
Machine Learning 35, 57–90 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Learning to Take Actions*

RONI KHARDON† roni@dcs.ed.ac.uk
Division of Informatics, University of Edinburgh, JCMB, King’s Buildings, Edinburgh EH9 3JZ, Scotland

Editor: J. Shavlik

Abstract. We formalize a model for supervised learning of action strategies in dynamic stochastic domains
and show that PAC-learning results on Occam algorithms hold in this model as well. We then identify a class of
rule-based action strategies for which polynomial time learning is possible. The representation of strategies is a
generalization of decision lists; strategies include rules with existentially quantified conditions, simple recursive
predicates, and small internal state, but are syntactically restricted. We also study the learnability of hierarchically
composed strategies where a subroutine already acquired can be used as a basic action in a higher level strategy.
We prove some positive results in this setting, but also show that in some cases the hierarchical learning problem
is computationally hard.

Keywords: learning to act, stochastic domains, supervised learning, rule based systems, hierarchical learning,
NP-complete

1. Introduction

We formalize a model for supervised learning of action strategies in dynamic stochastic
domains, and study the learnability of strategies represented by rule-based systems. In this
model, the learner is given access to traces of behavior of another agent and using these traces
it tries to reconstruct a strategy for behaving successfully in the same world. Following
previous work on learning to reason (Khardon & Roth, 1995, 1997) the formalization
utilizes two general ideas. First, one can gain insights by focusing on learning that is
done for the purpose of performing well in a particular task. Second, when coupling
learning with the task, the competence required of the agent can be defined relative to its
learning interface. This allows for relaxed definitions describing plausible scenarios that
admit efficient solutions.

Technically, our framework is based on the PAC model of learning from examples
(Valiant, 1984) but applied to problems where the agent has to act in the world and achieve
goals, similar to what is done in the study of planning (Allen, Hendler, & Tate, 1990). The
formalization considers stochastic partially observable worlds as in reinforcement learn-
ing (Littman, Cassandra, & Kaelbling, 1995), where the state is described using relational

∗An earlier version of this paper appears in the proceedings of the National Conference on Artificial Intelligence
AAAI-1996.
†Most of this work was done while the author was at Harvard University and supported by ARO grant DAAL03-
92-G-0115 and ONR grant N00014-95-1-0550.

58 R. KHARDON

information. We describe the dynamics in terms of “runs”, where in each run a random
initial state and goals are chosen and the agent has to act so as to achieve the goals. The
examples are provided by using a fixed strategy to choose the actions on such random prob-
lems. After seeing some examples the learner has to find a strategy that performs as well
as the strategy providing the examples. This generalizes previous work by Tadepalli and
Natarajan (Tadepalli, 1991; Tadepalli & Natarajan, 1996) who studied similar problems of
acting in deterministic worlds. Indeed our basic result shows that if a learning algorithm
finds a strategy that can be described concisely, and such that it suggests the same actions
that have been observed in the example traces, then it is guaranteed to be successful. Thus
the well known convergence results for Occam algorithms in the PAC model (Blumer et al.,
1987), that are known to hold in deterministic worlds (Tadepalli & Natarajan, 1996), hold
also for stochastic partially observable worlds.

A large part of the paper is devoted to the study of rule-based action strategies and their
learnability. The rules in the representation are of the formC→ A, where the condition
C is an existentially quantified first order expression, and the right hand sideA may be
either a name of an action or a predicate. In particular, three collections of such rules are
used to describe a strategy, that is, a program prescribing how an agent (either learner
or example provider) chooses its actions. The main part of a strategy includes a priority
list of rules whose right hand sides are real actions in the world. Whenever the agent
needs to take an action it consults this list and chooses the action recommended by the
first rule on this list whose condition holds at that moment. This is a generalization of
propositional decision lists studied by Rivest (1987). The right-hand side of rules in the other
two collections includes internal predicates private to the agent. One collection includes
propositional state information, while the other includes recursively defined first order
predicates. These internal predicates are used in the conditions of the priority list in the
main part of the strategy. A concrete example describing such a rule-based system for the
blocks world is given in Table 2 and discussed in more detail in Section 4.

We describe restrictions on such rule-based strategies so that efficient learnability can be
achieved. In particular the left hand side of each rule is restricted to have only a constant
number of predicates and existentially quantified variables, the internal state is restricted
to a constant size, and the syntactic definition of the internal predicates is restricted so that
they can be enumerated efficiently. We describe a learning algorithm that is efficient under
these conditions, generalizing Rivest’s (1987) algorithm for propositional decision lists, in
a manner similar to Valiant’s (1985) relational DNF expressions. The time required of the
algorithm is polynomial in the number of predicates in the vocabulary of the agent, and
in the number of objects that it encounters in the example traces. It grows exponentially,
however, with the number of variables in the rules, and the size of the internal state machine;
thus when these parameters are fixed to small constants we may expect efficient learn-
ability.

