of all propositions in the environment
- In fact, propositions (and their logical structure) may be inappropriate for modelling some domains – especially those involving uncertainty
- Rational decisions for a decision theoretic agent depend on importance of goals and the likelihood that they can be achieved
- References:
 - Ivan Bratko, Prolog Programming for Artificial Intelligence, Addison-Wesley, 2001. (Chapter 15.6)
 - Stuart J. Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Second Edition, Pearson Education, 2003. (Chapters 13, 14)

Problems with Logical Approach

Consider trying to formalise a medical diagnosis system:

 $\forall p(Symptom(p, AbdominalPain) \rightarrow Disease(p, Appendicitis))$

This rule is not correct since patients with abdominal pain may be suffering from other diseases

 $\forall p(Symptom(p, AbdominalPain) \rightarrow$

 $Disease(p, Appendicitis) \lor Disease(p, Ulcer) \lor Disease(p, Indig) \dots)$

We could try to write a causal rule:

 $\forall p(Disease(p, Ulcer) \rightarrow Symptom(p, AbdominalPain))$

COMP9414

Reasoning Under Uncertainty

4

6

7

Sources of Uncertainty

- Difficulties arise with the logical approach due to: incompleteness agent may not have complete theory for domain ignorance agent may not have enough information about domain noise information agent does have may be unreliable non-determinism environment itself may be inherently unpredictable
- Probability gives us a way of summarising this uncertainty
 - e.g. may believe that there is a probability of 0.75 that patient suffers from appendicitis if they have abdominal pains

Sample Space and Events

- Flip a coin three times
- The possible outcomes are:

TTT	TTH	THT	THH
HTT	HTH	HHT	HHH

Set of all possible outcomes:

 $S = \{\text{TTT, TTH, THT, THH, HTT, HTH, HHT, HHH}\}$

- Any subset of the sample space is known as an event
- Any singleton subset of the sample space is known as a simple event

COMP9414	©UNSW, 2007	Generated: 17 April 2007	COMP9414	©UNSW, 2007	Generated: 17 April 2007
COMP9414, 1 May, 2007	Reasoning Under Uncertain	nty 5	COMP9414, 1 May, 2007	Reasoning Under Uncertainty	

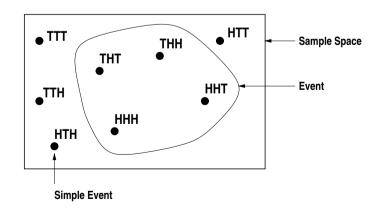
What Do the Numbers Mean?

Statistical/Frequentist View Long-range frequency of a set of "events" e.g. probability of the event of "heads" appearing on the toss of a coin — long-range frequency of heads that appear on coin toss

Objective View Probabilities are real aspects of the world

Personal/Subjective/Bayesian View Measure of belief in proposition based on agent's knowledge, e.g. probability of heads is measure of your belief that coin will land heads based on your belief about the coin; other agents may assign a different probability based on their beliefs (subjective)

Sample Space and Events



COMP9414

Reasoning Under Uncertainty

8

9

Prior Probability

- \blacksquare P(A) prior or unconditional probability that proposition A is true
- For example, P(Appendicitis) = 0.3
- In the absence of any other information, agent believes there is a probability of 0.3 (30%) of the event of the patient suffering from appendicitis
- As soon as we get new information we must reason with conditional probabilities

COMP9414	©UNSW, 2007	Generated: 17 April 2007

Reasoning Under Uncertainty

Random Variables

- Propositions are random variables that can take on several values
 - P(Weather = Sunny) = 0.8 P(Weather = Rain) = 0.1 P(Weather = Cloudy) = 0.09P(Weather = Snow) = 0.01
- Every random variable X has a domain of possible values $\langle x_1, x_2, \dots x_n \rangle$
- Probabilities of all possible values P(Weather) = (0.8, 0.1, 0.09, 0.01) is a probability distribution
- **P**(*Weather*, *Appendicitis*) is a combination of random variables represented by cross product (can also use logical connectives $P(A \land B)$ to represent compound events)

COMP9414, 1 May, 2007

Axioms of Probability

- 1. $0 \le P(A) \le 1$
 - All probabilities are between 0 and 1
- 2. P(True) = 1 P(False) = 0
 - Valid propositions have probability 1
 - Unsatisfiable propositions have probability 0

