
Accurate Estimates Without Calibration?

Tim Menzies1, Oussama Elrawas1, Barry Boehm2, Ray Madachy2, Jairus Hihn3,
Daniel Baker1, and Karen Lum3 ?

1 LCSEE, West Virginia University, Morgantown, WV, USA, tim@menzies.us,
oelrawas@mix.wvu.edu, danielryanbaker@gmail.com

2 CS, University of Southern California, Los Angeles, California, USA,
boehm@sunset.usc.edu, madachy@usc.edu

3 JPL, California, USA, jairus.hihn@jpl.nasa.gov,
karen.t.lum@jpl.nasa.gov

Abstract. Most process models calibrate their internal settings using historical
data. Collecting this data is expensive, tedious, and often an incomplete process.
Is it possible to make accurate software process estimates without historical data?
Suppose much of uncertainty in a model comes from a small subset of the model
variables. If so, then after (a) ranking variables by their ability to constrain the
output; and (b) applying a small number of the top-ranked variables; then it
should be possible to (c) make stable predictions in the constrained space.
To test that hypothesis, we combined a simulated annealer (to generate random
solutions) with a variable ranker. The results where quite dramatic: in one of
the studies in this paper, we found process options that reduced the median and
variance of the effort estimates by a factor of 20. In ten case studies, we show that
the estimates generated in this manner are usually similar to those produced by
standard local calibration.
Our conclusion is that while it is always preferable to tune models to local data,
it is possible to learn process control options without that data.

1 Introduction

Without precise knowledge from an organization, it is difficult to make precise estimates
about software processes at that site. For example, initial development effort estimates
may be incorrect by a factor of four [7] or even more [17].

It can be very difficult to find relevant data within a single organization to fully
specify all the internal parameters inside a process model. For example, after 26 years of
trying, we have only collected less than 200 sample projects for the COCOMO database.
There are many reasons for this, not the least being the business sensitivity associated
with the data. Therefore, in this paper, we explore what can be decided from process
models without local data.

? This research was conducted at WVU, USC, and NASA’s Jet Propulsion Laboratory partially
under a NASA sub-contract. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its
endorsement by the United States Government.



For this experiment, we adopt the following framework. We say that a process model
P yields estimates from a combination of Project and Model variables:

estimates = P (Project, Model)

P describes the space of influences between variables. and may take many forms:

– discrete-event models [16, 19];
– system dynamics models [1];
– state-based models [3, 13, 23];
– rule-based programs [28];
– standard programming constructs such as those used in Little-JIL [11, 33];
– or the linear models used in COCOMO [7,9], PRICE-S [29] and SEER-SEM [15].

The strength of each influence is controlled by the Model variables. Taken together, the
process model P and the Model variables store what we’ve leaned from the past.

Project variables, on the other had, concern a new situation that should be analyzed
using past knowledge. For example, P could assert “effort ∝ pcap” (programmer
skills is proportional to development effort) while Model could assert the proportional-
ity constant of -0.7 (i.e. “effort = −0.7pcap”). Finally, Project could assert that pro-
grammer skills are “in the upper range”; e.g. for a COCOMO model “pcap ∈ {4, 5}”.

We say Project and Model variables can be:

– fixed to one value such as “programmer capability (pcap) is nominal”;
– free to take on any legal value. In COCOMO, a free pcap can take values

{veryLow = 1, low = 2, nominal = 3, high = 4, veryHigh = 5}

– or float to some subset of the whole range. For example, a manager might declare
that “our programmers are in the upper ranges”; i.e. this pcap floats in a particular
part of the entire pcap range (pcap ∈ {4, 5}).

The range of legal values for variables increases from fixed to float to free:

(|fixed| = 1) < |float| < |free|

This paper reports an experiment that frees both the Model and Project variables.
At first glance, such an experiment may seem perverse, particularly if the goal is to
reduce uncertainty. Free variables range over a larger space than fixed variables: the
more free variables, the wider the range of Estimates. If we free both Model and
Project variables then, surely, this will result in greater Estimate uncertainty?

However, our analysis is not just some passive observer of a large space of options.
Instead, it is an active agent that seeks parts of the options space where predictions can
be made with greater certainty. We augment a Monte Carlo analysis with two tools.
SA is a simulated annealing algorithm that minimizes Estimates. RANKER is a vari-
able pruning algorithm, that seeks the smallest number of Project variables that most
reduce the Estimates. The combination of SA+RANKER is called STAR4.Since it

2



Monte Carlo STAR
case study SCAT STAR

flight 712 44
ground 389 18
OSP 629 68
OSP2 84 31

Fig 1a: variance, in months.

