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Abstract

As a special type of Self-Organizing Maps (SOM), the Dynamic Cell
Structures (DCS) network has topology-preserving adaptive learning
capabilities that can, in theory, respond and learn to abstract from a
wide variety of complex data manifolds. However, the highly complex
learning algorithm and non-linearity behind the dynamic learning pose
serious challenge to validating the performance of DCS and impede its
spread in control applications, safety-critical systems in particular.

In this paper, we analyze the performance of DCS network by pro-
viding sensitivity analysis on its structure and confidence measures on
its predictions. We evaluate how the quality of each parameter of the
network (e.g., weight) influences the output of the network by defining
a metric for parameter sensitivity for DCS network. We present the
validity index (VI), an estimated confidence associated with each DCS

Y. Liu et al.: Performance Analysis of Dynamic Cell Structures, Studies in Computational
Intelligence (SCI) 35, 367- 390 (2007)
WWw.springerlink.com © Springer-Verlag Berlin Heidelberg 2007




368_ Y. Liu et al.

output, as a reliability-like measure of the network’s prediction perfor-
mance. Our experiments using artificial data and a case study on a
flight control application demonstrate that our analysis effectively mea-
sures the network performance and provides validation inferences in a
real-time manner.

Keywords: Dynamic Cell Structures, Validity index, sensitivity analysis, perfor-
mance estimation, confidence measures, neural networks.

1. Introduction

Often viewed as black box tools, neural network models have a proven
track record of successful applications in various fields. In safety-critical
systems such as flight control, neural networks are adopted as a major
soft-computing paradigm to support on-line adaptation and damage-
adaptive control. The appeal of mcludlng neural networks in these
systems is in their ability to cope with a changing environment. Un-
fortunately, the validation of neural networks is particularly challenging
due to their complexity and nonlinearity and thus reliable performance
prediction of such models is hard to assure. The uncertainties (low con-
fidence) existing in the neural network predictions need to be well an-
alyzed and measured during system operation. In essence, a reliable
neural network model should provide not only predictions, but also a
confidence measure of its predictions.

The Dynamic Cell Structure (DCS) network [1] is designed as a dy-
namically growing structure in order to achieve better adaptability. DCS
is proven to have topology-preserving adaptive learning capabilities that
can respond and learn to abstract from a wide variety of complex data
manifolds [2, 3]. The structural flexibility of DCS network has gained it a
good reputation of adapting faster and better to a new region than most
SOMs [2, 3]. A typical application of DCS is the NASA Intelligent Flight
Control System (IFCS)[4]. DCS is employed in IFCS as online adaptive
learner and provides derivative corrections as control adjustments dur-
ing system operation. In this application, it outperforms Radial Basis
Function (RBF) and Multi-Layer Perceptron (MLP) network models [5].
As a crucial component of a safety critical system, the DCS network is
expected to give quality performance in the entire operational domain.

Relying upon learning/training/approximation, a neural network
model raises issues in its quality (e.g., [6]). Two aspects are of impor-
tance here: if the model has been trained with a set D of input values
X, the model should produce the correct (or almost correct) values for
these data. In learning theory, this is called recall. On the other hand,
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Figure 15.1. Various levels of recall and generalization of the approximation of a sin-
curve (dashed line), given 5 points. A (linear) approximation: bad recall, reasonable
generalization (oversimplification). B reasonable recall and generalization. C perfect
recall, but very bad generalization

the model should also provide reasonable results on inputs, which are
not in D. This capability is called generalization. Figure 15.1 shows
the problem with recall and generalization for a simple sine curve: there
exist approximations with very good recall but bad generalization, and
vice versa. Most of the neural network based schemes view the problem
as deriving model parameter adaptive laws, having chosen a structure for
the neural network. However, choosing structure details such as number
of basis functions (or hidden units in a single hidden layer) in the model
must be done a priori. This can often lead to an over-determined or
under-determined network structure which in turn leads to an approx-
imation model that is not optimal, i.e., with bad recall and with bad
generalization. Methods and guidelines for model selection have been
researched and can be found in the neural network literature [7-10].
However, as a dynamically evolving structure, the DCS network is ini-
tialized with two connected neurons and then adjusts its own structure
to adapt to a better representation of the data. Thus, a DCS network
does not require any structure details to be pre-determined. However, an
analysis can be done later on its structural representation (e.g., weights
of neurons) for a sensitivity estimation with respect to input pertur-
bations, and a confidence measure of network output can be used to
estimate the network’s generalization ability.

