Crystal Ball: Phase 2 Report (part 1) Application to NASA systems

Tim Menzies Barry Boehm Jairus Hihn

July 22, 2008

Executive Summary C Background Baselines Solo discussions Group discussions What's next?

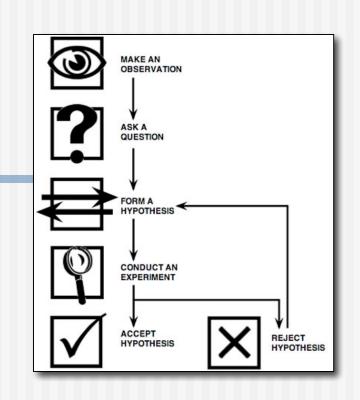
Executive summary

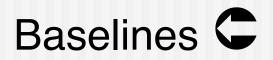
- We seek clarity, consensus of the future of software at NASA
 - We seek this at a time of massive institutional change at NASA
- We did not find consensus between individuals at the detailed level
 - But we did find consensus on general trends during group discussions
- Conclusion:
 - Our software process planning tools should be aware of those trends and offer conclusions over the options space within those trends
 - E.g. the STAR/NOVA tool proposed by Menzies/Hihn/Boehm

Executive Summary

Background C Baselines Solo discussions Group discussions What's next?

Possibility

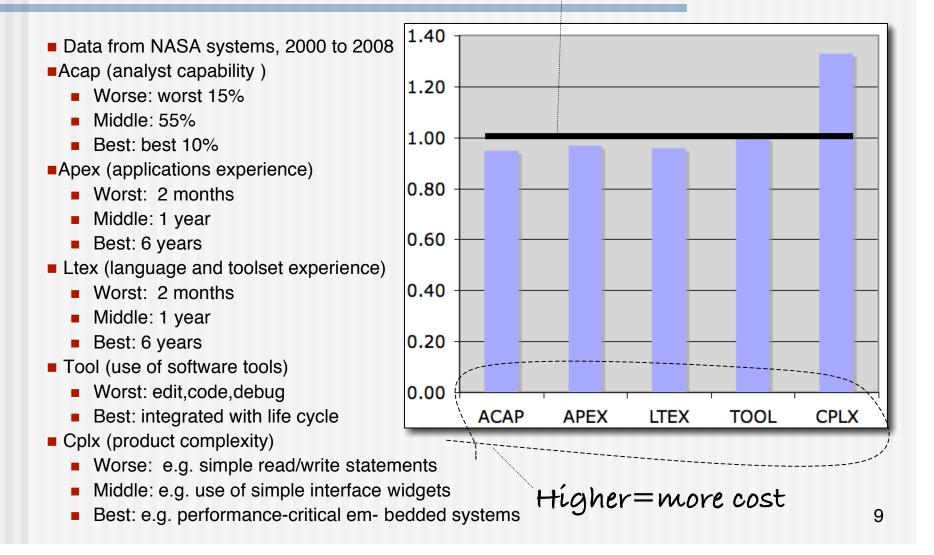

- Maybe, can use AI to better plan software projects
 - Monte Carlo, simulated annealing, Bayesian feature selection


- Result: better peeking into the future
- E.g. Menzies, Boehm, Hihn, Lum ASE 2007
 - Al search methods on software process models
 - Some stable predictions in a huge space of options
 - http://menzies.us/pdf/07casease.pdf
- To test that possibility
 - Need ranges representing current & future NASA environment

Methodology

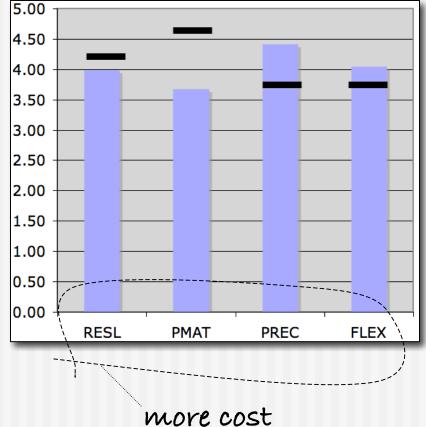
- 3 USC software process models
 - 1 WVU AI search engine
 - Multiple case studies
 - Sensitivity analysis
 - Found nine key factors
- Manual exploration of those factors with experienced software experts
 - May 2008: SE research leaders
 - July 2008: JPL experts
- 1 hour one-on-one sessions
 - Followed 2 days later by a 3 hour group meeting