Monte Carlo STAR
case study SCAT STAR

flight 1357 86
ground 737 38
OSP 1951 410

OSP2 297 182

Fig 1b: median, in months.

Fig. 1. Effort estimates seen in 1000 simulations of the Project ranges found by STAR. “Vari-
ance” (left hand side) shows the difference between the 75th and 50th percentile. “Median” (right
hand side) shows the 50th percentile estimate.

knows the most influential Project ranges, STAR can discover (and then constrain) the
factors that most most impact Estimates.

When compared to state-of-the-art process models, the effects of a STAR-style anal-
ysis are quite dramatic. Figure 1 compares STAR’s estimates to those generated by
SCAT [20–22], a COCOMO-based tool used at NASA’s Jet Propulsion Laboratory.
SCAT fixes Model and perform a Monte Carlo simulation of the Project ranges. Each
row of Figure 1.A is one case study:

– flight and ground systems software from NASA’s Jet Propulsion Laboratory;
– OSP is the GNC5 for NASA’s Orbital Space Plane (prototype);
– OSP2 is a newer version of OSP.

Note that, for all four case studies, STAR reduces the variance and median estimates to
a small fraction of SCAT’s estimates, sometimes as much as a factor of 20 (in Figure
1a: 712

44 ≈ 20; in Figure 1b: 737
38 ≈ 20).

The rest of this paper describes STAR. We extend prior work in two ways. Prior
reports on STAR [25] were based on limited case studies; here we report ten new case
studies showing that our main effect (reduced median and variance) holds in a wide
range of cases. Also, prior reports on Figure 1 [24] failed to check the validity of those
results. The ten case studies discussed below show that STAR’s estimated are shown to
be close to those generated via standard local calibration, despite being generated from
a large space of Project and Model options. This validity check greatly increases our
confidence in the STAR method.

It is unknown if our results apply to software process models more complex than
STAR’s COCOMO-style of models. However, our results to date suggest that other
process models could make reasonably accurate predictions without local data by:

– finding the fewest number of variables that most effect model output;
– constrain them;
– check for stable conclusions in the constrained space.

4 The name is a geek joke. In regular expressions, the star meta-character “*” matches any
characters. That is, just like STAR, it can be used to search a wide range of options.

5 GNC= guidance, navigation, and control

3



2 Related Work

In terms of the framework of this paper, related work may be divided into:

– Prediction: fix Model and Project and generates fixed estimates.
– Calibration: import an log of fixed estimates and Project variables, find fixes to

Model that best explain how Project inputs lead to estimation outputs.
– Monte Carlo studies: fix the Model values (perhaps to values learned via calibra-

tion), import floating Project values, generates a range of possible estimates.

In the field of effort estimation:

– Prediction is used to create one point estimate for a project; e.g. COCOMO [7,
8],PRICE-S [29] and SEER-SEM [15].

– Calibration is useful for learning from historical data; e.g. see Boehm’s local cali-
bration procedure [7, p526-529] or the COSEEKMO toolkit [26].

– Monte Carlo studies are useful for conducting what-if queries across a range of
possible projects [30]. Such Monte Carlo studies are conducted by many tools in-
cluding COBRA [10], CrystalBall [5], SCAT [21, 22], and 2CEE [6].

To the best of our knowledge, this work is the first to try freeing both the Project
and Model variables. Even in the field in search-based software engineering, we have
not seen anything like this study. It is true that search-based SE often uses non-liner
search methods like SA. A recent review of 123 search-based SE papers [31] showed
that much of that work relates to testing (e.g. SA to minimize test suites for regression
testing) while only a handful of those papers related to the kinds of early project pro-
cess planning discussed here. For example, Aguilar-Ruiz et.al. [2] and Alvarez et.al. [4]
apply search-based methods for effort estimation. One facets that distinguished STAR
from other methods is that we are searching over more than just the effort models ex-
plored by the Aquilar-Ruiz & Alvarez teams. Also, unlike standard data mining ap-
proach, we do not try to learn better Model variables from historical data.

3 STAR

STAR’s current implementation explores three software process models:

– The COQUALMO software defect predictor [9, p254-268].
– The COCOMO software effort predictor [9, p29-57].
– The THREAT predictor for project effort & schedule overrun [9, 284-291].