Our sensitivity analysis focuses on how the quality of each parame-
ter of the network influences the output of the network. We define a
sensitivity metric for DCS networks, i.e., the partial derivative of the
outputs with respect to the inputs. The sensitivity metric can be used
to evaluate the quality and the robustness of the model. We propose
the Validity Index (VI), as a measure of confidence imposed on each
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DCS prediction. Each validity index reflects the confidence level of a
particular output.

The paper is organized as follows. Section 2 summarizes related work
in validation and verification of neural networks. The architecture of
a DCS network and its learning algorithm are described in Section 3.
Sensitivity analysis is described in Section 4. The concept of validity
index and its statistical computation are explained in detail in Section
5. Section 6 further explains the sensitivity metric and validity index for
DCS by experimenting with an artificial data set. Section 7 describes a
case study on a real-world control application, the IFCS, and presents
experimental results on the validity index and sensitivity analysis of
DCS using flight simulation data. Section 8 summarizes the proposed .

methods and discusses future work.
v

2. Related Work

Traditional literature describes adaptive computational paradigms,
neural networks in particular, with respect to their use, as function ap-
proximators or data classification tools. Validation on these systems is
usually based on a train-test-re-train empirical procedure. Some biblio-
graphic references also propose methods as part of the training algorithm
of neural networks for validation [4, 11]. The ability of interpolating
and/or extrapolating between known function values is measured by
certain parameters through testing. This evaluation paradigm can be
reasonably effective only for pre-trained adaptive systems, which do not
require online learning and adaptation and remain unchanged in use.
In [12], Fu interprets the verification of a neural network to refer to its
correctness and interprets the validation to refer to its accuracy and effi-
ciency. He establishes correctness by analyzing the process of designing
the neural network, rather than the functional properties of the final
product. Gerald Peterson presents another similar approach in [13] by
discussing the software development process of a neural network. He
describes the opportunities for verification and validation of neural net-
works in terms of the activities in their development life cycle, as shown
in Figure 15.2

As we can see from Figure 15.2, there is a focus on V&V of neural
networks based on the training data. Verification of the training data
includes the analysis of appropriateness and comprehensiveness. How-
ever, in online learning mode, this technique may not be appropriate
due to its real-time training. The data is collected in such a way that
the training is completed under intensive computational requirements.
Novelty detection is considered an important approach for validating
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Figure 15.2. 'The development cycle of a neural network [13].

neural network models {14, 15]. Our parallel research adopts novelty de-
tection techniques for validating a neural network based online adaptive
controller [16]. .

‘Verification of the training process typically examines the convergence
properties of the learning algorithm, which is usually pre-defined by some
criteria of error measure. In [17], K.J. Hunt et.al. investigate all different
methods for error estimation techniques and make detailed comparisons
among them. Nonetheless, effective evaluation methods of interpola-
tion and extrapolation capabilities of the network and domain specific
verification activities are still based on empirical testing [18]. Litera-
ture addressing this problem analytically is very scarce. In the field of
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function approximation theory, MLP networks have been proven to be
universal approximators as they are able to achieve any given accuracy
provided a sufficient number of hidden neurons [19]. The mathemati-
cal analysis and proof can be seen as another effort for validating the
learning process as it can provide a theoretical proof for the capabilities
of function approximation. The weakness of such an analytical proof is
that the number of required hidden neurons is extremely high. Also, for
an online adaptive learning systems, where the system function evolves
this approach remains impractical.