Executive Summary Background



Solo discussions Group discussions What's next? Baselines collected from NASA data

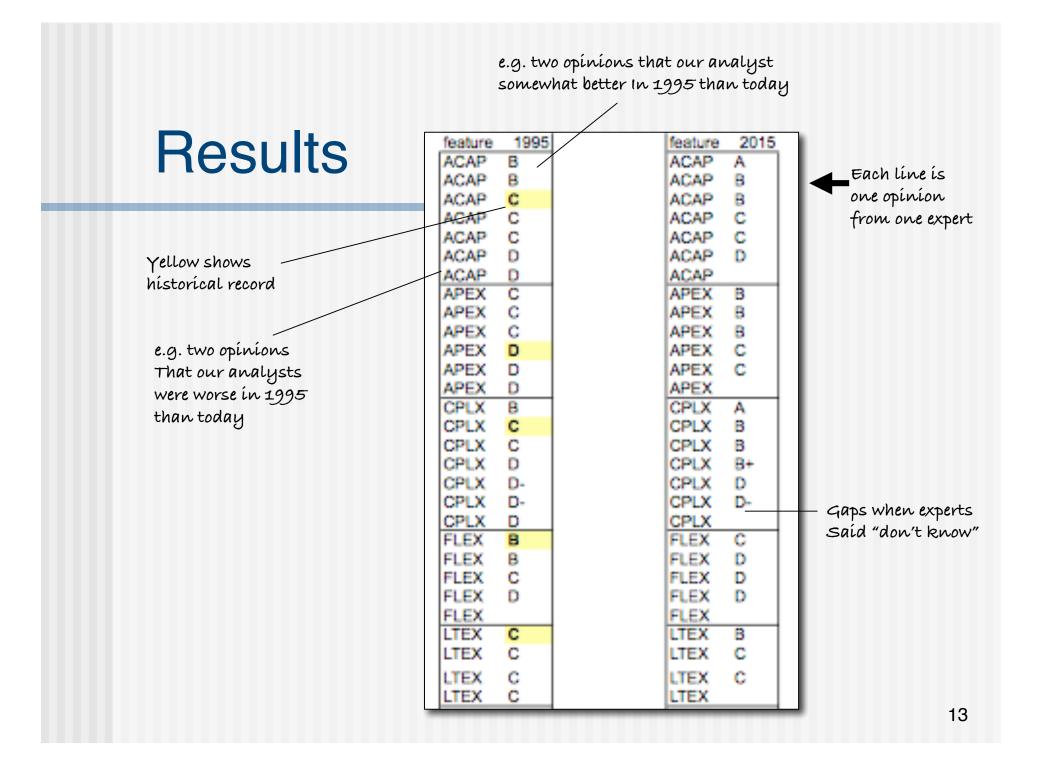
- Some JPL
- Some from other centers
- Data collected for the decade 2000 to 2008.


We will refer to this data as the "2005" data

Baselines (1)

Baselines (2)

- Data from NASA systes, 2000 to 2008
- Resl (architecture or risk resolution)
 - Worst: few interfaces defined or few risk eliminated
 - Middle: most interfaces defined or most risks eliminated
 - Best: all interfaces defined or all risks eliminated
- Pmat process maturity
 - Worst: CMM level 1
 - Middle: CMM level 3
 - Best: CMM level 5
- Prec Precedentedness
 - Worst: we have never built this kind of software before
 - Middle: somewhat new
 - Best: thoroughly familiar
- Flex (development flexibility)
 - Worst: development process rigorously defined
 - Middle; some guidelines, which can be relaxed
 - Best; only general goals defined


Executive Summary Background Baselines

Solo discussions \tildsymbol{C}

Group discussions What's next?

