

University of Southern California Center for Software Engineering

West Virginian University Modelling Intelligence Lab http://unbox.org/wisp/tags/STAR

Accurate Estimates without Calibration?

Tim Menzies¹ Oussama Elrawas¹ Barry Boehm² Raymond Madachy² Jairus Hihn³ Daniel Baker¹ Karen Lum³

1WVU 2USC 3JPL

May 10, 2008 (for more info: tim@menzies.us)

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government.

Process models: ganz falsch?

- □ Wolfgang Pauli: scathing critic of poor theories
 - Labeling then *ganz falsch*, utterly false.
- And *"ganz falsch"* was not as bad as it gets:
 - He hated unclear theories, poorly presented, untestable, unassessable.
 - Famously, he wrote:
 "That's not right. It's not even wrong."
- Two questions for process models:
 - 1. Are our estimates "correct"?
 - 2. What are those estimates?
- □ Our models have variance: $\alpha \leq f(x) \leq \beta$
- $\Box \quad \text{If } (\alpha \beta) \text{ is large}$
 - 1. Can't tell if they are "correct" since ...
 - 2. ... we don't know our estimates

stor, time

West Virginian University Modelling Intelligence Lab http://unbox.org/wisp/tags/STAR

Variability inside COCOMO models

Em_i = m_ix_i + b_i
Em_i = 1 when x_i when =3

$$\forall x \in \{1..6\} EM_i = m_a(x-3) + 1$$

 $(0.073 \le m_a^+ \le 0.21) \land (-0.178 \le m_a^- \le -0.078)$
Increase effort
cplx, data, docu
pvol, rely, ruse,
 $decrease effort$
 $acap, apex, Itex, pcap, pcon, plex, sced, site, tool$

This talk

- □ Standard approach
 - Use local data to reduce the uncertainty in these slopes

- Let the internal model values wander
- Use AI to find constraints in model input
- Q: is constraining inputs enough 0.7 to control internal model variability?
 - A: yes, see below

Taming variance #1: Use less model

- □ E.g. local calibration: Boehm '81
 - Only tune 2 vars for linear, exponential effects
- **E**.g. feature selection:
 - Few variables, less variance (Miller'02)
 - Y = f(x) = f0 + $\sum f_i(x_i)$ + $\sum f_{ij}(x_i, x_j)$ + $\sum \sum f_{ijk}(x_i, x_j x_k)$ + ... • Var(Y) = V = $\sum V_i$ + $\sum V_i V_j$ + $\sum \sum V_i V_j V_k$ + ...
 - Menzies et al. Ase'05, TSE'06; Chen et al. IEEE Software '05

But :

- The reduced models still exhibit alarming large variances
- Feature selection still needs data to inform the selection
- Also it seems wrong-headed to limit modeling
- Surely the goal should be to extend, not restrict, what we can say?

University of Southern California Center for Software Engineering

West Virginian University Modelling Intelligence Lab http://unbox.org/wisp/tags/STAR

Taming variance #2: Use more data

□ May take a while

The data drought

- □ After 26 years of trying,
 - only < 200 sample projects for COCOMO's database
- Do we need so many?
 - Menzies et al. ICSE'04
 - COCOMO prediction
 - PRED(30)> 70% after 20 records

But....

- 1. COCOMO is a small model and larger models need more data
- 2. Finding even 20 records is hard
- 3. Subsequent COCOMO simulations showed worrying variance in the conclusions

92* 20*90% samples, local calibration regression to learn slope and"a" and intercept "b"

Q: why not reported previously?

A: prior reports discuss mean/median behavior, but not variance.

Taming variance #3: STAR (1) sample (2) rank (3) try

1) <u>SAMPLE</u> with simulated annealing

Vary the controllables,

Seek lower energies

Taming variance #3: STAR (1) sample (2) rank (3) try

1) <u>SAMPLE</u> with simulated annealing

Vary the controllables,

Seek lower energies

2) <u>RANK</u> (e.g. acap=2)

Taming variance #3: STAR (1) sample (2) rank (3) try

Four COCOMO-family models

- predictions = model(project Options)
 - d = defects
 - f = effort
 - m = months
 - t = threats

- = coqualmo (projectOptions) ; *Chulani '99*
- = cocomo(projectOptions)
- ; Boehm et al '81 & '00
- = cocomo(projectOptions)
 - ; ditto
- = madachyRiskModel(projectOptions) ; Madachy '97

□ plan = *least* change to options that *most* improve predictions e = energy= $(\alpha d^2 + \beta f^2 + \chi m^2 + \delta t^2)^{0.5} / (\alpha + \beta + \chi + \delta)^{0.5}$