We also study more complex action strategies that are composed hierarchically. Denote
the class of strategies described above by simple strategies. Then a simple strategy for a
particular task can be used as a subroutine in a hierarchically composed strategy for another
task. This is in particular enabled by naming the subroutine and using this name as a basic
action in the main part (the priority list) in the new strategy. Two types of control structures

LEARNING TO TAKE ACTIONS 59

are considered. The first stipulates that control is given to a lower level subroutine for a sin-
gle time step. In the next time step the conditions in the higher level are tested and if needed
the subroutine is applied again for one time step. In this case hierarchical strategies are
learnable under the same restrictions as above. This result is applicable to hierarchical teleo-
reactive programs (Nilsson, 1994). In particular the main part of the strategy is equivalent
to such a program and therefore such programs are learnable if the number of quantified
variables is bounded. In the second control structure, once a subroutine is started it con-
tinues its execution until its “local goals” are achieved; only then control is returned to
the strategy in the higher level. For this case we show that information on the hierarchy
cannot be implicit. In particular we show that if the example traces are annotated so that it
is known which subroutine is responsible for taking each action then efficient learning is
possible. However, if this information is not given then the task becomes computationally
hard (even if the subroutines are already known). Thus if learning of such strategies is to
be performed then annotation must be provided.

To summarize, the contributions of the paper are twofold: First we introduce the su-
pervised learning model and show that general convergence results can be achieved in
this model. The restrictions imposed in the model are both its strength and its limitation.
Indeed, in order to use the results, examples of behavior by a teacher1 are needed and
the expressiveness of the rule-based strategies is somewhat restricted. On the other hand,
these restrictions make for problems that can be solved efficiently, and in addition we can
prove that some algorithms will be both efficient and successful. Our results can also be
seen as a partial theoretical explanation to similar empirical studies that have been done.
For example, Sammut et al. (1992) study learning of action strategies for flying a plane.
Their algorithm takes example traces, and produces situation-action pairs for a standard
decision tree learning algorithm. Our general learning result suggests that the success of
this approach can be quantified; if a small decision tree can be found then it will be useful
for selecting actions in the future. The second contribution concerns the study of rule-based
systems. The effort here is to find as expressive as possible classes of strategies that are
learnable and that might be useful in other settings as well. We identify a subset of rule-
based strategies that can be learned, and some limits to this learnability when strategies are
hierarchically composed.

An empirical evaluation of these ideas has been performed (Khardon, 1997) where our
learning algorithm is shown to be useful for learning action strategies in small planning
domains that have been studied before. These experiments and their practical implications
are briefly discussed in Section 7.

This work draws on several previous lines of research on learning, planning, rule-based
systems, and relational representations, of which only some were mentioned above. An
extensive discussion of the similarities and differences between our model and previous
ones is given in Section 8.

The rest of the paper is organized as follows. The next two sections present the model and
the result on Occam algorithms. The three sections that follow study rule-based strategies
and their learnability. Discussions of the experimental system and related work appear in
the next two sections. The final section concludes with a summary and directions for future
work.

60 R. KHARDON

Figure 1. The game.

2. The model

We start with an example that illustrates the world model and the learning model. Suppose
you go to visit a friend who knows you are interested in computer games. Your friend is
very excited, and takes you immediately to the game room where you are shown a new
game (see figure 1). On the right there are 50 or so buttons, with the heading “push to
move”. In the middle, you see two aligned sets of 50 or so light bulbs. One set with the
heading “Measurements” and the other with the heading “Goals”. The bulbs are flashing
with red and green colors, and are sometimes turned off. On the left there is a button saying
“push to start”. Above these buttons and light bulbs there is a display with digits with the
header “score” and two faces drawn, one smiling and the other frowning.

You are encouraged to try the game, which you do by pushing the start button, then
you try to win the game by pressing the move buttons. Soon though, the frowning face is
flashing, and the game stops; you have failed. You try a few more times but fail again.

Your friend, eager to show off, sits down, plays for a few rounds, and wins in all these
rounds. You observe your friend carefully, recording which buttons are pushed in each
situation. You then get a second chance with the game. Can you use the information recorded
on your friend’s moves so as to learn which buttons to push in order to win in the game?

Of course, we do not have enough information to answer the question. It may be that
you are being fooled, and in fact some third person is controlling the light bulbs to make it
appear that you are losing the game while your friend is winning. The question is whether
some learning strategy is guaranteed to succeed under some reasonable assumptions; the
paper formalizes this question and identifies such sufficient conditions.