3. $P(A \lor B) = P(A) + P(B) - P(A \land B)$

- Can determine probabilities of all other propositions
- For example, $P(A \lor \neg A) = P(A) + P(\neg A) P(A \land \neg A)$ $P(True) = P(A) + P(\neg A) - P(False)$ $1 = P(A) + P(\neg A) - 0$ Therefore $P(\neg A) = 1 - P(A)$

```
COMP9414
```

©UNSW, 2007

Generated: 17 April 2007

11

10

COMP9414, 1 May, 2007

COMP9414

Reasoning Under Uncertainty

Conditional Probability

- When new information is gained we can no longer use prior probabilities
- Conditional or posterior probability P(A|B) is the probability of A given that all we know is B

©UNSW, 2007

- e.g. P(Appendicitis|AbdominalPain) = 0.75
- Product Rule: $P(A \land B) = P(A|B).P(B)$
- Therefore $P(A|B) = \frac{P(A \land B)}{P(B)}$ provided P(B) > 0
- $\mathbf{P}(X|Y) = P(X = x_i|Y = y_j)$ for all i, j $\mathbf{P}(X, Y) = \mathbf{P}(X|Y).\mathbf{P}(Y)$ — a set of equations

13

14

Joint Probability Distribution

- Complete specification of probabilities to all propositions in the domain
- Suppose we have random variables X_1, X_2, \ldots, X_n
- An atomic (simple) event is an assignment of particular values to all variables
- Joint probability distribution $\mathbf{P}(X_1, X_2, \dots, X_n)$ assigns probabilities to all possible atomic events
- For example, a simple medical domain with two Boolean random variables:

	AbdominalPain	¬AbdominalPain
Appendicitis	0.04	0.06
¬Appendicitis	0.01	0.89
	©UNSW, 2007	Generate

COMP9414, 1 May, 2007

COMP9414

Reasoning Under Uncertainty

Joint Probability Distribution

- Simple events are mutually exclusive and jointly exhaustive
- Probability of complex event is sum of probabilities of compatible simple events

P(Appendicitis) = 0.04 + 0.06 = 0.10

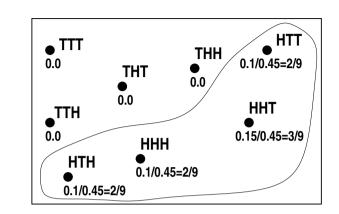
$$P(Appendicitis \lor AbdominalPain) = 0.04 + 0.06 + 0.01 = 0.11$$

$$P(Appendicitis|AbdominalPain) = \frac{P(Appendicitis \land AbdominalPain)}{P(AbdominalPain)}$$

$$\frac{0.04}{0.04+0.01} = 0.8$$

Problem: With many random variables the number of probabilities is vast

Normalisation



Conditional probability distribution given that first coin is H ©UNSW, 2007

COMP9414, 1 May, 2007

COMP9414

Reasoning Under Uncertainty

Bayes' Rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

- Modern AI systems abandon joint probabilities and work with conditional probabilities utilising Bayes' Rule
- Deriving Bayes' Rule:

 $P(A \wedge B) = P(A|B)P(B)$ (Definition) $P(B \wedge A) = P(B|A)P(A)$ (Definition) So P(A|B)P(B) = P(B|A)P(A) since $P(A \land B) = P(B \land A)$ Hence $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$ if $P(A) \neq 0$

Note: If P(A) = 0, P(B|A) is undefined

=

Generated: 17 April 2007

Applying Bayes' Rule

- Example (Russell & Norvig, 1995)
- Doctor knows that
 - meningitis causes a stiff neck 50% of the time
 - chance of patient having meningitis is $\frac{1}{50000}$
 - chance of patient having a stiff neck $\frac{1}{20}$
- P(StiffNeck|Meningitis) = 0.5 $P(Meningitis) = \frac{1}{50000}$ $P(StiffNeck) = \frac{1}{20}$

$$P(Meningitis|StiffNeck) = \frac{P(StiffNeck|Meningitis).P(Meningitis)}{P(StiffNeck)} = 0.5\frac{1}{50000}\frac{1}{\frac{1}{20}} = 0.0002$$

