
Validating neural network-based online adaptive
systems: a case study

Yan Liu Æ Bojan Cukic Æ Srikanth Gururajan

� Springer Science+Business Media, LLC 2007

Abstract Biologically inspired soft computing paradigms such as neural networks are

popular learning models adopted in online adaptive systems for their ability to cope with

the demands of a changing environment. However, continual changes induce uncertainty

that limits the applicability of conventional validation techniques to assure the reliable

performance of such systems. In this paper, we discuss a dynamic approach to validate the

adaptive system component. Our approach consists of two run-time techniques: (1) a

statistical learning tool that detects unforeseen data; and (2) a reliability measure of the

neural network output after it accommodates the environmental changes. A case study on

NASA F-15 flight control system demonstrates that our techniques effectively detect

unusual events and provide validation inferences in a real-time manner.

Keywords Validation � Online adaptive system � Novelty detection �
Support vector data description � Validity index

1 Introduction

Adaptive systems are those systems whose functionality evolves over time due to envi-

ronmental changes. If learning and adaptation are allowed to occur after the control system

Y. Liu (&)
Motorola Labs, Motorola Inc, Schaumburg, IL, USA
e-mail: yanliu@motorola.com

B. Cukic
Lane Department of Computer Science and Electrical Engineering, West Virginia University,
Morgantown, WV, USA
e-mail: cukic@csee.wvu.edu

S. Gururajan
Mechanical and Aerospace Engineering Department, West Virginia University, Morgantown, WV,
USA
e-mail: srikanth@web.cemr.wvu.edu

123

Software Qual J
DOI 10.1007/s11219-007-9017-4



is deployed, the system is called online adaptive system (Mili, Cukic, Liu, & Ben Ayed,

2003). The use of biologically inspired soft computing systems for online adaptation to

recuperate against changing system environment has revolutionized the operation of real-

time automation and control applications. Neural networks are one of the most popular

learning paradigms employed in online adaptive systems. Because the learning algorithms

behind these computational architectures are usually derived from error/risk minimization

theories, the computations are complex and the learning process contains non-linearity.

Adaptive flight control is considered one of the most challenging real-time automation

and control applications as the system’s functions are not static but evolve over time in a

non-probabilistic manner. While these evolving functions, through judicious online

learning, aid the adaptive controller to recuperate the system (aircraft) from an operational

damage situation (sensor/actuator failure, changed aircraft dynamics: broken aileron or

stabilator, etc.), they add an additional degree of complexity and system uncertainty. Since

it is impossible to estimate and analyze all possible concerns relative to system safety

beforehand, online adaptive systems require a non-conventional validation approach.

While adaptive systems in general are considered inherently difficult to validate, system

uncertainties coupled with other real-time constraints make existing traditional validation

techniques virtually useless for online adaptive systems and creating a suitable validation

technique a challenging task (Mackall, Nelson, & Schumann, 2002; Schumann & Nelson,

2002).

Different from traditional types of software, neural networks are often viewed as black

box models. They are widely employed for function approximation, prediction and pattern

recognition. The requirements on such models are usually described as satisfying certain

criteria of precision and/or accuracy. Typical metrics used for performance evaluation of

neural networks are Mean Square Error (MSE), Squared Error, etc. They are used to

measure the learning performance of a neural network model. For prediction performance

evaluation, the most popular metrics are prediction/confidence intervals defined to measure

the reliability of network output. In the context of an online adaptive system, the online

neural network is expected to promptly respond to, adapt to and accommodate environ-

mental changes. Therefore, within an online adaptive system, assuring the performance of

the online neural network requires evaluation of its adaptation performance in a realistic

operational real-time environment. The evaluation should be performed to examine: (1)

how fast the neural network responds to and adapts to the changes; and (2) how well it

accommodates the changes.