LEARNING TO TAKE ACTIONS 61

Notice, that the scenario presented in the example corresponds to supervised learning.
Namely, the learner gets labelled examples by observing a teacher who is playing the game.
Similar questions can be raised for less supervised scenarios. For example, can one learn
without the labelled examples, that is, just by trial and error? This corresponds to the
reinforcement learning model. We only pursue the supervised setting here.

Intuitively, the world is modeled as a randomized state machine, in each step the agent
takes an action, and the world changes its state where the transition probabilities depend on
the current state and the action taken. The agent is trying to get to a state in which certain
“goal” conditions hold. The basic scenario is similar to the example given above.

2.1. Acting

The interface of the agent to the world is composed of three components:

• The measurements of the learner are represented by a set ofn literals,X = x1, x2, . . . , xn,
each taking a value in{0, 1, ∗}. The value∗ is intended to denote that the value of some
variable is not known or has not been observed. No special semantics is given to partial
assignments; instead we follow Valiant (1995) and Roth (1995) and simply consider the
value∗ as a third value an attribute can take.2 The set{0, 1, ∗}n is the domain of these
measurements.

For structural domains, as in work by Haussler (1989), the input is composed of a list
of objects, and values of predicates instantiated with these objects. Namely, there aren1

objects, andn2 predicate symbols, each of aritya or less, and the input is described by
then = n2na

1 instantiated predicates.
• The agent can be assigned a goal, from a previously fixed set of goalsG = { f | f :
{0, 1, ∗}n→ {0, 1}}. The intention here is that eachf designates a certain goal, and that
the learner can determine whether the goalf is satisfied in a certain statex ∈ {0, 1, ∗}n.
Namely, f (x) can be easily evaluated.

We have to fix a representation of goals to be presented to the agent. For simplicity we
assume thatG is the class of conjunctions over the literalsg1, g2, . . . , gn, and its negations,
wheregi represents the desired state ofxi . This is similar to conjunctive goals in STRIPS
style planning problems. Every such goalf can be represented using an assignment
y ∈ {0, 1, ∗}n, where f = ∧ gyi

i , andg1
i = gi , g0

i = ḡi , andg∗i = 1. For example, if
y = (0 ∗ 1) then f = ḡ1 ∧ g3.

For relational problems we achieve the same effect by introducing a goal modality
G that can take any relational predicate in the input as its argument. For example, if
p() is a relation of arity 2, anda, b are object names thenG(p(a, b)) would denote the
appropriate goal, in similarity with the literalsgi above.

In view to representation of strategies to be discussed later we note that conditions
involving both the required goal and the current inputs can be constructed. For example,
in the propositional setting, the conditionḡ1∧ x1 expresses the fact that it is desired that
x1 be off and that it does not hold in the current input. Note that since∗ is considered a
third distinct value neithergi not ḡi are satisfied ifxi = ∗.
• The agent has at its disposal a set of actionsO = {o1, . . . ,on}. The symboloi denotes

the name of the action. In the learning model, the agent is not given any information on

62 R. KHARDON

the effects of the actions, or the preconditions for their application. In particular, there is
no hidden assumption that the effects of the actions are deterministic, or that they can be
exactly specified. (The choice ofn, the number of actions, to be the same as the number
of literals, is simply intended to reduce the number of parameters used. One can think
of n as a bound of this number.)

The protocol of acting in the world is modeled as an infinitely repeated game. At each
round, aninstance , (x, g), such thatx ∈ {0, 1, ∗}n andg ∈ G is first chosen. Then the
agent is given some time, sayN steps (whereN is some fixed polynomial in the complexity
parameters), to achieve the goalg starting with statex. In order to do this the learner has
to apply its actions, one at a time, until its measurements have a valuey which satisfiesg
(i.e.,g(y) = 1).

Intuitively, each action that is taken changes the state of the world, and at each time point
the agent can take an action and then read the measurements after it. However, some of
the actions may not be applicable in certain situations, so the state does not have to change
when an action is taken. Furthermore, we would allow the state to change even when no
action is taken. In order to simplify notation, we assume that one of the actions is a no-op
action, and when the agent chooses not to take an action it simply chooses this action.

Definition 2.1(stationary strategy). A stationary strategy s: {0, 1, ∗}n × G → O is a
mapping from instances into actions.

An agent is following a stationary strategys, if on input x, and with goalg, the agent
chooses the actions(x, g). In general, however, a strategy may have an internal state:

Definition 2.2(strategy). A strategy sis composed of a state machine(I , i0, δs), and a
mappings : {0, 1, ∗}n × G × I → O from instances and states into actions.