Most recently proposed techniques on V&V of neural networks are
based on empirical evaluation through simulation and/or experimental
testing. There are also other approaches to V&V of dynamic neural
networks. In an attempt to solve the dilemma of plasticity and stability
for neural networks, Grossberg [20, 21] derives a new paradigm, referred
to as the Adaptive Resonance Theory (ART-1/2/3). Within such a
network, there are two components charging seen and unseen data, re-
spectively. As interesting as is, it provides better understanding for our
problem other than applicable tools for validation and verification.

In a survey of methods for validating on-line learning neural networks,
0. Raz [22] classifies this approach into on-line monitoring and novelty
detection and attributes to it a significant potential for the future use.
The other promising research direction, according to Raz, is periodic
rule extraction from an on-line neural network (e.g., [23, 24]) and partial
(incremental) re-verification of these rules using symbolic model checking
[25]. Practical hurdles associated with this approach include determining
the frequency of rule extraction and impracticality of near real-time
model checking of complex systems [26].

[27] have developed a tool to dynamically estimate the performance of
an on-line trained neural network using a Bayesian approach. Dynam-
ical monitoring of the network’s current performance is an import step
toward V&V of neuro-adaptive systems [28, 29].

The proposed validity index for DCS networks is inspired by
J. Leonard’s paper on the validation of Radial Basis Function (RBF)
neural networks [30]. Leonard developed a reliability-like measure called
validity index which statistically evaluates each network output. The va-
lidity index in a RBF neural network is a confidence imterval associated
with each network prediction for a given input. Different from the pre-
defined static RBF network structure, the DCS progressively adjusts
(grows/prunes) its structure including locations of neurons and connec-
tions between them to adapt to the current learning data. Thus, un-
biased estimation of.confidence interval is impossible to obtain through
S-fold cross-validation due to constraints of time and space. Yet, the
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DCS network emphasizes topological representation of the data, while
the RBF network does not. By the end of DCS learning, the data do-
main is divided into Voronoi regions [2]. Every region has a neuron as
its centroid. The “locality” of DCS learning is such that the output
is determined by only two particular neurons, the best matching unit
and the closest neighbor to the best matching unit. Intuitively, if the
Voronoi region of a neuron does not contain sufficient data, it is expected
that the accuracy in that region will be poor. Based on the “local error”
computed for each neuron, our approach gives the validity index another
computational definition that’s derived specifically for DCS network.

3. The Dynamic Cell Structure

The Dynamic Cell Structure (DCS) [1, 31] network can be seen as
a special case of Self-Organizing Map (SOM) structures. The SOM is
introduced by Kohonen [32] and further improved to offer topology-
preserving adaptive learning capabilities. The DCS network adopts the
self-organizing structure and dynamically evolves with respect to the
learning data. It approximates the function that maps the input space.
At last, the input space is divided into different regions, referred to as
the Voronoi regions [2, 3, 31]. Each Voronoi region is represented by
its centroid, a neuron associated with its reference vector known as the
“best matching unit (BMU)”. Further, a “second best matching unit
(SBU)” is defined as the neuron whose reference vector is the second
closest to a particular input. An Euclidean distance metric is adopted
for finding both units. The set of neurons connected to the BMU are
called its neighbors and denoted by NBR.

The training algorithm of the DCS network combines the competitive
Hebbian learning rule with the Kohonen learning rule. The competitive
Hebbian learning rule is used to adjust the connection strength between
two neurons. It induces a Delaunay Triangulation into the network by
preserving the neighborhood structure of the feature manifold. Denoted
by Ci;(t), the connection between neuron ¢ and neuron j at time ¢ is
updated as follows:

! (i = BMU) A (j = SBU)
0 (':BMU)/\(C@' <0) -
A(j € NBR \ {SBU}) 15.)
aClj (t) (i =BMU) A (CZJ > 0) )
A(j € NBR\ {SBU})
C;;(t) otherwise

Cij(t-i— 1) =<«

\

where « is a predefined forgetting constant and 6 is a threshold preset
for dropping connections.
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The Kohonen learning rule is used to adjust the weight representations
of the neurons which are activated based on the best-matching methods
during the learning. Over every training cycle, let Awj; = Wy (t+1) —wi(t)
represent the adjustment of the reference vector needed for neuron i, the
Kohonen learning rule followed in DCSecomputes Awj; as follows.