Our previous research using formal methods on certain families of neural networks

suggests that environmental changes (learning data) have a significant impact on their

adaptive behavior (Mili et al. 2003). Some violent changes may cause unstable learning

behavior. Consequently, the adaptive component will produce unreliable output. In order to

assure the learning performance and further validate the output, the changes must be

observed, diagnosed and well understood. Moreover, the impact of such changes on

adaptation and prediction performance also needs to be analyzed and measured during

system operation.

We propose a novel validation approach that relies on robust and operative dynamic

techniques. We use these techniques to examine: (1) the learning data on which the online

adaptive component is trained, and (2) the neural network predictions after the completion

of (partial) training. First, in order to detect certain changes, a real-time novelty detection

technique is implemented before the data are fed into the adaptive component. Then, after

the adaptive component learns and accommodates changes, it recalls what it has learned
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and generates predictions. We define an online reliability measure to be associated with

each neural network prediction for validity check.

1.1 Paper overview

This paper presents a dynamic validation approach consisting of two different techniques.

Section 2 provides the application context as well as an overview of related research. The

proposed validation methods are described in Sects. 3 and 4. In Sect. 5, we present

experimental results obtained from an Intelligent Flight Control System (IFCS) simulator.

Section 6 summarizes the proposed methods and describes future work.

2 Background

We present our validation approach in the application context of the intelligent flight

control system designed and developed at NASA and specifically configured for an F-15

aircraft.

2.1 The intelligent flight control system

The Intelligent Flight Control System was developed by NASA with the primary goal to

‘‘flight evaluate control concepts that incorporate emerging soft computing algorithms to

provide an extremely robust aircraft capable of handling multiple accident and/or an off-

nominal flight scenario’’ [Boyd et al. 2001; Jorgensen 1991]. The diagram in Fig. 1 shows

the architectural overview of NASA’s IFCS implementation using Online Learning Neural

Network (OLNN). The control concept can be briefly described as follows. Notable dis-

crepancies from the outputs of the the Baseline Neural Network and the Real-time

Parameter Identification (PID), either due to a change in the aircraft dynamics (loss of

control surface, aileron, stabilator) or due to sensor noise/failure, are accounted by the

OLNN. When there is such a change, a deviation between the desired and the actual state

becomes significant. The OLNN is trained during operation to generate derivative

corrections to minimize this deviation.

Fig. 1 The intelligent flight control system
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The primary goal of OLNN is to accomplish in-flight accommodation of discrepancies,

commonly known as Stability and Control Derivative errors. Such derivative errors indi-

cate conditions that fall outside the scope of traditional (linearized) control gain look-up

tables. When OLNN performs adaptation, its behavior has a direct consequence on the

performance of the flight control system. As neural networks are often perceived as black-

box computational tools, their learning behavior is highly complex and thus hard to val-

idate. In such a safety-critical application, it is necessary to understand and predict the

adaptive behavior of the OLNN. The critical role played by the online learning neural

network in fine-tuning the control parameters and providing a smooth control adjustments

is the motivation for the need for a practical, non-conventional validation methodology.

Our goal of validating NN-based online component is to provide a means to detect novel

(abnormal) conditions entering the OLNN, to investigate their impact on the NN’s adaptive

behavior, and to validate its predictions after the adaptation so that it ensures safe oper-

ation. In IFCS, the type of neural network that implements the OLNN is the Dynamic Cell

Structure (DCS).

Our validation approach has been applied in the context of NASA IFCS program, which

developed and flight evaluated described control concepts. IFCS program further inves-

tigates techniques to increase system robustness in terms of addressing accident and/or off-

nominal flight scenarios.

2.2 Rleted work: validating online adaptive systems

While online adaptive systems are considered the most promising paradigm for improving

quality of control applications, there is also a wide agreement that conventional V&V

methodology is inapplicable to such systems. Because online learning systems may be used

in life-critical (e.g. flight control) and mission-critical (e.g. power, aerospace) applications,

they should be subject to strict quality standards, leaving a wide technological gap between

the requirements of the application domain and the capabilities of available verification

and validation technologies. A number of researchers dedicated their effort to proposing

novel V&V methods to narrow this gap. A majority of published research focuses on

methods that can be applied in an online fashion to assure the performance. Most proposed

approaches adopt the online analysis/monitoring scheme to cope with the evolving per-

formance of an online adaptive learner. These methods concentrate on three different

aspects (phases) of online adaption.