In the state machine,I is the set of states,i0 is the initial state, andδs : {0, 1, ∗}n × G ×
I → I is the transition function.

An agent is following a strategys if on a new instance it is initialized to statei0, and if
whenever it is in statei ∈ I , and on input(x, g), the agent chooses the actions(x, g, i), and
changes its state toδs(x, g, i). Note that the strategies we have defined are deterministic;
this fact is used later in our arguments.

Definition 2.3(run). A run of a strategys on instance(x, g), is a sequence resulting from
repeated applications of the strategys,

R(s, x, g) = x, s(x, g, i 0), x1, s(x1, g, i 1), x2, s(x2, g, i 2), . . . ,

wherei 0 = i0, and for eachj ≥ 1, i j = δs(x j−1, g, i j−1). The run is continued untilg has
been achieved orN steps have passed.

Definition 2.4(successful run). A run issuccessfulif for somei ≤ N, g(xi) = 1.

LEARNING TO TAKE ACTIONS 63

Notice that, depending on the characteristics of the world, a run might be a fixed value or
a random variable. In order to ensure thatR behaves as a random variable we assume that
the world behaves as a partially observable Markov decision process.3 Namely, the world
is composed of set of states, and a set of matrices describing the transition probabilities of
moving from one state to another depending on the actions of the agent. The agent does
not observe the actual state of the system but only some partial measurement over the state.
That is, many states may be mapped to the same measurement.

Definition 2.5(world). The worldW is modeled as a partially observable Markov decision
process whose transitions are effected by the actions of the agent.

It should be noted that we do not make any assumptions on the size or structure ofW.
Furthermore, we do not expect an agent to have complete knowledge ofW. Instead, we
would want an agent to have a strategy that copes with its task when interacting withW.

We next model the start button in the scenario described above. We assume that at the
beginning of a random run, a state of the Markov chain is randomly chosen according to
some fixed probability distributionD. This distribution induces a probability distribution
D over the measurements{0, 1, ∗}n × G that the learner observes at a start of a run.

Definition 2.6(random run). A random runof a strategys with respect to a worldW, and
probability distributionD, denotedR(s, D), is a runR(s, x, g) where(x, g) are induced
by a random draw ofD, the actions are chosen according tos, and the successor states are
chosen according to the transition matrix ofW.

SinceW is thought of as fixed, we suppress the parameterW in the notation forR. The
above definition ensures that a random run is indeed a random variable. Notice that if the
strategy is deterministic then the distribution ofR is determined byD andW.

The start button in our model assumes that some form of a reset operation is given to the
agent. This may limit the application of the results in some situations. The assumption is
however not too strong, and may be thought of as saying that the choice of new problems gen-
erated for the agent is invariant of other changes in the world; that is, in some sense the source
of problems is stationary. Similar assumptions have been made in several works in rein-
forcement learning (Sutton, 1990; Fiechter, 1994; Littman, Cassandra, & Kaelbling, 1995).

The quality of a strategy is the probability that a random run is successful. Formally,

Definition 2.7(quality of a strategy). The qualityQ(s, D) of a strategys, with respect to
a worldW, and probability distributionD, is

Q(s, D) = Prob [R(s, D) is successful]

where the probability is taken overD, and the random variableR.

2.2. Learning

We assume that a teacher has some strategyt , according to which it chooses its actions. The
example oracle returns a random run of the teacher’s strategy.

64 R. KHARDON

Definition 2.8. The oracleexample (t) when accessed, returns a random sample of
R(t, D).

A learning algorithm will get access to the oracleexample and will try to find a strategy
which is almost as good as the teacher’s strategy. LetS be a class of strategies; assume
some standard representation for strategies inS, and fors ∈ S let |s| be the size of the
representation ofs.

Definition 2.9(learning). An algorithm A is a Learn to Actalgorithm, with respect to
a class of strategiesS, class of worldsW, and class of distributionsD, if there exists a
polynomialp(), such that on input 0< ε, δ < 1, for allt ∈ S, for all W ∈W, for all D ∈ D,
and when given access toexample (t), the algorithmA runs in timep(n, |t |, 1/ε, 1/δ),
wheren is the number of predicates measured in each example, and with probability at least
1− δ, A outputs a strategys such thatQ(t, D)− Q(s, D) ≤ ε.

3. Learning action strategies

In this section we present a general learning result. Similar to results in the PAC model
(Blumer et al., 1987) we show that an Occam algorithm that finds a concise action strategy
which is consistent with all the examples seen, is a learning algorithm. This result is later
used to prove the learnability of rule-based systems.