COCOMO-family variables

		strategic?	tactical?	
scale	prec: have we done this before?	-		
factors	flex: development flexibility		1	
(exponentially	resl: any risk resolution activities?		1	
decrease	team: team cohesion			Can be
effort)	pmat: process maturity	1		changed
upper	acap: analyst capability	1		intra-project
(linearly	pcap: programmer capability	1		
decrease	pcon: programmer continuity	1		
effort)	aexp: analyst experience	1		Cannot
	pexp: programmer experience	1		
	Itex: language and tool experience	1		
	tool: tool use		1	
	site: multiple site development	1		
	sced: length of schedule		1	
lower	rely: required reliability			1
(linearly	data: secondary memory storage requirements		1	
increase	cplx: program complexity		1	
effort)	ruse: software reuse		1	
	docu: documentation requirements		1	
	time: runtime pressure			
	stor: main memory requirements		1	
	pvol: platform volatility			
COQUALMO	auto: automated analysis	1	1]
defect removal	execTest: execution-based testing tools	1	 ✓ 	
methods	peer: peer reviews	1	 ✓ 	

Median delta

of area under

curve = 40%

Results

- P = Generate projects from the minimum energy point, estimate each with STAR
- □ Using Boehm's LC procedure
 - Train on historical NASA projects,
 - "new": Test on P,
 - · Generate deltas comparing LC estimates to STAR's
 - "old": Test on NASA historical data,
 - Generate deltas comparing LC estimates to actuals in NASA data

□ Sometimes, old and new deltas are different

- Lesson1: stochastics introduce unknown factors (so use local data, if possible)
- Usually, old and new deltas very close
 - Even though STAR and LC have different goals
 - Lesson2: if you can't get old data, it is still possible to make process predictions and decisions.

How "big" is a 40% delta?

- \Box a = try controlling anything
- \Box s = try control the inter-project strategic factors

{prec pmat acap pcap pcon aexp pexp Itex site auto execTest peerReview}

 \Box t = try control the intra-project tactical factors

{flex resl team tool sced data cplx ruse docu stor auto execTest peerReview}

STAR, outputs reduction% = final / initial

- \Box a = try controlling anything
- \Box s = try control the inter-project strategic factors

{prec pmat acap pcap pcon aexp pexp Itex site auto execTest peerReview}

□ t = try control the intra-project tactical factors

{flex resl team tool sced data cplx ruse docu stor auto execTest peerReview}

	project	project ALL OSF		OSP2	flight	ground	
	policies	as t	a s t	a s t	ast	ast	
-	effort	$6 \ 14 \ 55$	44 73 67	89 74 112	15 24 64	19 24 67	
	defects	1 14 10	$15 \ 21 \ 13$	12 12 17	2 24 22	$14 \ 7 \ 12$	
	threat	0 0 106	93 111 68	0 0 0	0 0 0	0 0 0	
	months	37 50 59	69 90 81	86 91 95	50 61 81	55 62 82] /

- Mostly: very large defect reductions
- Often: large effort reductions
- Least reductions in OSP2. Why?

Least reduction is OSP2. Why?

□ "OSP2" :

- the most restricted problem processed to date.
- Achieved the least reductions
- If you fix everything,
 - There's nothing left to fix

	ranges			values		
project	feature	low	high	feature	setting	
	prec	1	2	data	3	
OSP:	flex	2	5	pvol	2	
Orbital	resl	1	3	rely	5	
space	team	2	3	pcap	3	
plane	pmat	1	- 4	plex	3	
	stor	3	5	site	3	
	ruse	2	4			
	docu	2	4			
	acap	2	3			
	pcon	2	3			
	apex	2	3			
	ltex	2	4			
	tool	2	3			
	sced	1	3			
	cplx	5	6			
	KSLOC	75	125			
	prec	3	5	flex	3	
OSP2	pmat	4	5	resl	4	
	docu	3	4	team	3	
	ltex	2	5	time	3	
	sced	2	4	stor	3	
	KSLOC	75	125	data	4	
				pvol	3	
				ruse	4	
				rely	5	
				acap	4	
				pcap	3	
				pcon	3	
				apex	4	
				plex	4	
				tool	5	
				cplx	4	

Conclusion

- A little AI goes a long way
 - Simulated annealing
 + elite bayesian sample
 - Simple to code
- The right project decisions can tame variance
 - Models contain "key constraints"
 - Set the keys via project decisions
 - Shown here: setting the keys
 - Reduces variance
 - While improving targets
 - Effort (cost), month (schedule), defects, threats

- Don't need to know everything before you plan
 - Tuning process models to local data is the preferred options.
 - But unturned models can be surprisingly effective
- Uncertainty is an ally
 - Don't delay in seeking stable conclusions within a space of partially defined options
 - If you fix everything, there's nothing left to fix.

Process models: ganz falsch?

- What is the effect on model output from internal model uncertainty?
 - Can that variance be tamed:
 - Without additional data?
 - Without discarding parts of the model?
 - If not, will Dr.Pauli revoke our license to model?
 - "Not even false"
- At least for COCOMO-family models,
 - We can find definite conclusions from process models, despite the data drought
 - Method
 - Find the key constraints
 - Constrain the keys
 - Tame uncertainty

- More process planning, earlier, with less data

University of Southern California Center for Software Engineering

West Virginian University Modelling Intelligence Lab http://unbox.org/wisp/tags/STAR

Questions? Comments?