1. For any learning system, training data is always gathered before the learner is used for

prediction. Verification of the training data includes the analysis of its appropriateness

and comprehensiveness. The strong emphasis on domain specific knowledge, its

formal representation and mathematical analysis is suggested in (Del & Cukic, 2001).

Del Gobbo and Cukic propose the analysis of the neural network with respect to

conditions implying the existence of the solution (for function approximation) and the

reachability of the solution from any possible initial state. Their third condition can be

interpreted as condition for preservation of the learned information. This step is not

fully applicable to on-line learning applications since training data are related to the

real-time evolution of the system state, rather than the design choice. However, as

proven by our previous investigation using formal methods (Mili et al., 2003), the

training data has a very significant impact on system behavior. In a safety-critical

system, the ability of ‘‘novelty detection’’ is crucial to system safety. It helps to detect

suspicious learning data that is potentially hazardous to the system operation.
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2. Online monitoring techniques have been proposed to validate the learning process. In a

recent survey of methods for validating online learning neural networks, O. Raz (Raz,

2000) acknowledges that online monitoring techniques have a significant potential.

Another promising research direction, according to Raz, is periodic rule extraction

from an online neural network and partial (incremental) re-verification of these rules

using symbolic model checking. In (Institute of Software Reseach, 2001), Taylor et al

focus their effort on the Dynamic Cell Structure. They propose a prototype for real-

time rule extraction in order to verify the correctness of DCS learning performance. In

(Darrah, Taylor, & Skias, 2004), Darrah et al present rule extraction from DCS

network learning and suggest future examination of performance based on such rules.

Practical hurdles associated with this approach include determining the frequency of

rule extraction and impracticality of near real-time model checking of complex

systems. Yerramalla et. al. developed a monitoring technique for the DCS neural

network embedded in the IFCS (Yerramalla, Cukic, & Fuller, 2003a; Yerramalla,

Fuller, & Cukic, 2003b) based on Lyapunov stability theory. The online monitors

operate in parallel to the neural network with the goal of determining whether (or not),

under given conditions, the neural network is convergent, meaning that all state

transition trajectories converge to a stationary state. The online monitor is theoretically

founded and supported by an investigation of mathematical stability proofs that can

define the engagement (or disengagement) of the online monitor.

3. Few research results target the validation of prediction performance, where the system

is in operation after learning for a certain period of time. Schumann uses a Bayesian

approach on Sigma-Pi networks to monitor the prediction performance for an online

adaptive system in a real-time manner (Schumann & Gupta, 2004). In some cases,

neural networks are modified to provide support for test-based (or online) validation of

prediction performance. For example, Leonard et al (Leonard, Krammer, & Ungar,

1992) suggested a new architecture called Validity Index Net. A Validity Index

network is a derivative of Radial Basis Function (RBF) network with the additional

ability to calculate confidence intervals for its predictions based on the probability

density of the ‘‘similar’’ training data observed in the past.

In this paper, we propose two validation methods to examine: (1) the learning data

which the online neural network uses for training, and (2) the accuraccy of neural network

predictions following the training cycles. Our parallel research (Yerramalla et al., 2003a;

Yerramalla, Liu, Fuller, Cukic, & Gururajan, 2004) aims at validating the online learning

process by developing online stability monitors and have shown a successful realization of

convergence tracking of adaptation error towards a stable (or unstable) and safe (or unsafe)

state in the IFCS. These three methods cover three phases of an online adaptive system and

complete the framework for validating the IFCS as a typical example of neural network-

based online adaptive system.