The main idea is that an action strategy that is very different from the teacher’s strategy
will be detected as different by a large enough random sample. In the PAC model of
concept learning examples are randomly and independently sampled and do not depend
on the learner. Thus, if a hypothesis is consistent with a large sample of examples, it is
expected to behave well on the same distribution when tested. In contrast, when learning
to act, the distribution of states visited after taking the first action depends on this action.
Namely, the distribution of runs on which a strategys is measured depends ons. Therefore,
the above argument is not sufficient here, and one has to show that the quality of the strategy,
measured by this new distribution, is also good. As the following theorem shows, Occam
algorithms are successful since most of the good runs of the teacher are also covered by a
consistent strategy.

Recall that the strategies we defined are deterministic. Therefore, the randomness in a
run depends only on the world as expressed throughD and the Markovian process. As a
result we can talk about a strategy being consistent with a run. We say that a strategy is
consistent with a runR= x, oi1, x1, oi2, x2, oi3, . . . ,oil x

l if for all j , the action chosen by
the strategy in stepj , given the history on the firstj −1 steps (which determine the internal
state of the strategy), is equal tooi j .

Theorem 3.1. Let H be a class of strategies, and let L be an algorithm such that for any
t ∈ H, and on any set of runs{R(t, D)}, L finds a strategy h∈ H which is consistent
with all the runs. Then L is alearn to actalgorithm for H when given m= 1

ε
ln(|H |

δ
)

independent example runs.

LEARNING TO TAKE ACTIONS 65

Proof: The examples presented to the learner are independent samples of the random
variableR(t, D). We would next consider the set of runs produced by a strategy; ifs is
consistent with a runR then we say thatR is in s, and otherwiseR is not ins.

Denote byDt (Ds, respectively) the distribution on runs induced byt (s, respectively).
Then, sinces, t are deterministic, we get that for a runR which can be produced by boths
andt , Dt (R) = Ds(R).

First observe that a strategys satisfyingDt (R in s) > 1− ε has good quality, since

Q(s, D) = Ds(R in s andR successful)

≥ Ds(R in s andR in t andR successful)

= Dt (R in s andR successful)

> 1− ε − (1− Q(t, D))

= Q(t, D)− ε.
Now, the theorem follows since the probability that any strategys not satisfying

Dt (R in s) > 1− ε is consistent withm examples is very small. Since the runs are in-
dependent, the probability thatsagrees with all of them is at most(1− ε)m < e−εm = δ/|H |.
The probability that this happens for any strategy inH is at mostδ. 2

The theorem assumes a fixed size hypothesis classH . It is straightforward to generalize
this theorem to cases where the hypothesis size depends on the size of the strategy being
learned, in line with previous results on Occam algorithms (Blumer et al., 1987; Kearns &
Vazirani, 1994). The above proof also ensures that the learner is almost as bad as the teacher.
A similar result without this unwanted guarantee can be derived by using only successful
runs in the sample. Namely, the learning algorithm will take a sample ofm = 1

ε
log(|H |

δ
)

independent successful example runs. (The expected number of calls toexample (t) is
O(1/Q(t, D)) times the above sample size.) Generalizations of this result will be inter-
esting. In particular the restriction to deterministic strategies enabled the above proof; it
remains to be seen whether some version of the result holds for randomized strategies, or
when there is “noise” in the examples.

Using the above theorem we can immediately conclude that strategies representable as
macro tables (Korf, 1985) and intersection-closed strategies, for which Occam algorithms
exist (Tadepalli, 1991; Tadepalli & Natarajan, 1996), are learnable in our model.

4. Representation of strategies

We use a rule-based representation of strategies motivated by work on production systems.
The representation exemplifies that a symbolic relational representation including declara-
tive information can be an inherent part of a reactive agent.4 We start by discussing some
general features of production systems and motivate the types of restrictions that are em-
ployed. Then, in order to facilitate the presentation of the results, we describe a Production
Rule System (PRS) for the blocks world which is in the class of strategies that can be
learned. Finally, formal definitions are given.

66 R. KHARDON

4.1. Production rule systems

Production rule systems (Anderson, 1983; Klahr, Langley, & Neches, 1986; Laird,
Rosenbloom, & Newell, 1986; Newell, 1990) are composed of a collection of condition-
action rulesC→ A, whereC is usually a conjunction (over some relevant predicates), and
A is used to denote an action. Actions in PRS denote either a real actuator of the agent,
or a predicate which is “made true” if the rule is fired. PRS are simply a way to describe
programs with a special kind of control mechanism. An important part of this mechanism
is played by theworking memoryandgoal structures.5 The working memory captures the
“current state” view of the system, and similarly the goal structures capture the current
goals, and may also be thought of as a part of the working memory. Initially, the input
is put into the working memory, and the PRS then works in iterations. In each iteration,
the conditionC of every rule is evaluated, to get a list of rules which “match” the current
state. Out of these rules, one is selected, by the “resolution mechanism”, and its actionA is
executed. That is, either the actuator is operated, or the predicate mentioned asA is added
to the working memory. The above cycle is repeated forever or until the goal is achieved.
Note that, while the production rules look similar to logical formulas, a production is not a
logical statement but rather a procedural description of the system.