EBMU (m —wi(t)) (¢ =DBMU)
Aw; = ENBR(Tﬁ —w;(t)) (1 € NBR) (15.2)
0 otherwise ‘

where 17 is the desired output, and 0 < egpUs ENBR < | are predefined
constants known as the learning rates that define the momentum of the
update process. For every particular input, the DCS learning algorithm
applies the competitive Hebbian rule before any other adjustment to
ensure that the SBU is a member of NBR for further structural updates.

The DCS learning algorithm is displayed in Figure 15.3. According
to the algorithm, N is the number of training examples. Resource val-
ues are computed at each epoch as local error measurements associated

Initialization;

Repeat until stopping criterion is satisfied;

{

Repeat N times

{
Determine the BMU and SBUj;

Update lateral connections (eq 15.1);
Adjust the weights (eq 15.2);
Update resource values;

}

If needéd, a new neuron is inserted/deleted;

Decrement resource values;

}

Figure 15.3. A brief description of the DCS learning algorithm.
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with each neuron. They are used to determine the sum of squared er-
ror of the whole network. Starting initially from two connected neurons
randomly selected from the training set, the DCS learning continues
adjusting its topologically representative structure until the stopping
criterion is met. The adaptation of lateral connections and weights of
neurons are updated by the aforementioned Hebbian learning rule and
Kohonen learning rule, respectively. The resource values of the neurons
are updated using the quantization vector. In the final step of an iter-
ation, the local error is reduced by inserting new neuron(s) in certain
area(s) of the input space where the errors are large. The whole neural
network is constructed in a dynamic way such that in the end of each
learning epoch, the insertion or pruning of a neuron can be triggered if
necessary.

It should be noted that while the DCS network is used for prediction,
the computation of output is different from that during training. When
DCS is in recall, the output is computed based on two neurons for a
particular input. One is the BMU of the input; the other is the closest
neighbor of the BMU other than the SBU of the input. In the absence
of neighboring neurons of the BMU, the output value is calculated using
the BMU only.

4. Sensitivity Analysis

An important analysis method for any function approximation, e.g.,
a DES network, is sensitivity analysis. By calculating the effect of small
perturbations of the input on the output, the smoothness and robustness
of the function approximator can be assessed. In a sensitivity analysis,
the partial'derivative of the outputs ¢ with respect to the inputs Z,
namely 9 i5 calculated. Unnecessary high sensitivity of the neural net-
work can lead to problems, in particular, in neuro-adaptive controllers,
as effects of perturbations can be amplified by feedback, ultimately lead-
ing to oscillation and instability.

While sensitivity analysis offers valuable information on the quality
of the model as a black box, it does not provide any information on the
impact of variation of the internal network parameters on the output.
This measure of parameter sensitivity gives an estimate of the white-box
model quality. The information that is contained in the DCS network is
stored as a set of parameters, connections C’ij and weight vectors w;. In
order to assess the current quality of the network output, it is important
to know, how robust the model is with respect to perturbations of the
parameters, i.e., how does the output change if a network weight is
changed by, say 1% If such a small change in a parameter already leads
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to a large change in the output, then the selection and tuning of this
parameter is highly critical, and should be monitored closely. In the
realm of DCS, a overly sensitivé’neuron could mean that the mechanism
for the dynamic introduction of new neurons during training is not set
up appropriately. On the other hand, highly insensitive neurons could
be safely deleted from the network. Here again, an optimally tuned DCS
learning algorithm should have taken care of that situation.