COQUALMO models two processes (defect introduction and defect removal) for
three phases (requirements, design, coding). COCOMO assumes that effort is expo-
nentially proportional to some scale factors and linearly proportional to some effort
multipliers. COCOMO estimates are development months (225 hours) and includes all
coding, debugging, and management activities. The THREAT model contains a large
set of two-dimensional tables representing pairs of variable settings are problematic.
For example, using the rely vs sced table, the THREAT model would raise an alert if

4



our tool decides to build a system with high rely (required reliability) and low sced
(schedule available to the development).

STAR samples the space of possibles models inside COCOMO and COQUALMO
using the following technique. Internally, COCOMO and COQUALMO models contain
many linear relationships. Nominal values of x = 3 change some estimate by a factor
of one. These COCOMO lines can hence be modeled as a straight line y = mx + b
passing through the point x, y = 3, 1. Such a line has a y-intercept of b = 1 − 3m.
Substituting this value of b into y = mx + b yields y = m(x − 3) + 1. COCOMO’s
effort slopes are either positive or negative, denoted m+, m− (respectively):

– The positive slopes m+ represents the variables that are proportional to effort; e.g.
increasing required reliability also increases the development effort.

– The negative slopes m− represents the variables that are inversely proportional to
effort; e.g. increasing analyst capability decreases the development effort.

Based on decades of experiments with calibrating COCOMO models, we have iden-
tified variables with different slopes. These following COCOMO variables have m+

slopes: cplx, data, docu, pvol, rely, ruse, stor, and time. Also, these variables have m−

slopes acap, apex, ltex, pcap, pcon, plex, sced, and site (for an explanation of those
terms, see Figure 2). Further, based on decades of calibration of COCOMO models, we
assert that effort estimation, m+ and m− have the ranges:

−0.178 ≤ m− ≤ −0.078

0.073 ≤ m+ ≤ 0.21
(1)

Using an analogous procedure, it is possible to derive similar equations for the CO-
COMO scale factors, the COQUALMO scale factors/effort multipliers/ defect removal
variables (for full details, see [25]).

With the above machinery, it is now possible to define a Monte Carlo procedure
to sample the space of possible THREAT/COCOMO/COQUALMO Models: just ran-
domly selecting {m−,m+}. As to sampling the space of possible THREAT models,
this is achieved by adding random variables to the cells of THREAT’s tables.

STAR tries to minimize defects (D), threats (T ), and development effort (E). This
is a non-linear optimization function: e.g. reducing costs can introduce more defects.
For this reason, we use simulated annealing (SA) to explore trade-offs between models.
SA is best explained in comparison to the Metropolis algorithm.

A Metropolis Monte Carlo algorithm [27] improves on basic Monte Carlo as fol-
lows. New solutions are created by small mutations to some current solutions. In the
case of STAR, an “solution” is some randomly selected part of the space of possi-
ble Projects. If a new solution is “better” (as assessed via an energy function), it be-
comes the new current solution used for future mutations. STAR’s energy function is

E =
√

E
2

+ D
2

+ T
2
/
√

3 where x is a normalized value 0 ≤ x−min(x)
max(x)−min(x) ≤ 1.

Energy ranges 0 ≤ E ≤ 1 and lower energies are better. If a new solution does not
have lower energy, a Boltzmann acceptance criteria is used to probabilistically decide
to assess the new state: the worse the new state, the less likely that it becomes the new
current state.

A simulated annealer (SA) [18] adds a “temperature” variable to the Boltzmann
accept criteria such that, at high temperatures, it is more likely that the algorithm will

5



strategic? tactical?
scale prec: have we done this before? 3
factors flex: development flexibility 3
(exponentially resl: any risk resolution activities? 3
decrease team: team cohesion 3
effort) pmat: process maturity 3
upper acap: analyst capability 3
(linearly pcap: programmer capability 3
decrease pcon: programmer continuity 3
effort) aexp: analyst experience 3

pexp: programmer experience 3
ltex: language and tool experience 3
tool: tool use 3
site: multiple site development 3

sced: length of schedule 3
lower rely: required reliability
(linearly data: secondary memory storage requirements 3
increase cplx: program complexity 3
effort) ruse: software reuse 3

docu: documentation requirements 3
time: runtime pressure
stor: main memory requirements 3

pvol: platform volatility
COQUALMO auto: automated analysis 3 3
defect removal execTest: execution-based testing tools 3 3
methods peer: peer reviews 3 3

Fig. 2. The variables of COCOMO, COQUALMO, and the THREAT model.

jump to a new worst current state. This allows the algorithm to jump out of local minima
while sampling the space of options. As the temperature cools, such jumps become less
likely and the algorithm reverts to a simple hill climber.