3 Novelty detection

In general, novelty detection techniques require beforehand knowledge of both nominal

and off-nominal flight domains. However, for the validation of NN in IFCS it is impossible

to anticipate all possible failure situations. As a one-class classification tool, Support

Vector Data Description (SVDD) technique is derived from Support Vector learning theory

(Vapnik, 1998) by Tax et al. (Tax & Duin, 1999b; Tax & Duin, 1999a). Differing from
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general support vector classifiers that decide the maximum margin hyperplane to separate

two classes, SVDD method tries to find an optimal decision boundary for a given data set.

Thus, it provides the best possible representation of the target-class and offers inferences

that can be used to detect the outliers from the nominal feature space. This, for our

validation purposes, can be defined as the ‘‘safe region’’.
SVDD is developed from the concept of finding a sphere with the minimal volume that

contains all data items (Tax & Duin, 1999b). Given a data set S consisting of N examples

xi, i = 1 ,.., N, the SVDD’s task is to minimize an error function containing the volume of

this sphere. With the constraint that all data points must be within the sphere, which is

defined by its radius R and its center a, the objective function can be translated into the

following form by applying Lagrangian multipliers,

LðR; a; aiÞ ¼ R2 �
X

i

aifR2 � ðx2
i � 2axi þ a2Þg

where ai > 0 is the Lagrange multiplier. L is to be minimized with respect to R and a and

maximized with respect to ai.

In the solution that maximizes L, a large portion of ai’s become zero. The rest of ai’s are

greater than zero and their corresponding objects are those called support objects. They lie

on the boundary that forms a sphere that contains the data. Hence, object z is accepted by

the description when:

jz� aj2 ¼ ðz�
X

i

aixiÞðz�
X

i

aixiÞ � R2:

Flight control systems produce high dimensional data, characterized by non-linearity

and, consequently, inseparability by a linear discriminant. This makes the data description

more difficult to obtain. Similar to the Support Vector Machine (SVM) (Vapnik, 1998), by

employing a kernel function, we are able to map the data from a high dimensional space

onto a Hilbert space, also referred to as the ‘‘feature space’’, so data classification is

achieved with reduced computational complexity.

After normalizing the learning data, we select the well-known Gaussian kernel function,

i.e., K(x,y) = exp(�|x�y| 2 / s2), we now have:

L ¼ 1�
X

i

a2
i �

X

i 6¼j

aiajKðxi; xjÞ:

The formula of checking object z now becomes:

1� 2
X

i

aiKðz; xiÞ þ
X

i;j

aiajKðxi; xjÞ � R2:

By applying the SVDD method, we are able to obtain a sound representation of the target

class. To detect novelties (in our case, system failure conditions), a precise criterion should

be inferred from empirical testing or pre-defined thresholds. Our previous research has

demonstrated that SVDD can be adopted as an effective tool for novelty detection (Liu,

Cukic, Menzies, Gururajan, & Napolitano, 2003) . Since the evaluation of test data points

only involves ‘‘support vectors’’, a relatively small fraction of the data set, the detection of

novelties becomes computationally efficient.
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Furthermore, SVDD can also produces a ‘‘posterior probability-like’’ novelty measure

for each testing data point that falls outside the boundary (Tax, 2001). Based on the

assumption that the outliers are distributed uniformly in the feature space, Tax maps the

distance from the outlier object to the defined decision boundary to a novelty measure. It is

a quantified measure that indicates the degree of novelty of this particular object with

respect to the target class. The mathematical definition of this mapping follows.

pðzjOÞ ¼ expð�dðzjTÞ=sÞ

where p(z|O) is the probability that z belongs to the outlier class O; d(z|T) is the distance

from object z to the decision boundary obtained on the target class T in the feature space

and s is the kernel width. SVDD also provides a flexible definition of ‘‘novelty’’ as we

adjust the trade-off between sensitivity (the ability of determining true positives) and

specificity (the ability of determining true negatives). Figure 2 illustrates an example of

different boundaries provided by SVDD. The greater the distance from the innermost

region, the rougher the boundary. Therefore, the sensitivity of outlier detection may be

changed. In practice, a pre-defined threshold can be used as the furthest distance of a data

point from the center, which the system can tolerate. Such pre-defined thresholds need

sufficient testing within each specific data domain.