In this paper, we focus on parameter sensitivity. We calculate -2 S 9 for
the neuron reference vectors wj, as they play a major role in the network
recall mode. Thus, parameter sensitivity can be easily approximated for
the DCS network as

ai;i ~ (R(Z, {10, .., p}) — R {1, .+ A, )/ A

where R(-) is the recall function of the DCS network and A is a pertur-
bation.

More information can be obtained if we consider each parameter of
the neural network not as a scalar value, but as a probability distrib-
ution. Then, we can formulate the sensitivity problem in a statistical
way. The probability of the output of the neural network is p(6]P, Z)
given parameters P and inputs Z. If we assume a Gaussian probability
distribution, we can define our parameter confidence as the variance 072,.
In contrast to calculating the confidence value of the network output, we
do not marginalize over the weights or parameters, but over the inputs.

5. The Validity Index in DCS networks

As a V&V method, a validity check is usually performed through
the aide of software tools or manually to verify the correctness of sys-
tem functionality and the conformance of system performance to pre-
determined standards. The validity index proposed by J. Leonard [30)
is a reliability-like measure for validity checking. The Validity Index
(VI) is a confidence interval associated with each output predicted by
the neural network. Since a poorly fitted region will result in lower accu-
racy, it should be reflected by a poor validity index and later be captured
through validity checking.

Given a testing input, the validity index in DCS networks is defined as
an estimated confidence interval with respect to the DCS output. It can
be used to model the accuracy of the DCS network fitting. Based on the
primary rules of DCS learning and certain properties of the final network
structure, we employ the same statistical definition as for confidence
intervals and variances for a random variable to calculate the validity
index in DCS. The computation of a validity index for a given input x
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consists of two steps: 1) compute the local error associated with each
neuron, and 2) estimate the standard error of the DCS output for z
using information obtained from step 1). The detailed description of
these two steps is as follows:

1. Computation of local error. The final form of DCS network
structure is represented by neurons as centroids of Voronoi regions. Since
the selection of the best matching unit must be unique, only those data
points, which have the same BMU will be contained in the same region.
Therefore, all Voronoi regions are non-overlapping and cover the entire
learned domain. The data points inside each region significantly affect
the local fitting accuracy. The local estimate of variance of the network
residual in a particular region can be calculated over these data points
contained in the region and then be associated with its representative
neuron. More specifically, the local estimate of variance s? associated
with neuron ¢ can be computed as:

where n; is the number of data points covered by neuron i and E is the
residual returned from the DCS recall function for data point k.

In Section 3, we showed that the adjustment by competitive Hebbian
learning rule concerns connections only between the BMU and its neigh-
bors. The further update of weight values by the Kohonen learning rule
is performed only on the BMU and its neighbors. Consequently, train-
ing data points covered by the neighboring neurons of neuron ¢ make
proportional contributions to the local error of neuron i. Considering
such contributions, we modify the computation of the local estimate of
variance, now denoted by 3;2, as follows.

o2 = s; + 2.,eNBR Cijs?_
1+2;eNBR Cis

As a result, the influence of all related data points is taken into account
accordingly based on connections, referred to as Cjj, between the BMU
and its neighbors. It should be noted that since the DCS networks are
often adopted for online learning, no cross-validation is allowed. Hence,
the residual calcplated for each data point is in fact a biased estimate
of the expected value of the residual due to the fact that each data
point itself contributes to its own prediction. Nonetheless, under the
assumption that there is no severe multi-collinearity and relatively few
outliers exist in the data, the probability that the deviation from the
expected value will be significant is very low and thus can be ignored.
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2. Estimation of standard error. Recall that the output pro-
duced by DCS is determined by the BMU and its closest neighbor (CNB)
of the given input. Thus, the local errors associated with these two neu-
rons are the source of inaccuracies of fitting. We use the standard error,
a statistic that is often used to place a confidence interval for an esti-
mated statistical value. Provided with the local estimate of variance for
every neuron from Step 1), we now define the 95% confidence limit for
the local prediction error estimate with respect to neuron 7 as:

1
CL;=tg54/1+ ;;82,

1

The 95% confidence interval for the network output y given a testing
input is thus given by

CLi+CL') (CLi+CL'

( 5 J Y+ 5 J)>,

(y —

where 1 = BMU and j = CNB with respect to the input z.

