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Process models: ganz falsch?

d  Wolfgang Pauli: scathing critic of poor theories
—  Labeling then ganz falsch, utterly false.

d And “ganz falsch” was not as bad as it gets:

—  He hated unclear theories, poorly presented,
untestable, unassessable.

— Famously, he wrote:
"That's not right. It's not even wrong.”

0  Two questions for process models:
1. Are our estimates “correct”?
2. What are those estimates?

d  Our models have variance: o < f(x) < f
Q If(a-p)islarge

1. Can't tell if they are “correct” since ...

2. ...we don’t know our estimates
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Variability inside COCOMO models

Em; = myx; + b, offort
Em, =1 when x,when =3

i
Vz € {1..6} EM; = mq(z —3) + 1'

C 20.073 <mj < 0.21>/\ (—0.178 < mg < —0.078)

nerease effort decrease e%t :
X
cplx, data, docu acap, apex, tex, pcap, 1 2 3 4 5 6
| relv. r pcon, plex,sced,
pvol, re, Tuse, site,tool vi I n h vh xh

stor, time
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This talk
d Standard approach

— Use local data to reduce
the uncertainty in these slopes

effort

[ Our approach 13
— Let the internal model 1.2
values wander 11

— Use Al to find constraints 1.0

iIn model input 0.9

] ] [ ] 08

 Q: is constraining inputs enough 7

to control internal model variability? X

1 2 3 4 5 6
— A: yes, see below
vl | n h vh xh
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Taming variance #1: Use less model

O E.g. local calibration: Boehm ‘81
— Only tune 2 vars for linear, exponential effects

O E.g. feature selection:

— Few variables, less variance (Miller'02)

Y =fx) =10  +Xfix) + 22 fax) + 22X fidXixx) + ...
e Var(Y)=V = SV, +3SVV, o+ 3IIIVVYV, + ..

— Menzies et al. Ase’05, TSE’06; Chen et al. IEEE Software ‘05

O But:
— The reduced models still exhibit alarming large variances
— Feature selection still needs data to inform the selection
— Also it seems wrong-headed to limit modeling
— Surely the goal should be to extend, not restrict, what we can say?
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Taming variance #2: Use more data

1 May take a while
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O After 26 years of trying,

92* 20*90% samples, local calibration

— only < 200 sample projects for regression to learn slope and"a" and intercept "b"
COCOMO,S database {8 2CEE: A 215t Century Effort Estimation Methodology >
Historical Dataset | Cross Validation | Calibration | New Project Data | Estimation | Altemate Estimation | Options
| Colibiate Model |

Calibrated A's and B's
:

D DO We need SO many? . ) Created: 8/2/2007 10:31:23 &AM
— Menzies et al. ICSE’04

— COCOMO prediction
. PRED(30)> 70% after 20 records B oa

0.91 Mean A is 7.46

Mean B is 0.82

O But....

1. COCOMO is a small model and
larger models need more data -
2. Finding even 20 records is hard A

Calibration data saved to C:ftemp/calibration.txt

3. Subsequent COCOMO simulations e T e =
showed worrying variance in the
conclusions
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- Taming variance #3: STAR

(1) sample (2) rank (3) try

1)  SAMPLE with simulated annealing
Vary the controllables,
Seek lower energies
0.1

0.01

E (energy)

0.001
7 7 7, 7
o 9 9
© %

k (number of simulations)
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Taming variance #3: STAR
(1) sample (2) rank (3) try

1)  SAMPLE with simulated annealing
Vary the controllables,
Seek lower energies

0.1
=
<
2 0.01 }
@ i
w

0.001

k (number of simulations)

2) RANK (e.g. acap=2)
A = frequency in 10% good
B = frequency in 90% bad
Rank = a2/ (a+b)

 ICSP2008
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Taming variance #3: STAR
(1) sample (2) rank (3) try

1)  SAMPLE with simulated annealing 3) TRY:run*1000 top X ranked
items until “min”

Vary the controllables,

Seek lower energies
0.1
5 01 ' ' ' " median’
= © 005 F spread
9 Ll:.l Tt " - 1 e
[+}]
§ 00 0 10 20 30 40 50 60
Lu w L] T T ] N L
g 2000 |. median
® 1000 | spread
D - .. 1 J A P St | -
0.001 0 10 20 30 40 50 60
o £ 3000t ' ' ' " median’
k (number of simulations) = 1500 | = spread -
2) RANK (e.g. acap=2) 0 10 20 30 40 50 60
A = frequency in 20% good g i ' ' ' ' mediag' ]
) = i sprea +
B = frequency in 80% bad = 1 , , .
0 10 20 30 40 50 60

Rank = a2/ (a+b)
Median= 50 percentile
I CS P 2 008 Spread = (75 - 50) percentile
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Four COCOMO-family models

O predictions = model( project Options )

d = defects = coqualmo ( projectOptions )7 ; Chulani ‘99

f = effort = cocomo( projectOptions ) ; Boehm et al ‘81 & ‘00
m = months = cocomo( projectOptions)] ; ditto

t =threats = madachyRiskModel( projectOptions ) ; Madachy ‘97

O plan = least change to options that most improve predictions

e =energy= (ad2 + Bf2 + ym 2 + 8t2)05 / (o+ P + 5 +8)05 utilities:

o, B, %, 0

ICSP2008
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COCOMO-family variables

cssscce® ®ecccecs,
X .o
. LY
. .
. .
.® .
.® .