4 Validity Index in dynamic cell structures

Within an online adaptive system, the online neural network is in recall after a certain

period of time it has been exposed to learning. However, it is possible that insufficient

learning and/or data sparsity might cause locally poor fitting in certain regions. Within

these regions, the online neural network is very likely to produce predictions with low

Fig. 2 SVDD with different distances from the center

Software Qual J

123



confidence. In order to better evaluate its accommodation performance, we define a con-

fidence measure to validate each output, namely, the validity index. Our method is inspired

by J. Leonard’s work in validating Radial Basis Function (RBF) neural networks (Leonard

et al., 1992). He defines a reliability-like measure as the validity index for each output

based on statistical analysis. The validity index is used for performance evaluation of

neural network predictions.

4.1 Dynamic cell structures

The Dynamic Cell Structure (DCS) network can be seen as a special case of Self-Orga-

nizing Map (SOM) structures. The SOM has been introduced by Kohonen (Kohonen,

1990) and further improved to offer topology-preserving adaptive learning capabilities that

can, in theory, respond and learn to abstract from a much wider variety of complex data-

manifolds. The DCS network adopts the self-organizing structure and dynamically evolves

with respect to the learning data. It approximates the function that maps the input space.

The input space is divided into different regions, referred to as the Voronoi regions (Bruske

& Sommer, 1995; Martinetz & Schulten, 1994). As shown in Fig. 3,each Voronoi region is

represented by its centroid, a neuron associated with its reference vector which is known as

the ‘‘best matching unit (BMU)’’. Further, a ‘‘second best matching unit (SBU)’’ is

defined as the neuron whose reference vector is the second closest to a particular input.

Euclidean distance metric is used for finding BMUs and SBUs during the adaptation. The

set of neurons connected to the BMU are considered its neighbors and denoted by NBR.

Fig. 3 Voronoi regions of a DCS network
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In the DCS, the weight vectors of neurons and the lateral connections between neurons

are updated based on the presented input data pattern. In addition, DCS adds neurons as

needed to model the given data as accurately as needed. The resulting DCS network adopts

the self-organizing structure that dynamically evolves with the presented data. The final

structure formed by a DCS network after learning is topologically equivalent to the data set

in the sense that during training the structure is adapting to the data and converging to a

network that has a neighborhood preserving correspondence with the Voronoi regions of

the data set. The Kohonen rule

Dw ¼ �jjm� wBMUðmÞjj ð1Þ

is used for updating the weight vectors w, and the Hebbian rule

Cijðt þ 1Þ ¼

1 ði ¼ BMUÞ ^ ðj ¼ SBUÞ
0 ði ¼ BMUÞ ^ ðj 2 NBR� SBUÞ ^ ðCij<hÞ

aCijðtÞ ði ¼ BMUÞ ^ ðj 2 NBR� SBUÞ ^ ðCij � hÞ
CijðtÞ i; j 6¼ BMU

8
>><

>>:
ð2Þ

is used for updating lateral connection values Cij between neurons, where 0 � Cij � 1.

Complete implementation details can be found in (Bruske & Sommer, 1995).

Different from the pre-defined static RBF network structure, the DCS progressively

adjusts(grow/prune) its structure including locations of neurons and connections between

them to adapt to the current learning data. Thus, unbiased estimation of confidence interval

is impossible to be obtained through S-fold cross-validation due to constraint of time and

space. Yet, DCS is more of a topological representation of the data than RBF. By the end

of DCS learning, the data domain is divided into different Voronoi regions, of which every

region has a neuron as its centroid. The ‘‘locality’’ of DCS learning is such that the output

is determined by only two particular neurons, the best matching unit and the second best

matching unit. Intuitively, if the Voronoi region of a neuron does not contain sufficient

data, it is expected that the accuracy in that region will be poor. Based on the ‘‘local error’’

computed for each neuron, our approach provides an estimated confidence interval as the

Validity Index for DCS output. The degree of novelty is reflected by the validity index and

can be further verified through validity checks.