Our RANKER algorithm instruments the internals of SA. Whenever a solution is
assigned some energy, that energy is added to a counter maintained for each variable
setting in Projects. When SA terminates, RANKER sorts all variable ranges by the
sum of the energies seen during their use. The ranges that are lower in the sort order
are associated with lower energy solutions; i.e. lower defects, efforts, threats. RANKER
then conducts experiments where it fixes the first N ranked ranges and lets the remain-
ing variables float. N is increased till some minimum energy point is reached. A policy
are the project settings that achieve that minimum energy point.

The last two columns of Figure 2 show the results of Delphi panel session at JPL
where the COCOMO variables were separated into those tactical variables that can be
changed within the space of one project, and those strategic variables that required
higher-level institutional change (and so may take longer to change). For example, the
panel declared that pmat (process maturity) is hard to change within the space of a
single JPL project. In the sequel, all our RANKER experiments will be divided into
those that just use the strategic variables and those that just use the tactical variables6.

6 Note that these definitions of strategic and tactical choices are not hard-wired into STAR.
If a user disagrees with our definitions of strategic/tactical, they can change a simple configu-
ration file.

6



float fixed
project variable low high variable setting

prec 1 2 data 3
OSP flex 2 5 pvol 2

resl 1 3 rely 5
team 2 3 pcap 3
pmat 1 4 plex 3
stor 3 5 site 3
ruse 2 4
docu 2 4
acap 2 3
pcon 2 3
apex 2 3
ltex 2 4
tool 2 3
sced 1 3
cplx 5 6
KSLOC 75 125
prec 3 5 flex 3

OSP2 pmat 4 5 resl 4
docu 3 4 team 3
ltex 2 5 time 3
sced 2 4 stor 3
KSLOC 75 125 data 4

pvol 3
ruse 4
rely 5
acap 4
pcap 3
pcon 3
apex 4
plex 4
tool 5
cplx 4
site 6

float fixed
project variable low high variable setting

rely 3 5 tool 2
data 2 3 sced 3

flight cplx 3 6
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 7 418
rely 1 4 tool 2
data 2 3 sced 3

ground cplx 1 4
time 3 4
stor 3 4
acap 3 5
apex 2 5
pcap 3 5
plex 1 4
ltex 1 4
pmat 2 3
KSLOC 11 392

Fig. 3. Four case studies.

4 Experiments

Figure 3 shows various Projects expressed in term of floating and fixed variables.
For example, with JPL’s flight systems, the rely (required reliability) can float anywhere
in the upper range; i.e. rely ∈ {3, 4, 5}. However, for flight systems, sced (schedule
pressure) is tightly defined (so sced is fixed to the value 3).

Figure 4 and Figure 5 shows the results of STAR. The variable ranges are sorted
along the x-axis according the order generated by RANKER. At any x value we see the
results of fixing the ranges 1..x, letting all ranges x + 1...max float, then running 1000
Monte Carlo simulations. In the results, “median” refers to the 50th percentile band
and “spread” refers to the difference between the 75th and 50th percentile in the 1000
generate estimates.

For this paper, we ran SA+RANKER on the four case studies of Figure 3, plus a
fifth study called “ALL”” that used the entire COCOMO ranges, unconstrained by a
particular project. Each study was repeated twice- one for controlling just the strate-
gic variables and once for controlling just the tactical variables. This resulted in ten
experiments.

7



X variable = setting
1 pmat = 4
2 ltex = 4
3 acap = 3
4 apex = 3
5 prec = 2
6 pcon = 3
7 execution testing and tools = 6
8 peer reviews = 6
9 automated analysis = 6

Fig.4.A: controlling only strategic Project variables

X variable = setting
1 ruse = 2
2 cplx = 5
3 resl = 3
4 tool = 3
5 sced = 2
6 stor = 3
7 flex = 5
8 automated analysis = 6
9 peer reviews = 6

10 docu = 2
11 execution testing and tools = 6
12 sced = 1

Fig.4.B: controlling only tactical Project variables

Fig. 4. Some RANKER results on OSP. The settings shown under the plots describe the policy
that leads to the policy point.

