NASA software: vision for the future

Tim Menzies Barry Boehm Jairus Hihn

July 21, 2008

Background

- Possibility
 - Maybe, can use AI to better plan software projects
 - Monte Carlo, simulated annealing, Bayesian feature selection

- Result: better peeking into the future
- E.g. Menzies, Boehm, Hihn, Lum ASE 2007
 - Al search methods on software process models
 - <u>Some</u> stable predictions in a huge space of options
 - <u>http://menzies.us/pdf/07casease.pdf</u>
- To test that possibility

Need constraints representing current & future NASA environment

Methodology

- 3 USC software process models
 - 1 WVU AI search engine
 - Multiple case studies
 - Sensitivty analysis
 - Found nine key factors

- Manual exploration of those factors with experienced software experts
 - May 2008: SE resaerch leaders
 - July 2008: JPL experts (that's you)
 - Nov 2008: Experts at other NASA centers

Focus

What:

- JPL flight software
- Planetary missions (e.g. rovers)
- When:
 - -10 years (to calibrate historical data)
 - +10 years (to make predictions)
- What:
 - Projects expressed in the COCOMO ontology
- Why:
 - Please anwser :
 - A: significantly better
 - B: somewhat better
 - C: no change
 - D : somewhat worse
 - E : significantly worse

Higher= more cost

Factors (1)

- Acap (analyst capability)
 - Worse: worst 15%
 - Middle: 55%
 - Best: best 10%
- Apex (applications experience)
 - Worst: 2 months
 - Middle: 1 year
 - Best: 6 years
- Ltex (language and toolset experience)
 - Worst: 2 months
 - Middle: 1 year
 - Best: 6 years
- Tool (use of software tools)
 - Worst: edit,code,debug
 - Best: integrated with life cycle
- Cplx (product complexity)
 - Worse: e.g. simple read/write statements
 - Middle: e.g. use of simple interface widgets
 - Best: e.g. performance-critical em- bedded systems

Factors (2)

- Resl (architecture or risk resolution)
 - Worst: few interfaces defined or few risk eliminated
 - Middle: most interfaces defined or most risks eliminated
 - Best: all interfaces defined or all risks eliminated
- Pmat process maturity
 - Worst: CMM level 1
 - Middle: CMM level 3
 - Best: CMM level 5
- Prec precedentedness
 - Worst: we have never built this kind of software before
 - Middle: somewhat new
 - Best: thoroughly familiar
- Flex (development flexibility)
 - Worst: development process rigorously defined
 - Middle; some guidelines, which can be relaxed
 - Best; only general goals defined

