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Process models: ganz falsch?
 Wolfgang Pauli: scathing critic of poor theories

– Labeling then ganz falsch, utterly false.
 And “ganz falsch”  was not as bad as it gets:

– He hated unclear theories, poorly presented,
untestable, unassessable.

– Famously, he wrote:
”That's not right. It's not even wrong.”

 Two questions for process models:
1. Are our estimates “correct”?
2. What are those estimates?

 Our models have variance: α  ≤  f(x) ≤ β
 If (α - β) is large

1. Can’t tell if they are “correct” since …
2. … we don’t know our estimates
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Variability inside COCOMO models

Emi = mixi + bi

Emi = 1 when  xi when =3
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This talk
 Standard approach

– Use local data to reduce
the uncertainty in these slopes

 Our approach
– Let the internal model

values wander
– Use AI to find constraints

in model input

 Q: is constraining inputs enough
 to control internal model variability?
– A: yes, see below
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Taming variance #1: Use less model
 E.g. local calibration: Boehm ‘81

– Only tune 2 vars for linear, exponential effects

 E.g. feature selection:
– Few variables, less variance (Miller’02)

• Y         = f(x) = f0      + ∑ fi(xi)    +  ∑∑ fij(xi,xj)   +  ∑∑∑ fijk(xi,xjxk) +  …
• Var(Y) = V    =             ∑ Vi       +  ∑∑ ViVj        +  ∑∑∑ ViVjVk      +  ….

– Menzies et al. Ase’05, TSE’06; Chen et al. IEEE Software ‘05

 But :
– The reduced models still exhibit alarming large variances
– Feature selection still needs data to inform the selection
– Also it seems wrong-headed to limit modeling
– Surely the goal should be to extend, not restrict, what we can say?
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Taming variance #2: Use more data

 May take a while
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The data drought
 After 26 years of trying,

– only <  200 sample projects for
COCOMO’s database

 Do we need so many?
– Menzies et al. ICSE’04
– COCOMO prediction

•  PRED(30)> 70% after 20 records

 But….
1. COCOMO is a small model and

larger models need more data
2. Finding even 20 records is hard
3. Subsequent COCOMO simulations

showed worrying variance in the
conclusions

92* 20*90% samples, local calibration
regression to learn slope and”a” and  intercept “b”

Q: why not reported previously?
A:  prior reports discuss mean/median behavior,
     but not variance.
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Taming variance #3: STAR
(1) sample (2) rank (3) try

Bad

Good

1) SAMPLE with simulated annealing
 Vary the controllables,
 Seek lower energies
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Bad

Good

1) SAMPLE with simulated annealing
 Vary the controllables,
 Seek lower energies

2) RANK (e.g. acap=2)‏
 A = frequency in 10% good
 B = frequency in 90% bad
 Rank = a2 / (a+b)‏

Bayesian
elite 

sampling

Taming variance #3: STAR
(1) sample (2) rank (3) try
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Bad

Good

3) TRY: run*1000 top X ranked
          items until “min”

Key settings

not-so- good ideas
Median= 50 percentile
Spread = (75 - 50) percentile

1) SAMPLE with simulated annealing
 Vary the controllables,
 Seek lower energies

2) RANK (e.g. acap=2)‏
 A = frequency in 20% good
 B = frequency in 80% bad
 Rank = a2 / (a+b)‏

bayesian
elite 

sampling

Taming variance #3: STAR
(1) sample (2) rank (3) try
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Four COCOMO-family models

 predictions = model( project Options ) ‏
d = defects = coqualmo ( projectOptions ) ‏   ; Chulani ‘99
f = effort = cocomo( projectOptions )        ; Boehm et al ‘81 & ‘00
m = months = cocomo( projectOptions) ‏        ; ditto
t = threats  = madachyRiskModel( projectOptions ) ; Madachy ‘97

 plan = least change to options that most improve predictions
e = energy= (αd2 + βf 2  +  χm 2  +  δt2)0.5  /  (α+ β + χ +δ)0.5 utilities:

α, β, χ , δ
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COCOMO-family variables

Can be
changed
intra-project

Cannot
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Results
 P = Generate projects from  the minimum energy

point, estimate each with STAR
 Using Boehm’s LC procedure

– Train on historical NASA projects,
– “new”: Test on P,

• Generate deltas  comparing LC estimates to STAR’s

– “old”: Test on NASA historical data,
• Generate  deltas comparing LC estimates

to actuals in NASA data

 Sometimes, old and new deltas are different
– Lesson1: stochastics introduce unknown factors

(so use local data, if possible)

 Usually,  old and new deltas very close
– Even though STAR and LC have different goals
– Lesson2: if you can’t get old data, it is still possible to

make process predictions and decisions.
Median delta

of area under 
curve = 40%
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How “big” is a 40% delta?
 a = try controlling  anything
 s = try control the inter-project strategic factors

{prec pmat acap pcap pcon aexp pexp ltex site auto execTest peerReview}
 t = try control the intra-project tactical factors

{flex resl team tool sced data cplx ruse docu stor auto execTest peerReview}

standard COCOMO, 
no restrictions

Two generations of a 
NASA GNC system

JPL flight and
ground systems
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STAR, outputs
reduction% =  final / initial

 a = try controlling  anything
 s = try control the inter-project strategic factors

{prec pmat acap pcap pcon aexp pexp ltex site auto execTest peerReview}
 t = try control the intra-project tactical factors

{flex resl team tool sced data cplx ruse docu stor auto execTest peerReview}

 Mostly: very large defect reductions
 Often: large effort reductions
 Least reductions in  OSP2. Why?
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Least reduction is OSP2. Why?

 “OSP2” :
– the most restricted

problem processed to
date.

– Achieved the least
reductions

– If you fix everything,
• There’s nothing left

to fix
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Conclusion
• A little AI goes a long way

– Simulated annealing
+ elite bayesian sample

– Simple to code

• The right project decisions
can tame variance
– Models contain “key

constraints”
– Set the keys via project

decisions
– Shown here: setting the

keys
• Reduces variance
• While improving targets

– Effort (cost), month
(schedule), defects, threats

• Don’t need to know
everything before you
plan
– Tuning process models

to local data is the
preferred options.

– But unturned models
can be surprisingly
effective

• Uncertainty is an ally
– Don’t delay in seeking

stable conclusions within
a space of partially
defined options

– If you fix everything,
there’s nothing left to fix.
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Process models: ganz falsch?

• What is the effect on model output from internal
model uncertainty?

– Can that  variance be  tamed:
• Without  additional data?
• Without discarding parts of the model?

– If not, will Dr.Pauli revoke our license to model?
• “Not even false”

• At least for COCOMO-family models,
– We can find definite conclusions from process

models, despite the data drought
– Method

• Find the key constraints
• Constrain the keys
• Tame uncertainty

– More process planning, earlier, with less data

Sehr gut. Sie können 
falsch sein.
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Questions?
Comments?