Various resolution mechanisms have been discussed in the literature. Some choose the
rule according its its current “strength” which is dynamically updated (Anderson, 1983).
Others use other rules to resolve between competing rules (Newell, 1990; Rosenbloom,
Laird, & Newell, 1993) encoding some sort of priority between the rules or their instantia-
tions.

Notice that PRS can provide a substrate both for procedural representations, that are the
natural interpretation of the architecture, and for a symbolic declarative representation which
can be used as in planning. In fact, PRS have been mostly used as a symbolic representation,
and learning mechanisms similar to explanation based learning (DeJong & Mooney, 1986;
Mitchell, Keller, & Kedar-Cabelli, 1986) have been studied in this framework (Anderson,
1983; Newell, 1990).

A similar view on knowledge representation and dynamics of reasoning evolves from
Valiant’s (1994) study of neural circuits. There, a procedural description of one item in
terms of others is enforced by the structure of the system. Furthermore, computational
considerations suggest the use of working memory, called an imagery device, which works
together with the neural circuit in a manner similar to that of productions. This view was
further expanded into a framework for studying cognitive systems (Valiant, 1995, 1996).
An integral part of this view, however, is that most rules are inductively acquired, rather
than hand-crafted or compiled as in PRS. The claim is that this fact is a crucial one, and is
the reason for the competence of the set of rules.

4.2. Restricted PRS

We next motivate some of the restrictions that are taken in our representation. First recall
the operation cycle of PRS. In every iteration all rules are compared to the current situation,
and out of the rules that match the situation one is chosen to be executed. This choice

LEARNING TO TAKE ACTIONS 67

is made by a resolution mechanism, and several possibilities for such mechanisms have
been studied. For our action strategies, we use a simple priority encoding as a resolution
mechanism. Namely, the rules can be ordered in apriority list and the first rule on this list
that matches the current state is the one chosen. Priorities have been previously used for
resolution (Newell & Simon, 1972), and they also resemble the end product of the situation
in Soar (Newell, 1990) where chunking adds control rules for selection between competing
rules, and therefore some priority between rules is enforced.

Notice that enforcing priority between rules is still not sufficient for an exact semantics.
Suppose we have an ordered list of rules with object variables; if the first rule applies we
do not need to test the other rules. The question is what to choose if more than one binding
for the same rule applies. There are several possibilities here; we will assume thatthe
lexicographic ordering is used to resolve between bindings. Namely, the lexicographically
first binding that matches the condition is the one to choose the action.

Secondly, we must ensure that once we have a PRS, it can compute its output efficiently.
PRS have mainly been used in structural domains. In this case, literals are predicates with
free variables (e.g.,move(x, y)). When the condition is specified using such predicates,
and the “current state” includes a list of objects and some relations that hold between them,
a new computational problem arises. Namely, one has tobind the object variables in the
condition to the actual objects in the current state. This problem is computationally hard in
general and typically either the number of objects or the number of variables is restricted
(Haussler, 1989). In order to avoid this problem werestrict the number of variables that
appear in the condition to be bounded by some fixed constantα. In this case one can test
all possible bindings forn objects in timeO(nα). While each rule is restricted in this way,
the fact that rules are used in a priority ordering makes for conditions that are effectively
more complex (since the condition of a rule in the PRS is effectively conjoined with the
negation of the conditions of previous rules in the priority list).

The third issue that has to be discussed is the use of working memory. Notice that when
using PRS, allowing for extra internal “working memory” variables can reduce the size of
the strategy considerably. For example, consider a propositional domain with propositions
x1, . . . , xn, and consider the strategy expressed by(x1∨ x2∨ x3)∧ (x5∨ x6∨ x7)→ o1. If
we are not allowed to use intermediate variables, then we must multiply out the expression
to get in the general case an exponential number of condition-action rules. On the other
hand, using the internal predicatesx4, x8 such that the rulesx1 → x4, x2 → x4, x3→ x4,

x5 → x8, x6 → x8, x7 → x8 hold, we can use the PRS:x1 → x4; x2 → x4; x3 → x4;
x5 → x8; x6 → x8; x7 → x8; x4x8 → o1, which has linear size. As we demonstrate
below, in structural domains the effect of internal predicates is even stronger, allowing for
strategies which would otherwise not be expressible in the language.