COMP9414

©UNSW, 2007

COMP9414, 1 May, 2007

Reasoning Under Uncertainty

Using Bayes' Rule

- Suppose we have two conditional probabilities for appendicitis P(Appendicitis|AbdominalPain) = 0.8P(Appendicitis|Nausea) = 0.1
- $P(Appendicitis|AbdominalPain \land Nausea) = \frac{P(AbdominalPain \land Nausea|Appendicitis).P(Appendicitis)}{P(AbdominalPain \land Nausea)}$
- Need to know *P*(*AbdominalPain* ∧ *Nausea*|*Appendicitis*) With more symptoms that is a daunting task

Conditional Independence

- **Observe**: Appendicitis is direct cause of both abdominal pain and nausea
- If we know patient is suffering from appendicitis, then probability of nausea should not depend on the presence of abdominal pain; likewise probability of abdominal pain should not depend on nausea
- We say that nausea and abdominal pain are conditionally independent given appendicitis
- An event X is independent of an event Y conditional on the background knowledge K if knowing the probability of Y does not affect the probability of X

$$P(X|K) = P(X|Y,K)$$

©UNSW, 2007

Generated: 17 April 2007

19

18

COMP9414, 1 May, 2007

Reasoning Under Uncertainty

Bayesian Belief Networks

- A Bayesian belief network (also Bayesian Network, probabilistic network, causal network, knowledge map) is a directed acyclic graph (DAG) where:
 - ► Each node consists of a set of random variables
 - Directed links connect pairs of nodes a directed link from node X to node Y means that X has a direct influence on Y
 - Each node has a conditional probability table quantifying effect of parents on node
- Independence assumption of Bayesian networks:

Each random variable is (conditionally) independent of its nondescendants given its parents

Generated: 17 April 2007

17

COMP9414

COMP9414, 1 May, 2007

Bayesian Belief Networks

- Example (Pearl, 1988)
- You have a new burglar alarm at home that is quite reliable at detecting burglars but may also respond at times to an earthquake. You also have two neighbours, John and Mary, who promise to call you at work when they hear the alarm. John always calls when he hears the alarm but sometimes confuses the telephone ringing with the alarm and calls then, also Mary likes loud music and sometimes misses the alarm. Given the evidence of who has or has not called, we would like to estimate the probability of a burglary.

Conditional Probability Table

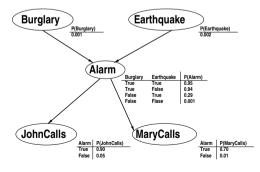
Row contains conditional probability of each node value for a conditioning case (i.e. possible combination of values for parent node)

		P (Alarm	$Burglary \wedge Earthquake)$
Burglary	Earthquake	True	False
True	True	0.950	0.050
True	False	0.940	0.060
False	True	0.290	0.710
False	False	0.001	0.999

COMP9414	©UNSW, 2007	Generated: 17 April 2007	COMP9414	©UNSW, 2007	Generated: 17 April 2007
COMP9414, 1 May, 2007	Reasoning Under Uncertainty	21	COMP9414, 1 May, 2007	Reasoning Under Uncertainty	

Bayesian Belief Networks

Example (Pearl, 1988)



Probabilities summarise potentially infinite set of possible circumstances

Semantics of Bayesian Networks

- Bayesian network provides a complete description of the domain
- Joint probability distribution can be determined from the belief network
 - ▶ $P(x_1, x_2, ..., x_n) = \prod_{i=1}^n P(x_i | Parents(X_i))$
- For example, $P(J \land M \land A \land \neg B \land \neg E) =$ $P(J|A).P(M|A).P(A|\neg B \land \neg E).P(\neg B).P(\neg E) =$ $0.90 \times 0.70 \times 0.001 \times 0.999 \times 0.998 = 0.000628$
- Bayesian network is a complete and non-redundant representation of domain (and can be far more compact than joint probability distribution)

Semantics of Bayesian Networks

Semantics of Bayesian Networks

Each $P(X_i|X_1 \land X_2 \land \ldots \land X_{i-1})$ has the property that it is not

conditioned on a descendant of X_i (given ordering of variables in

Therefore, by conditional independence we have $P(X_i|X_1 \land X_2 \land \ldots \land$

• That is, rewriting the chain rule $P(X_1, X_2, \ldots, X_n) = \prod_{i=1}^n P(X_i | \pi_{X_i})$