Now we slightly modify the DCS training algorithm in order to cal-
culate the validity index. The new algorithm is shown in Figure 15.4.
Note that because all needed information is already saved at the final
step of each training cycle, we simply calculate 8;2 for each neuron after
the learning stops without any additional cost. When the DCS is in
recall mode for prediction, the validity index is computed based on the
local errors and then associated with every DCS output. In order to

/*DCS Learning (see Figure 15.3%/

/* Calculate the validity index */

For every neuron ¢ in the network

{
For every data point k whose BMU is 1
{ Compute E(k) ; }
Compute the local error s? using E(k);
}

Figure 15.4. The DCS learning algorithm with validity index.
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complete the validity check, further examination needs to be done by
software tools or system operators. In the case of a control application,
a domain specific threshold can be predefined to help verify that the
accuracy indicated by the validity index is acceptable.

6. An Example with Artificial Data

In order to demonstrate the sensitivity metric and the validity index
in DCS network model as an improvement of the network prediction, we
present an example using an artificial data set. T he DCS is trained on
a single-input, single-output function as seen in [30]:

f(z) = 0.2sin(1.57z + 0.57) + 2.0 + &,

where £ ~ N(0,7) is a Gaussian noise and n=0.1 in the following exam-
ples.

We sample z’s from the interval [—1, 1] randomly. At the beginning of
the simulation, the network is initialized with two neurons whose refer-
ence vectors represent two randomly selected training data points. The
network continues learning and adjusts its own structure to adapt to the
data. Therefore, at least initially, there exist regions where the learning
data points are not as dense as in the others. We then obtain two differ-
ent DCS network models by varying the stopping criterion. Figure 15.5
shows two sensitivity snapshots at different times of the simulation where
the network has been trained with the data. Each neuron is associated
with a 2-dimensional sensitivity ellipse. Figure 15.5 (a) shows the situa-
tion when the network stops training it has 13 neurons. Figure 15.5 (b)
shows the situation when the network stops training it has 27 neurons.
In plot (a), more than 50% of the neurons exhibit relatively large sensi-
tivity, while in plot (b) a smaller portion of neurons (=~ 30%) has large
sensitivity values.

Meanwhile, at the end of the network training we calculate the validity
index values. Figure 15.6 illustrates the validity index for these two
DCS models, one with 13 neurons and the other with 27 neurons, shown
as Figure 15.6(a) and Figure 15.6(b), respectively. By comparing the
prediction performance of these two models using the validity index,
which is shown as confidence band in both figures, we can conclude that
the DCS network model shown in Figure 15.6 (b) has better prediction
performance. Furthermore, we can observe that regions with sparse
learning data have low confidence measures.
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Figure 15.5. Examples of sensitivity metric for a DCS network. (a): The network
with 13 neurons. (b): The network with 27 neurons.

7. A Case Study

We conduct the performance analysis of DCS networks for the Intelli-
gent Flight Control System (IFCS). The IFCS is an example of adaptive
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The Intelligent Flight Control System

The Intelligent Flight Control System was developed by NASA with
the primary goal to “flight evaluate control concepts that incorporate
emerging soft computing algorithms to provide an extremely robust air-
craft capable of handling multiple accident and/or an off-nominal flight
scenarios” [34, 35].