Data collected from one-on-one sessions

- Duration: 1 hour
- What (are we studying?)
 - JPL flight software
 - Planetary missions (e.g. rovers)
- When (are we looking)
 - -10 years (to calibrate historical data)
 - +10 years (to make predictions)
- What (are we using to express the data)
 - Projects expressed in the COCOMO ontology
- How (are we answer the questions):
 - Please answer :
 - A: significantly better
 - B: somewhat better
 - C: no change
 - D : somewhat worse
 - E : significantly worse

Results

- **1995**:
 - Historical record mid-point of expert view: acap,cplx
 - Historical record at one end of expert view: apex, flex
 - Historical record agrees with expert view: Itex
- **2015**:
 - Usually, static or will improve
 - Acap,apex, Itex
 - No agreement on future
 - Cplx
 - Usually, static or will get worse
 - Flex
 - E.g. product lines will force uniformity

feature	1995	feature	2015
ACAP	В	ACAP	A
ACAP	в	ACAP	B
ACAP	С	ACAP	B
ACAP	С	ACAP	c
ACAP	С	ACAP	c
ACAP	D	ACAP	D
ACAP	D	ACAP	
APEX	С	APEX	В
APEX	С	APEX	B
APEX	С	APEX	B
APEX	D	APEX	C
APEX	D	APEX	C
APEX	D	APEX	
CPLX	в	CPLX	A
CPLX	С	CPLX	B
CPLX	С	CPLX	
CPLX	D	CPLX	B+
CPLX	D-	CPLX	D
CPLX	D-	CPLX	D-
CPLX	D	CPLX	
FLEX	в	FLEX	С
FLEX	в	FLEX	D
FLEX	С	FLEX	D
FLEX	D	FLEX	D
FLEX		FLEX	
LTEX	С	LTEX	В
LTEX	С	LTEX	c
LTEX	С	LTEX	c
LTEX	С	LTEX	

Results

- **1995**:
 - Historical record mid-point of expert view: pmat, tool
 - Historical record at one end of expert view: resl, prec
 - Note: resl very hard to answer (complex question)

2015

- Usually, static or will improve
 - Resl, tool
- No agreement on future
 - Prec, pmat

PMAT	B-	PMAT
PMAT	C-	PMAT
PMAT	D	PMAT
PMAT	D	PMAT
PMAT	E	PMAT
PMAT		PMAT
PREC	в	PREC
PREC	в	PREC
PREC	С	PREC
PREC	С	PREC
PREC	С	PREC
PREC	D	PREC
PREC	D	PREC
RESL	в	RESL
RESL	С	RESL
RESL	С	RESL
RESL	C-	RESL
RESL	D	RESL
RESL		RESL
RESL		RESL
TOOL	С	TOOL
TOOL	С	TOOL
TOOL	D	TOOL
TOOL	D	TOOL
TOOL	E	TOOL

A B

BBE

в

C C

č

D D-

В

в

B

С

С

А

A-

B

Results for reuse and size changes

- Reuse
 - Low levels in 1995
 - Usually, low levels expected for 2015
- Size of system
 - Generally perceived to be smaller before
 - Expected to grow by a factor of (around) two by 2015

	1995	2015
reuse	0	reuse 15
reuse	0	reuse 0.2
reuse	0	reuse 0.13
reuse	0.02	reuse 0.7
reuse	0.1	reuse 0.2
reuse	20	reuse 0.2
size	0.2	size 2
size	0.33	size
size	0.5	size 2
size	0.7	size 2.5
size	0.8	size 1.5
size	D	size A

Discussion

In one-on-one sessions

- Observed variance on expectations of future software at JPL
- (So, great need for a tool that can explore a space of options)
- Possibility
 - If we bring the experts together in one room
 - Perhaps consensus will emerge
 - Hence, our next study... (read on)

Executive Summary Background Baselines Solo discussions

Group discussions C What's next? Structure of the large group meeting

- Duration: 2 hours
- For each variable
 - Have if defined by Boehm
 - Discuss it with group
 - Vote

Discussion results: acap and cplx

- Acap will be static or increase
- Cplx: will increase
 - Note: if missions get more complex while acap remains static then some of the software complexity increase will arise from sub-optimal design decisions made by analysts struggling with harder and harder problems.

Discussion results: pmat and tool

- Pmat will improve
 - But much concern over "superficial" pmat improvement (just checking the boxes, not really improving anything)
- Tools will improve
 - But much discussion on how our current tools are not fully utilized (to say the least) by the average programmer

Other discussion results

- Group discussion yielded much more consensus view that solo discussions (see below)
- But
 - Group discussions time consuming
 - We could only cover half the variables in the available time.

Executive Summary Background Baselines Solo discussions Group discussions What's next?

Next steps

- While no detailed agreement on specific changes
 - No dramatic changes to historical trends
 - Some agreement on general trends
- We can now try simulating over those trends with our AI tool
 - Results to follow