Furthermore, notice that working memory is internal to the strategy and will therefore
be hidden from a learner observing the actions of the strategy. As a result the larger the
internal memory the harder learning will be. We thereforerestrict the amount and type of
internal working memoryof the strategies considered. Similar restrictions are motivated on
cognitive grounds in VanLehn’s (1987) “show-work” mode of learning. We will use two
types of internal memory. One type includes recursive predicates which we callsupport
predicates. The other type includes propositional variables which constitute a small state
machine. We call these internalstate variables.

68 R. KHARDON

4.3. A PRS for blocks world

In order to illustrate the style of PRS considered, we present a PRS strategy for the Blocks
World. In this problem, there is a set of cubic blocksa, b, c, . . . ,placed on a table. The table
can fit all the blocks, which are all of the same size and can fit exactly one on top of another
to form stacks of blocks. The task involves moving the blocks from an arbitrary initial
configuration into a goal state which satisfies some arbitrary (though legal) conditions.

A situation is described by listing the names of blocks, and the relations that hold for
them. The input relations we consider are:clear(x) which denotes that nothing is placed
above blockx, andon(x, y) which denotes that blockx is on blocky. We assume that
the goal situation is described in a similar manner using the modalityG(). For example
G(on(a, b))∧G(on(b, c)) could be our goal. The only action available ismove(x, y)which
moves objectx to be ony given that both wereclearbeforehand.

The problem of finding the shortest solution for blocks world instances has been shown
to be NP-complete by Gupta and Nau (1991). However, they have also shown that there is a
simple algorithm that produces at most twice the number of steps that is needed. Essentially
the idea is that if a block is above another block, which is part of the goal but is not yet in
its goal place, then it has to be moved. If we move such blocks to the table, and otherwise
make constructive moves towards the goal, then we will make at most twice the number of
steps that are needed. This heuristic has been recently shown to be very close to optimal
(Slaney & Thiebaux, 1996). We present a PRS which implements this algorithm (which
assumes for simplicity that the target stacks of blocks start on the table).

Our production rule systems have three parts. The first part computes thesupport predi-
catesof the system. The second part consists of a priority list of condition action rules
which we will refer to as themain part of the PRS. The third part includes rules for updating
the internal state. The control structure of the PRS, described in Table 1, is accordingly
composed of three steps. The PRS for the blocks world is described in Table 2. We explain
the representation and computation using this example.

• First, the support predicates are computed by repeated forward application of the appro-
priate condition action rules, until no more changes occur. The PRS for blocks world
computes the predicatesinplace(y), andabove(x, y). These have the intuitive meaning;
namelyinplace(x) if x is already in its goal situation, andabove(x, y) if x is in the stack
of blocks which is abovey. The restrictions described later guarantee that the support
predicates are monotone in the new predicates. Hence each rule application may add (but

Table 1. The control structure for PRS.

Repeat:

Compute the support predicates for the current input.
Choose an action using the main part of the PRS.
Update the internal state.

Until the goal is achieved.

LEARNING TO TAKE ACTIONS 69

Table 2. A PRS for blocks world.

The support predicates

1. inplace(Table)
2. on(x, y) ∧ G(on(x, y)) ∧ inplace(y)→ inplace(x)
3. on(x, y)→ above(x, y)
4. on(x, y) ∧ above(y, z)→ above(x, z)

The main part of the PRS

1. clear(x) ∧ clear(y) ∧ G(on(x, y)) ∧ inplace(y)→ move(x, y)
2. inplace(y) ∧ G(on(x, y)) ∧ on(x, y) ∧ above(z, x) ∧ clear(z) ∧ sad→ move(z,Table)
3. inplace(y) ∧ G(on(x, y)) ∧ on(x, y) ∧ above(z, y) ∧ clear(z)→ move(z, T)
4. inplace(y) ∧ G(on(x, y)) ∧ on(x, y) ∧ above(z, x) ∧ clear(z)→ move(z, T)

Internal state

1. inplace(y) ∧ G(on(x, y)) ∧ on(x, y) ∧ above(z, x) ∧ clear(z)⊕ sad→ sad

not remove) elements from the extension of such a predicate, and “bottom up” forward
chaining is sufficient.
• Then, the main part of the PRS chooses the action. The main part of the PRS is considered

as a priority list. Namely, the first rule that matches the situation is the one that chooses
the action. It is assumed that if the condition holds for more than one binding of the
rule to the situation, then the lexicographic ordering is used to choose between them. For
the blocks world the main part of the list contains four rules, and they are used to choose
which block is moved, implementing the algorithm described above.
• Finally, the internal state is updated after choosing the action. The form of the transition

rules is defined syntactically, and we use⊕ to describe the XOR operation. For example
we can have the ruleon(x, y)on(y, z)⊕ s1→ s1, which indicates that the value ofs1 is
flipped if there is a stack of three blocks in the current state. In our example the internal
statesad is used but is not needed in order to solve the problem.6 However, it may be
useful if a special situation is to be identified.