strategic? |tactical?++**"**
scale prec: have we done this before? v
factors flex: development flexibility v :
(exponentially resl: any risk resolution activities? v
decrease team: team cohesion v Can be
effort) pmat: process maturity v changed :
upper acap: analyst capability v intra-project
(linearly pcap: programmer capability v :
decrease pcon: programmer continuity v :
effort) aexp: analyst experience v @
pexp: programmer experience v
Itex: language and tool experience v
tool: tool use v
site: multiple site development v
sced: length of schedule v
lower rely: required reliability
(linearly data: secondary memory storage requirements v
increase cplx: program complexity v
effort) ruse: software reuse v
docu: documentation requirements v
time: runtime pressure
stor: main memory requirements v
pvol: platform volatility
COQUALMO auto: automated analysis v v
defect removal execTest: execution-based testing tools v v
methods peer: peer reviews v v
ICSP2008
" International Conference on Software Process 12 May 1, 2008
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O P = Generate projects from the minimum energy
point, estimate each with STAR
d Using Boehm’s LC procedure
— Train on historical NASA projects,
- “new”: Test on P,

» Generate deltas comparing LC estimates to STAR'’s
— “old”: Test on NASA historical data,

* Generate deltas comparing LC estimates
to actuals in NASA data

L Sometimes, old and new deltas are different

— Lesson1: stochastics introduce unknown factors
(so use local data, if possible)

O Usually, old and new deltas very close
— Even though STAR and LC have different goals

— Lesson2: if you can’t get old data, it is still possible to

make process predictions and decisions.
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How “big” is a 40% delta?

0 -

L a =try controlling anything

O s =try control the inter-project strategic factors

{prec pmat acap pcap pcon aexp pexp ltex site auto execTest peerReview}
O t=try control the intra-project tactical factors

{flex resl team tool sced data cplx ruse docu stor auto execTest peerReview}

project ALL OSP OSP2 flight ground
policies a s t a s t a s ¢t a s t a s ¢t

JPL flight and
ground systems

standard COCOMO, Two generations of a
no restrictions NASA GNC system
ICSP2008
nternational Conference on Software Process 14 May 1, 2008
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STAR, outputs

reduction% = final / initial
L a =try controlling anything

O s =try control the inter-project strategic factors
{prec pmat acap pcap pcon aexp pexp ltex site auto execTest peerReview}

-

W

O t=try control the intra-project tactical factors
{flex resl team tool sced data cplx ruse docu stor auto execTest peerReview}

project ALL OSP OSP2 flight ground
policies a s t a s t a s t a s t a s ¢t
effort 6 14 55 44 73 67 89 74 112 15 24 64 19 24 67
defects 1 14 10 15 21 13 12 12 17 2 24 22 14 7 12
threat 0 0 106 93 111 68 0O 0 O 0 0O 0O 0O
months 37 50 59 69 90 81 86 91 95 50 61 81 55 62 82

Mostly: very large defect reductions

O Often: large effort reductions
O Least reductions in OSP2. Why?
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Least reduction is OSP2. Why?

D “OS P2” : project ic.ut\r.rc 1'3‘-3\7:; hig".;x :'ct-itur:a“c:cum;g

osp: | flex 2 5 ﬂi}fl 2

. Orbizal resl 1 3 rely s

— the most restricted pace | e 2 3| b

problem processed to ’
date. =23
apex S _::
— Achieved the least =
reductions BSTOC 75 125

prec 3 b flex 3

— If you fix everything, R = et :

y . sced 2 d Stoe 3

* There's nothing left KSLOC 75 125 | dama 4

to fix
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Conclusion

« Alittle Al goes a long way « Don’t need to know

— Simulated annealing everything before you
+ elite bayesian sample plan

— Simple to code

)

— Tuning process models
to local data is the
preferred options.

— But unturned models
can be surprisingly

« The right project decisions
can tame variance

— Models contain “key

constraints” effective
— Set the keys via project ,
decisions |  Uncertainty is an ally
— Shown here: setting the — Don’t delay in seeking
keys | stable conclusions within
» Reduces variance a space of partially
« While improving targets defined options
— Effort (cost), month _ i i
(schedule), defects, threats It you, fix eve_rythmg’ .
there’s nothing left to fix.
ICSP2008
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Process models: ganz falsch?

) i Sehr gut. Sie kdonnen
« What is the effect on model output from internal o

model uncertainty?
— Can that variance be tamed:
« Without additional data?
« Without discarding parts of the model?

— If not, will Dr.Pauli revoke our license to model?
* “Not even false”

* Atleast for COCOMO-family models,

— We can find definite conclusions from process
models, despite the data drought
— Method
» Find the key constraints
» Constrain the keys
* Tame uncertainty

— More process planning, earlier, with less data

ICSP2008
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Questions?
Comments?
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