X feature = range
1 pmat = 3
2 site = 6
3 pcon = 5
4 plex = 4
5 pcap = 5
6 ltex = 4
7 apex = 5
8 prec = 5
9 acap = 5

10 automated analysis = 6
11 execution testing and tools = 6
12 peer reviews = 6
13 acap = 4

Fig.5.A: controlling only strategic Project variables

X feature = range
1 resl = 5
2 cplx = 1
3 execution testing and tools = 6
4 flex = 5
5 docu = 1
6 ruse = 2
7 data = 3

Fig.5.B: controlling only tactical Project variables.

Fig. 5. Some RANKER results on JPL ground systems. The settings shown under the plots. de-
scribe the policy that leads to the policy point.

Some of the results from four of those experiments are shown in Figure 4 and Fig-
ure 5 (space restrictions prevent us from showing all the results). In those four experi-
ments (and in the other six, not shown) the same effect was observed. Minimum effort
and defects was achieved after fixing a small number of Project variables (in Fig-
ure 4.A, Figure 4.B, Figure 5.A, and Figure 5.B, that number was at X={9,12,13 7}
respectively). At these minimum points, the median and spread estimates were greatly
reduced. We call this minimum the policypoint and use the term policy to refer to the
intersection of the case study defined in Figure 3, and the ranges found in the range
between {1 ≤ x ≤ policypoint}.

Figure 4 and Figure 5 are the reports we would offer back to the manager. Start at
the top of this list, we would advise, and apply as many oft eh top N things that you
can. Do not waste time implementing policy changes off this list.

In terms of controlling uncertainty, the reduction in the spread estimates at the pol-
icy point is particularly interesting. Note that this reduction in model uncertainty was
achieved by only controlling a few of the Project variables while letting all other
Project and Model variables float free. That is, in these case studies, projects could

8



cast study control method δ %
OSP2 tactical 34
All strategic 35
OSP2 strategic 35
flight tactical 36
ground tactical 37
All tactical 41
flight strategic 42
ground strategic 49
OSP tactical 112
OSP strategic 147

Fig. 6. Median δ = (estimate(STAR)− estimate(lc)) between effort estimates generated by
conventional means (LC) and STAR.

be controlled (development effort and defects reduced) without using historical data to
constrain the Model variables.

For each of our ten experiments, a set of random Projects were generated, consis-
tent with the policies; i.e.

– If the policy fixes a value, then the Project contains that value;
– Otherwise, if the variable is found Figure 3, it is drawn from those constraints;
– Otherwise, the variable’s value is selected at random from background knowledge

of the legal range of the Figure 2 variables.

For each set, the following procedure was repeated 20 times. Ten examples were re-
moved at random and Boehm’s local calibration (LC) procedure [7, p526-529] was used
to train a COCOMO model on the remaining Project examples7. LC’s estimates were
then compared to the estimates generated by STAR’s simulation at the policy point (i.e.
floating over both the policy and the Model ranges). Figure 6 show the median differ-
ence in the estimates generated by LC or STAR . Note that, in 8

10 cases, the difference
is under 50%. The reason for the large deltas seen in 2

10 of the results (from the OSP
case study) are currently unknown but are a subject of much current exploration.

The median δ values of Figure 6 are around 0.4; i.e. a STAR estimate of 100 months
could really range for 60 to 140 months. Compared to the effort estimate reductions
shown in the introduction, δ is quite small. Recall that STAR reduced effort estimates
to a small part of the initial values, sometimes a factor of 20; i.e by a factor that is much
larger than 0.4. Clearly, even if STAR is wrong by ±40%, then the overall benefits to
be gained from applying STAR’s policies are still dramatically large.

5 Discussion

Given all the randomized exploration STAR performs over the space of possible Models,
this discrepancy is very small. and those discrepancies are dwarfed by the much larger
effort reductions of Figure 1.

7 LC was chosen since, in extensive experiments, we have found this decades old procedure
to be remarkably competitive with current data mining methods [14] including bagging and
boosting [6].

9



How are we to explain the remarkable effectiveness of STAR in managing uncer-
tainty? Researchers in planning and theorem proving have recently shown that as model
complexity grows, other constraining effects may appear such as “master variables”; i.e.
a small number of settings that control all other settings [12,32]. Such master variables
can greatly reduce the search space within large models.