The DCS learning algorithm is depicted in Fig. 4. N is the number of training exam-

ples.Resource values are computed at each epoch as local error measurements associated

with each neuron. They are used to determine the sum of squared error of the whole

network. Starting initially from two connected neurons randomly selected from the training

set, the DCS learning continues adjusting its topologically representative structure until the

stopping criterion is met. The adaptation of lateral connections and weights of neurons are

updated by Hebbian and Kohonen learning rules, respectively. The resource values of the

neurons are updated using the quantization vector. In the final step of an iteration, the local

error is reduced by inserting new neuron(s) into particular area(s) of the input space. The

whole neural network is constructed dynamically. At the end of each learning epoch, the

insertion or pruning of neurons is triggered, if necessary.

It should be noted that while the DCS network is in recall operational mode, the

computation of output is different from that during training mode. In recall, given an input

vector, the output is computed based on two neurons. One is the BMU of the input, the

other is the closest neighbor of the BMU other than the SBU of the same input. In the
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absence of neighboring neurons of the BMU, the output value is calculated using the BMU

only.

4.2 Computing validity index

We define the validity index (VI) in DCS networks as an estimated confidence interval of a

DCS output, given the test input. The VI can be used to model the accuracy of the DCS

network fitting and thus provide novelty inferences for future validation activities. Based on

the primary rules of DCS learning and properties of the network structure, we employ

confidence intervals and variances for to calculate the validity index in DCS. The compu-

tation of a validity index for a given input x consists of two steps: (1) compute the local error

associated with each neuron, and (2) estimate the standard error of the DCS output for x using

information obtained from step (1). The detailed description of these two steps follows.

1. The final form of DCS network structure is represented by neurons as centroids of

Voronoi regions. Since the selection of the best matching unit must be unique, only

those data points whose BMU are the same will be contained in the same region.

Therefore, all Voronoi regions are non-overlapping and cover the entire learned

domain. The data points inside each region significantly affect the local fitting

accuracy. The local estimate of variance of the network residual in a particular region

can be calculated over the data points contained in the region and then be associated

with its representative neuron. The local estimate of variance si
2 associated with neuron

i is computed as:

s2
i ¼

1

ðni � 1Þ
Xni

k¼1

Ek;

Fig. 4 A brief description of the DCS learning algorithm
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where ni is the number of data points covered by neuron i and Ek is the residual

returned from the DCS recall function for data point k.Since the adjustment by

competitive Hebbian learning rule concerns connections only between the BMU and

its neighbors, the further update of weight values by Kohonen learning rule is per-

formed only on the BMU and its neighbors. Consequently, training data points covered

by the neighboring neurons of neuron i make proportional contributions to the local

error of neuron i. Considering such contributions, we modify the computation of the

local estimate of variance, now denoted by s0i
2, as follows.

s02i ¼
s2

i þ
P

j2NBR Cijs
2
j

1þ
P

j2NBR Cij
:

As a result, the influence of all related data points is taken into account based on

connections, referred to as Cij, between the BMU and its neighbors.It should be noted

that since the DCS networks within IFCS are trained online, no cross-validation is

allowed. Hence, the residual calculated for each data point is in fact a biased estimate

of the expected value of the residual due to the fact that each data point itself con-

tributes to its own prediction. Nonetheless, under the assumption that there is no severe

multi-collinearity and relatively few outliers exist in the data, the probability that the

deviation from the expected value will be significant is very low and thus can be

ignored.

2. Recall that the output produced by DCS is determined by the BMU and its closest

neighbor (CNB) of the given input. Thus, the local errors associated with these two

neurons are the source of fitting inaccuracy. As an estimate of this inaccuracy, we use

the standard error, a statistic often used to place a confidence interval. Provided with

the local estimate of variance for every neuron from step (1), we now define the 95%

confidence limit for the local prediction error estimate with respect to neuron i as:

CLi ¼ t:95

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

ni

r
s0i;

where t.95 is the critical value of the Student’s t-distribution with ni�1 degrees of

freedom. The 95% confidence interval for the network output y, given a test input, is

given by:

ðy� ðCLi þ CLjÞ
2

; yþ ðCLi þ CLjÞ
2

Þ;

where i = BMU and j = CNB with respect to input x.