The diagram in Figure 15.7 shows the architectural overview of
NASA’s first generation IFCS implementation of the online adaptive
controller. In this architecture, the proper controller for the aircraft is
augmented by two neural networks and a parameter-identification com-
ponent in the feedback loop. A pre-trained neural network (PTNN),
called the Baseline Neural Network stores the data (derivatives) for the
nominal mode. A change in the aircraft dynamics due to loss of a con-
trol surface (like aileron or stabilator) or due to excessive sensor noise
or a sensor failure lead to discrepancies from the outputs of the Baseline
Neural Network and the Real-time Parameter Identification (PID) com-
ponent. In order to obtain a good aircraft dynamics even in the face of
failure, notable discrepancies are accounted for by the OLNN (on-line
learning neural network). In this architecture, the OLNN is a DCS net-
work. All experiments with this architecture have been carried out with
the NASA-WVU F-15 Simulator [36].

The primary goal of the OLNN is to accomplish in-flight accommo-
dation of these discrepancies. The critical role played by the OLNN is
to fine-tune the control parameters and provide a smooth and reliable
control adjustments to system operation. When the OLNN performs
adaptation, its behavior has a direct consequence on the performance
of the flight control system. In such a safety-critical application, it is

necessary to understand and assure the prediction performance of the
OLNN.

Sensors d

OO . Baseline Neural

Network
. . Real-time
Onfine Leaming ;
- Parameter
Neural Network R Wentification

. H \ estimated
A [SOSTRPIIN HOR derivatives
commands derivative
derivative erors

corrections
pitot inputs F i
—->[=—(,I:r:ro(ler I

Figure 15.7. Principled Architecture of the Intelligent Flight Control System
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Our previous research provides a validation framework for validating
the OLNN learning. It consists of a novelty detection tool to detect
novel (abnormal) conditions entering the OLNN, and online stability
monitoring techniques to investigate the NN’s stability behavior during
adaptation [33, 37, 38]. Although learning can be closely monitored
and analyzed, when the system is in operation, it is probable that the
predictions of the OLNN will become unreliable and erroneous due to
extrapolation. Therefore, providing a reliability-like measurement with
respect to each particular output can further enforce safety of the system
in operation.

The Sensitivity Metric for DCS Network

Within the IFCS, the DCS network is employed for online adapta-
tion/learning. The DCS parameters (connection strength C;; and ref-
erence vectors ;) are updated during system operation. It should be
noted that the connection strength C;; does not contribute to the net-
work predictions while it is in recall mode. This implies that the sensi-
tivity of the connection strength is merely a structure related parameter
that influences the reference vectors instead of the network output. We
therefore only measure the sensitivity of the reference vector of the DCS
network. Using the simulation data obtained from the IFCS simulator,
we calculate the parameter sensitivity s and its confidence o2 after each
learning epoch during a flight scenario. The sensitivity analysis is con-
ducted on a N-dimension space, where N is the number of dimensions
of the input space.

Figure 15.8 shows two sensitivity snapshots at different times of the
simulation where the network has been trained with 2-dimensional data.
Each neuron is associated with a 2-dimensional sensitivity ellipse. At the
beginning of the simulation, the network is initialized with two neurons
whose reference vectors represent two randomly selected training data
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Figure 15.8. Sensitivity analysis for DCS networks
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points. The network continues learning and adjusts its own structure to
adapt to the data. Figure 15.8 (left) shows the situation at t = 5.0s.
Figure 15.8 (right) shows the situation at ¢ = 10.0s. At ¢t = 5.0s, most
neurons exhibit relatively large sensitivity, while only a few (= 30%)
neurons have small sensitivity values. However, at ¢ = 10.0s, when
the network has well adapted to the data, Figure 15.8 (right) clearly
indicates that now most (= 80%) neurons have small sensitivity values.

Online Testing of Validity Index

With the aide of the high-fidelity flight control simulator, we are able
to test our approach for adaptive flight control through experimentation
in simulated environments. The online neural networks in IFCS learn
on the environmental changes and accommodate failures. They generate
derivative corrections as compensation to the output of the PTNN and
PID (see Figure 15.7). We use validity index to evaluate the accommo-
dation performance and validate the predictions of the DCS network.