We hypothesize that software process models also contain master variables; i.e.
much much of uncertainty in a model is due to the influence of a small subset of model
variables. If so, then after (a) ranking variables by their ability to constrain the output;
and (b) applying a small number of the top-ranked variables; then it should be possible
to (c) make stable predictions in the constrained space.

6 Conclusion

In studies with one widely-used suite of effort/ detect/ threat predictors for software
systems, we have shown that:

– Estimation median values can be greatly reduced (see Figure 1). In comparisons
with other effort estimation tools, the reduction can quite dramatic. In the best case
our tools found Project ranges that yields estimates that were 5% of estimates
found by other means.

– Estimation variance can be reduced by only floating the Project values and leav-
ing the Model values free (see Figure 4 and Figure 5).

– Within the space of Project options that most reduce Estimation median and
variance, the predictions made by our process models are remarkably similar to
those made by conventional methods (see Figure 6 ).

The first result suggests that it may be highly advantageous to use STAR. Projects
designed around STAR’s recommendations will be will be delivered sooner and have
fewer bugs or threats.

The second result is of much practical importance since it means we do not require
calibration data to tune the Model variables. If process models can be deployed without
calibration, then they can be used with much greater ease and without the requirement
for an expensive and time-consuming period of data collection.

The third result is showing that (a) this method can find and remove the major
sources of uncertainty in a project; (b) in the reduced space, it is possible that the es-
timates in the resulting constrained space will be close to estimates found via tuning
on historical data. In the above discussion section, we commented that this result has
precedent in the AI planning and theorem proving literature.

Finally, we comment on the external validity of these results. Compared to many
other process models8 this combination of effort/threat/defect models is relatively sim-
ple. As model complexity grows, then the space of possible Estimates can grow ex-
ponentially and STAR’s controlling effect may disappear. Therefore it is clear that we
can not claim that, for all process models, that Estimate variance can be controlled by
just constraining Project, not Model, variance.

8 See Software Process journal, issue on Software Process Simulation, vol. 7, No. 3-4, 2002.

10



Nevertheless, data collection for the purposes of model calibration remains as a
expensive, tedious, and often incomplete process. Our results suggest that such data
collection may be, for some process models, an optional activity (caveat: provided that
a process model exists that specifics the general relationships between concepts in a do-
main). Our hope is that the results of this paper encouraging enough that other software
process modeling researchers will try the following strategy:

– finding the fewest number of variables that most effect model output;
– constrain them;
– check for stable conclusions in the constrained space.

If these results from STAR generalize to more complex models, then is should be pos-
sible to make reasonably accurate predictions without local calibration data.

Note that if such stability is absent in more complex models, and those models are
being used in domains with data collection problems, then we would argue that that is
a reason to abstain from such complexity, and use COCOMO-style models instead.

References

1. T. Abdel-Hamid and S. Madnick. Software Project Dynamics: An Integrated Approach.
Prentice-Hall Software Series, 1991.

2. Jesus S. Aguilar-Ruiz, Isabel Ramos, Jose Riquelme, and Miguel Toro. An evolutionary ap-
proach to estimating software development projects. Information and Software Technology,
43(14):875–882, 2001.

3. M. Akhavi and W. Wilson. Dynamic simulation of software process models. In Proceedings
of the 5th Software Engineering Process Group National Meeting (Held at Costa Mesa,
California, April 26 - 29). Software engineering Institute, Carnegie Mellon University, 1993.

4. J. L. Alvarez, J. Mata, Jose C. Riquelme, and I. Ramos. A data mining method to sup-
port decision making in software development projects. In ICEIS’2003: Fifth International
Conference on Enterprise Information Systems, 2003.

5. John Bailey. Using monte carlo and cocomo-2 to model a large it system development, 2002.
6. Dan Baker. A hybrid approach to expert and model-based effort estimation. Master’s thesis,

Lane Department of Computer Science and Electrical Engineering, West Virginia Univer-
sity, 2007. Available from https://eidr.wvu.edu/etd/documentdata.eTD?
documentid=5443.

7. B. Boehm. Software Engineering Economics. Prentice Hall, 1981.
8. B. Boehm. Safe and simple software cost analysis. IEEE Software, pages 14–17, Septem-

ber/October 2000. Available from http://www.computer.org/certification/
beta/Boehm_Safe.pdf.

9. Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert Steece,
A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo
II. Prentice Hall, 2000.

10. Lionel C. Briand, Khaled El Emam, and Frank Bomarius. Cobra: A hybrid method for
software cost estimation, benchmarking, and risk assessment. In ICSE, pages 390–399, 1998.

11. A.G. Cass, B. Staudt Lerner, E.K. McCall, L.J. Osterweil, Stanley M. Sutton Jr., and A. Wise.
Little-jil/juliette: A process definition language and interpreter. In Proceedings of the 22nd
International Conference on Software Engineering (ICSE 2000), pages 754–757, June 2000.

12. J. Crawford and A. Baker. Experimental results on the application of satisfiability algorithms
to scheduling problems. In AAAI ’94, 1994.

11



13. D. Harel. Statemate: A working environment for the development of complex reactive sys-
tems. IEEE Transactions on Software Engineering, 16(4):403–414, April 1990.

14. Omid Jalali. Evaluation bias in effort estimation. Master’s thesis, Lane Department of Com-
puter Science and Electrical Engineering, West Virginia University, 2007.

15. R. Jensen. An improved macrolevel software development resource estimation model. In
5th ISPA Conference, pages 88–92, April 1983.

16. D. Kelton, R. Sadowski, and D. Sadowski. Simulation with Arena, second edition. McGraw-
Hill, 2002.

17. C.F. Kemerer. An empirical validation of software cost estimation models. Communications
of the ACM, 30(5):416–429, May 1987.

18. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
Number 4598, 13 May 1983, 220, 4598:671–680, 1983.

19. A. Law and B. Kelton. Simulation Modeling and Analysis. McGraw Hill, 2000.
20. K. Lum, J. Powell, and J. Hihn. Validation of spacecraft cost estimation models for flight

and ground systems. In ISPA Conference Proceedings, Software Modeling Track, May 2002.
21. Karen Lum. Software cost analysis tool user document, 2005.
22. Karen Lum, Michael Bramble, Jairus Hihn, John Hackney, Mori Khorrami, and Erik Mon-

son. Handbook for software cost estimation, 2003.
23. R.H. Martin and D. M. Raffo. A model of the software development process using both

continuous and discrete models. International Journal of Software Process Improvement
and Practice, June/July 2000.

24. T. Menzies, O. Elrawas, D. Baker, J. Hihn, and K. Lum. On the value of stochastic abduction
(if you fix everything, you lose fixes for everything else). In International Workshop on
Living with Uncertainty (an ASE’07 co-located event), 2007. Available from http://
menzies.us/pdf/07fix.pdf.

25. T. Menzies, O. Elwaras, J. Hihn, Feathear nd B. Boehm M, and R. Madachy. The business
case for automated software engineerng. In IEEE ASE, 2007. Available from http://
menzies.us/pdf/07casease-v0.pdf.

26. Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort
estimation. IEEE Transactions on Software Engineering, November 2006. Available from
http://menzies.us/pdf/06coseekmo.pdf.

27. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. J. Chem.
Phys, 21:1087–1092, 1953.

28. P. Mi and W. Scacchi. A knowledge-based environment for modeling and simulation soft-
ware engineering processes. IEEE Transactions on Knowledge and Data Engineering, pages
283–294, September 1990.

29. R. Park. The central equations of the price software cost model. In 4th COCOMO Users
Group Meeting, November 1988.

30. D. M. Raffo, J. V. Vandeville, and R. Martin. Software process simulation to achieve higher
cmm levels. Journal of Systems and Software, 46(2/3), April 1999.

31. L. Rela. Evolutionary computing in search-based software engineering. Master’s thesis,
Lappeenranta University of Technology, 2004.

32. R. Williams, C.P. Gomes, and B. Selman. Backdoors to typical case complexity. In Pro-
ceedings of IJCAI 2003, 2003. http://www.cs.cornell.edu/gomes/FILES/
backdoors.pdf.

33. A. Wise, A.G. Cass, B. Staudt Lerner, E.K. McCall, L.J. Osterweil, and Jr. S.M. Sut-
ton. Using little-jil to coordinate agents in software engineering. In Proceedings
of the Automated Software Engineering Conference (ASE 2000) Grenoble, France.,
September 2000. Available from ftp://ftp.cs.umass.edu/pub/techrept/
techreport/2000/UM-CS-2000-045.ps.

12