Finally, we slightly modified the DCS training algorithm in order to calculate the

validity index. Because all needed information is present at the final step of each training

cycle, we can simply calculate si
’2 for each neuron after the learning stops. When the DCS

is in recall, the validity index is computed based on the local errors and then associated

with every DCS output. In the case of our application of interest, the IFCS, a domain

specific threshold can be pre-defined to help verify that the accuracy indicated by the

validity index is acceptable in the system context. This system performance validation step

is enabled by the existence of the validity index.
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5 Experimental results

Proper experimentation is required to justify realism and applicability of the proposed

techniques in practice. With the aide of a high-fidelity flight simulator, we were able to test

our techniques through extensive experimentation in simulated environments. The IFCS

F-15 simulator has been developed by the research team at West Virginia University

(Napolitano, Molinaro, Innocenti, & Martinelli, 1998). The control framework of the

simulator is based on the IFCS architecture (See Fig. 1). Figure 5 shows a snapshot of the

interface of the simulator. Through the simulator, we are able to collect valuable data

representing nominal flight conditions as well as some failure scenarios.

5.1 Flight-data description

The simulation data depicts nominal and off-nominal flight conditions at a simulation rate

of 20 Hz. A data frame is a point in a seven-dimensional space corresponding to 4 sensor

readings (independent variables) and 3 stability and control derivative errors from PID and

Baseline Neural Network (dependant variables). The NN tested here is the DCS�Cz net-

work, one of the five DCS-subnetworks of the IFCS. The independent variables are Mach

number (the ratio of the speed of the aircraft to the local speed of sound), a (aircraft’s angle

of attack), b (side slip angle of the aircraft) and the altitude of the aircraft. The dependent

variables are three stability and control derivative errors generated by the difference

between PID and Baseline Neural Network.

In the following subsection, we present novelty detection using SVDD on the NN

training data, which are normalized for better learning performance. The results of validity

index in DCS network are described next. Both tools are tested on a particular failure mode

Fig. 5 NASA-WVF F-15 Simulator
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data set obtained from the simulator. A control surface failure (locked left stabilator, stuck

at 0 degree) is induced at the 100th data frame.

5.2 Novelty detection using SVDD

We first simulate one run of nominal flight conditions of 40 seconds with a segment of

800 data points saved. After running SVDD on the nominal data, we obtain a sound data

description of nominal flight conditions. A representative ROC curve is given in Fig. 6.

By varying the value of the classification threshold we can obtain the differing SVDD

classification characteristics in terms of combining false negatives and false positives.

Based on the ROC curve and in line with system requirements, the specific operating

point we choose for our SVDD tool is to allow 15% of nominal data classified as

outliers.

We then use the boundary formed by SVDD to test the failure mode simulation. Novelty

detection results are shown in Fig. 7b. Circles in Fig. 7a represent failure mode simulation

data. The locked control surface failure results in input data points data falling outside the

SVDD boundary. The novelty measures shown in Fig. 7b are probability-like measures

computed for each data point based on the distance from the SVDD boundary. In this plot,

x-axis represents the time frames and y-axis represents the novelty measures calculated by

the SVDD tool. We can see from the plot that, after the 100th data frame, when the failure

occurs, SVDD detects the abnormal changes and returns high novelty measures. This

demonstrates effective and accurate detection capabilities of our SVDD detector.