- Factorisation of joint probability distribution
- Chain Rule: Use conditional probabilities to decompose conjunctions $P(X_1 \land X_2 \land \ldots \land X_n) = P(X_1) . P(X_2 | X_1) . P(X_3 | X_1 \land X_2) . \ldots . P(X_n | X_1 \land X_2 \land \ldots \land X_{n-1})$
- Now, order the variables $X_1, X_2, ..., X_n$ in a belief network so that a variable comes after its parents – let π_{X_i} be the tuple of parents of variable X_i (this is a complex random variable)
 - Using the chain rule we have $P(X_1 \land X_2 \land \ldots \land X_n) = P(X_1) \cdot P(X_2|X_1) \cdot P(X_3|X_1 \land X_2) \cdot \ldots \cdot P(X_n|X_1 \land X_2 \land \ldots \land X_{n-1})$

Calculation using Bayesian Networks

Fact 1: Consider random variable X with parents Y_1, Y_2, \ldots, Y_n :

$$P(X|Y_1 \wedge \ldots \wedge Y_n \wedge Z) = P(X|Y_1 \wedge \ldots \wedge Y_n)$$

if Z doesn't involve a descendant of X (including X itself)

Fact 2: If Y_1, \ldots, Y_n are pairwise disjoint and exhaust all possibilities:

 $P(X) = \Sigma P(X \wedge Y_i) = \Sigma P(X|Y_i).P(Y_i)$

$$P(X|Z) = \Sigma P(X \wedge Y_i|Z)$$

► e.g. $P(J|B) = \frac{P(J \land B)}{P(B)} = \frac{\Sigma P(J \land B \land e \land a \land m)}{\Sigma P(j \land B \land e \land a \land m)}$ where *j* ranges over $J, \neg J$, *e* over $E, \neg E, a$ over $A, \neg A$ and *m* over $M, \neg M$

```
COMP9414
©UNSW, 2007
Generated: 17 April 2007

COMP9414, 1 May, 2007
Reasoning Under Uncertainty
25
```

Calculation using Bayesian Networks

- $P(J \land B \land E \land A \land M) = P(J|A).P(B).P(E).P(A|B \land E).P(M|A) = 0.90 \times 0.001 \times 0.002 \times 0.95 \times 0.70 = 0.00000197$
- $P(J \wedge B \wedge \neg E \wedge A \wedge M) = 0.00591016$
- $P(J \wedge B \wedge E \wedge \neg A \wedge M) = 5 \times 10^{-11}$
- $P(J \land B \land \neg E \land \neg A \land M) = 2.99 \times 10^{-8}$
- $P(J \land B \land E \land A \land \neg M) = 0.000000513$
- $\blacksquare P(J \land B \land \neg E \land A \land \neg M) = 0.000253292$
- $P(J \land B \land E \land \neg A \land \neg M) = 4.95 \times 10^{-9}$
- $\blacksquare P(J \land B \land \neg E \land \neg A \land \neg M) = 2.96406 \times 10^{-6}$

belief network)

 $X_{i-1}) = P(X_i | \pi_{X_i})$

COMP9414

COMP9414, 1 May, 2007

Calculation using Bayesian Networks

- $P(\neg J \land B \land E \land A \land M) = 0.000000133$
- $P(\neg J \land B \land \neg E \land A \land M) = 6.56684 \times 10^{-5}$
- $P(\neg J \land B \land E \land \neg A \land M) = 9.5 \times 10^{-10}$
- $P(\neg J \land B \land \neg E \land \neg A \land M) = 5.6886 \times 10^{-7}$
- $P(\neg J \land B \land E \land A \land \neg M) = 0.000000057$
- $P(\neg J \land B \land \neg E \land A \land \neg M) = 2.81436 \times 10^{-5}$
- $P(\neg J \land B \land E \land \neg A \land \neg M) = 9.405 \times 10^{-8}$
- $P(\neg J \land B \land \neg E \land \neg A \land \neg M) = 5.63171 \times 10^{-5}$

COMP9414	©UNSW, 2007	Generated: 17 April 2007	COMP9414	©UNSW, 200
P9414, 1 May, 2007	Reasoning Under Uncertainty	29	COMP9414, 1 May, 2007	Re