In our experiment, we simulate the online learning of the DCS network
under two different failure mode conditions and calculate the validity
index in simulated real-time. The first failure is the stuck-at-surface
type of failure, where the aircraft’s left stabilator is simulated to be
stuck at an angle of +3 degree. The other is the loss-of-surface type of
failure, where a 50% loss of the surface at the left stabilator is simulated.
Both failures cause the aircraft to start a roll and yaw movement instead
of flying a straight line.

In our experiment, simulation runs of 10 seconds were executed; 5
seconds before the failure and 5 seconds after the failure mode was acti-
vated. The basic data update rate is 20Hz, this means that each experi-
ment produces 200 data points. Online learning of the DCS within this
simulation is accomplished by using a moving window, a buffer, which
holds 200 data points, i.e., the data for 10 seconds. This data window
is moved every second to incorporate the most recent 20 data points. In
each experiment, we first start the DCS network under nominal flight
conditions with 200 data points. After that, every second, we first set
the DCS network for prediction (it is referred to as the recall mode
within IFCS [34, 35]) and calculate the derivative corrections for the -
freshly generated 20 data points, as well as their validity index. Then
we sct the DCS network back to the learning mode and update the data
buffer. The DCS network continues learning and repeats the recall-learn
procedure.

Figure 15.9 and Figure 15.10 show the experimental results of the
simulations on these two failures, respectively. The plots labeled (a)
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Figure 15.9. A stuck-at-surface failure simulation in real-time (20Hz). (a): The final
form of DCS network structures. (b): Validity Index shown as error bars for each
DCS output.
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Figure 15.10. Testing on loss-of-surface failure simulation data in real-time. (a): The
final form of DCS network structures. (b): Validity Index shown as error bars for
each DCS output.

show the final form of the DCS network structure at the end of the
simulation. As a three-dimensional demonstration, the z-axis and
y-axis represent two selected independent variables, o and (3, respec-
tively. The z-axis represents one derivative correction, ACz«a. The 200
data points in the data buffer at the end of the simulation are shown as
crosses in the 3-D space. The network structure is represented by circles
(as neurons) connected by lines as a topological mapping to the learning
data. The plots labeled (b) present the validity index, shown as error
bars. The z-axis here represents the time frames in units of 1/20s. In
both simulations, the failure occurs at the 100" data frame (¢ = 10s).
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A common trend revealed in both figures by the validity index is the
increasingly larger error bars after the failure occurs. Then, the error
bars start shrinking while the DCS network starts adapting to the new
domain and accommodating the failure. After the failure occurs, the
change (increase/decrease) of the validity index varies. This depends on
the characteristics of the failure as well as the accommodation perfor-
mance of the DCS network. Nevertheless, the validity index explicitly
indicates how well and how fast the DCS network accommodates the
failures.

- 8. Conclusions

Known for its structural flexibility, DCS networks are adopted in
safety-critical systems for online learning in order to quickly adapt to
a changing environment or a catastrophic failure and to provide reli-
able outputs when needed. However, DCS network predictions cannot
be constantly trusted because locally poor fitting will unavoidably oc-
cur due to extrapolation. We propose two approaches to analyze the
online prediction performance of DCS network models. The parameter
sensitivity is a mathematically simple metric that can be obtained in
any phase of network learning. The implementation of validity index
is straightforward and does not require any additional learning. Both
methods are primarily developed to provide dynamic data on the per-
formance of the DCS network. Experimental results demonstrate that
our analysis is capable of calculating a performance index for the DCS
neural network during online operation.

Our experimental results further suggest that our analysis provides
the basis of validity check for an effective validation of the IFCS as a
typical example of a neural network-based online adaptive system. How-
ever, in neuro-adaptive control applications, the actual performance of
the entire system (in our case study, the aircraft) also depends on a
multitude of other parameters (e.g., robustness of controller, perfor-
mance metric, type of failure). Our future research aims to relate our
performance analysis with other aspects of the system quality. With
the real-time availability of other quality estimates, our analysis can be
used to provide assistance/suppoet to decision making during system
operation.
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