Fig. 6 The ROC curve of the SVDD tool
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5.3 Online testing of validity index

As part of the experimentation, we simulate the online learning of the DCS network under

the failure mode condition. Running at 20 Hz, the DCS network updates its learning data

buffer at every second and learns on the up-to-date data set of size 200. We first start the

DCS network under nominal flight conditions with 200 data points. After that, every

second, we set the DCS network in recall mode and calculate the derivative corrections for

the freshly generated 20 data points, as well as their validity index. Then we set the DCS

network back to the learning mode and update the data buffer. While updating the data

buffer, we discard the first incoming 20 data points and add the freshly generated 20 data

points to maintain the buffer size, i.e., 200. The DCS network continues learning and

repeats the recall-learn procedure.

Fig. 7 Novelty detection. (a): SVDD of nominal flight simulation data is used to detect novelties. (b):
Novelty measures returned by SVDD tool for each testing data point
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Figure 8 shows the experimental results of our simulation on the failure mode condition.

Plot (a) shows the final form of the DCS network structure at the end of the simulation. As

a three-dimensional demonstration, the x-axis and y-axis represent two independent vari-

ables, a and b, respectively. The z-axis represents one derivative correction, DCza. The 200

data points in the data buffer at the end of the simulation are shown as crosses in the 3-D

space. The network structure is represented by circles (as neurons) connected by lines as a

topological mapping to the learning data. Plot (b) presents the validity index, shown as

Fig. 8 Testing on failure mode simulation data in real-time (running at 20 Hz, failure occurs at 100th data
frame). (a): The final form of DCS network structures. (b): Validity Index shown as error bars for each DCS
output
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error bars. The x-axis here represents the time frames. The failure occurs at the 100th data

frame. We compute the validity index for the data points that are generated five seconds

before and five seconds after the failure occurs. Plot (b) illustrates the validity index for

200 data points.

In our simulations, a trend revealed by the validity index indicates that increasingly

larger error bars reflect failure occurrances. After the initial failure occurrance, the error

bars shrink while the DCS network starts to adapt to the new domain, thus accommodating

the failure. Thereafter, the change (increase/decrease) of the validity index varies. This

variation depends on the characteristics of the failure as well as the accommodation

performance of the DCS network. Nevertheless, the validity index explicitly indicates how

well and how fast the DCS network accommodates system failures.

6 Summary and conclusions

In this paper we propose a non-conventional approach for validating neural network based

online adaptive systems. As software engineering researchers, the question we most fre-

quently entertain is the following one: ‘‘How does this work relate to software quality?’’ In

our research, indeed, we paid very limited attention to traditional software quality mea-

sures, such as process and product metrics, requirements, design or code analysis, etc.

However, we did not overlook the good practices of software engineering. In the flight

control domain, following rigorous software engineering lifecycle practices and traditional

software quality assurance methods is mandatory. In our project, traditional quality

assurance was not considered a problem. While trying to validate the ‘‘quality’’ of soft-

ware that changes following its deployment, we had to develop completely new validation

techniques. Our validation considers adaptive software as an integral part of the system.

Any software quality assurance technique for adaptive systems must be tightly coupled in

the context of system assurance. In essence, this type of assurance validates that the

adaptive algorithms are sufficiently robust to cope with complex system environments. In

mature technologies, trying out an algorithm while in doubt whether it can meet system

performance objectives would represent a poor engineering practice. However, in

emerging application domains, bold experimentation is necessary. Such experiments re-

quire significant departure from the traditional framework of software quality assurance

too.

The proposed approach to validation of adaptive systems consists of two techniques that

operate online. The first technique checks the novelty of learning inputs, while the second

evaluates the validity of control outputs. Experimental results suggest that our approach

provides the basis for the effective validation of the IFCS as a typical example of neural

network-based online adaptive systems. Meanwhile, we observe a positive relationship

between the novelty measures provided by the SVDD tool and the validity index in the

DCS network output. We believe both tools can serve as online monitoring tools and

provide validation inferences to further understand the adaptive behavior of other adaptive

applications. Computational efficiency and scalability of both methods inspire our confi-

dence that the proposed V&V method can be generalized to other type of neural networks.

In fact, this point has been demonstrated in our recent publications (Yerramalla, 2005). In

the future, we envision the application and further development of our techniques to many

other adaptive applications.
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