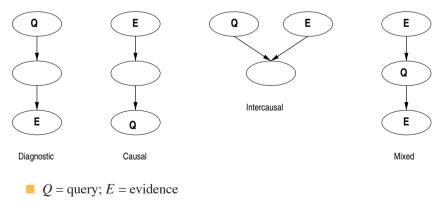
Calculation using Bayesian Networks

Therefore,
$$P(J|B) = \frac{P(J \land B)}{P(B)} = \frac{\Sigma P(J \land B \land e \land a \land m)}{\Sigma P(j \land B \land e \land a \land m)} = \frac{0.00849017}{0.001}$$

- P(J|B) = 0.849017
- Can often simplify calculation without using full joint probabilities but not always

Inference in Bayesian Networks

Diagnostic Inference P(Burglary John	e From effects to causes nCalls) = 0.016	
Causal Inference F P(JohnCalls Bu	rom causes to effects rglary) = 0.85; $P(MaryCalls)$	s Burglary) = 0.67
Earthquake) = 0	ce Explaining away rm) = 0.376 but adding eviden 0.003; despite the fact that but the presence of one makes th	rglaries and earthquakes
Diagnostic + Ca	bombinations of the patterns ab usal: $P(Alarm JohnCalls \land \neg$ agnostic: $P(Burglary JohnCalls$	Earthquake)
СОМР9414	©UNSW, 2007	Generated: 17 April 2007
9414, 1 May, 2007	Reasoning Under Unc	ertainty
9414, 1 May, 2007 Inference in	Reasoning Under	_



33

Example — Causal Inference

- P(JohnCalls|Burglary)
- $\begin{array}{l} \blacksquare \ P(J|B) = P(J|A \land B).P(A|B) + P(J|\neg A \land B).P(\neg A|B) \\ = P(J|A).P(A|B) + P(J|\neg A).P(\neg A|B) \\ = P(J|A).P(A|B) + P(J|\neg A).(1 P(A|B)) \end{array}$
- Now $P(A|B) = P(A|B \land E) . P(E|B) + P(A|B \land \neg E) . P(\neg E|B)$ = $P(A|B \land E) . P(E) + P(A|B \land \neg E) . P(\neg E)$ = $0.95 \times 0.002 + 0.94 \times 0.998 = 0.94002$
- Therefore $P(J|B) = 0.90 \times 0.94002 + 0.05 \times 0.05998 = 0.849017$
- **Fact 3**: $P(X|Z) = P(X|Y \land Z).P(Y|Z) + P(X|\neg Y \land Z).P(\neg Y|Z)$, since $X \land Z \equiv (X \land Y \land Z) \lor (X \land \neg Y \land Z)$ (conditional version of Fact 2)

COMP9414	©UNSW, 2007	Generated: 17 April 200
MP9414, 1 May, 2007	Reasoning Under Unc	certainty

Example — Diagnostic Inference

 \blacksquare P(Earthquake|Alarm)

$$P(E|A) = \frac{P(A|E).P(E)}{P(A)}$$

= $\frac{P(A|B \land E).P(B).P(E) + P(A| \neg B \land E).P(\neg B).P(E)}{P(A)}$
= $\frac{0.95 \times 0.001 \times 0.002 + 0.29 \times 0.999 \times 0.002}{P(A)} = \frac{5.8132 \times 10^{-4}}{P(A)}$

Now $P(A) = P(A|B \land E).P(B).P(E) + P(A|\neg B \land E).P(\neg B).P(E) + P(A|B \land \neg E).P(B).P(\neg E) + P(A|\neg B \land \neg E).P(\neg B).P(\neg E)$ And $P(A|B \land \neg E).P(B).P(\neg E) + P(A|\neg B \land \neg E).P(\neg B).P(\neg E)$ $= 0.94 \times 0.001 \times 0.998 + 0.001 \times 0.999 \times 0.998 = 0.001935122$ So $P(A) = 5.8132 \times 10^{-4} + 0.001935122 = 0.002516442$

Therefore
$$P(E|A) = \frac{5.8132 \times 10^{-4}}{0.002516442} = 0.2310087$$

Conclusion

- Due to noise or uncertainty it may be advantageous to reason with probabilities
- Dealing with joint probabilities can become difficult due to the large number of values involved
- Use of Bayes' Rule and conditional probabilities may be a way around this
- Bayesian belief networks allow compact representation of probabilities and efficient reasoning with probabilities
- They work by exploiting the notion of conditional independence
- Elegant recursive algorithms can be given to automate the process of inference in Bayesian networks
- This is currently one of the "hot" topics in AI

COMP9414

©UNSW, 2007

Generated: 17 April 2007