Notice that recursive predicates enhance the computing power of PRS considerably.
Namely, it is not simply enhancing the length of the rules by compressing the value of
a k-conjunction into a single literal. Rather, this gives the PRS certain computing power
which it did not have otherwise. For example the predicateabovecannot be described by a
simple PRS. Evaluating this predicate may require an arbitrary number of steps, depending
on the height of the stack of blocks.

4.4. Definitions

While the PRS we consider have all the properties described above, we restrict these re-
presentations syntactically. Letk, c,a be fixed constants. In the following we will assume
that all predicates and action names are of arity at mosta. We usek to bound the number

70 R. KHARDON

of predicates in a condition, andc to bound the number of internal states. We refer to the
predicates that appear in the interface asbase predicates. In addition to the base predicates,
and the set of actionsO, the language includes a goal modalityG that can take any base
predicate as its argument. A PRS strategy is composed of three parts.

• Let P be a set of predicates. The main part of the PRS is a list of rules. Each rule is
of the formC→ A where A ∈ O, andC is a conjunction of up tok predicates each
of which is inP. The parameters of predicates inC and A are instantiated with vari-
ables. Each predicatep in C may be either positive or negated. If the predicate is a base
predicate, it may be combined with a goal modality in one of the following six forms:
{p, p̄,G(p),G(p̄),G(p),G(p̄)}. The rules are implicitly taken to be existentially quan-
tified.

The setP includes the basic set of predicates; when support predicates, or internal
states are allowed it also includes these.

The semantics for the main part of the PRS is as explained above: in every situation the
first rule on the list for which the conditionC holds determines the action. If more than
one binding matches, the lexicographically first binding that matches is the one chosen.
• The support predicates include two sets of predicates. The first set defines non-recursive

predicates. Each non-recursive predicate is defined using a single rule of the formC→ A
whereC is ak-conjunction of base predicates, andA is a unique predicate name (a posi-
tive literal) that does not appear in the base predicates, or on the right hand side of any
other rule in the system.

The second set defines recursive predicates. Each recursive predicate is defined using
two rules each of the formC→ A. The right hand side in both rules is identical, and
includes a unique predicate name (a positive literal) that does not appear in the base
predicates, or on the right hand side of any other rule in the system. The first rule is a
base-case rule with exactly the same structure as a non-recursive predicate. In the second
rule exactly one of the predicates inC is the same one as on the right hand side (but with
different variables attached to it). This predicate appears with positive polarity. All other
predicates inC in both rules are base predicates.

In the example for the blocks world, rule number 3 (in the support predicates part) is
the base-case rule of the predicateabove, and rule number 4 is the recursive rule. Since
the rules are monotone in the recursive predicate, repeated application of the rules results
in a unique extension for the support predicates. This is the semantics attached to these
predicates.
• The internal state includesc variables each associated with a single rule of the form

C1 ∧ C2 ⊕ si → si , whereC1 is a conjunction over{s1, . . . , sc, s̄1, . . . , s̄c}, andC2

is a k-conjunction over the base predicates and invented predicates (polarity and goal
modality are restricted as above).

The semantics here postulates that all variables are initialized to 0 in the beginning of
a run, and thatsi will change its state wherever the conditionC1∧C2 matches for at least
one binding.

Several subsets of PRS that are discussed in the next section are defined below. Hierar-
chical strategies will be defined in Section 6.

LEARNING TO TAKE ACTIONS 71

• The class ofk-PPRS (for priority PRS) is defined such that the base predicates and actions
are propositional, and support predicates and internal state are not used.
• The class ofk-SD-PPRS (SD stands for structural domains) is defined such that the base

predicates and actions are relational (of arity at mosta), and support predicates and
internal state are not used.
• The class ofk-IP-SD-PPRS (IP stands for internal predicates) is defined such that the

base predicates and actions are relational (of arity at mosta). Support predicates are
allowed but internal state is not used.
• The class ofk-IS-IP-SD-PPRS (IS stands for internal state) is defined such that the base

predicates and actions are relational (of arity at mosta). Both support predicates and
internal state are allowed.

5. Learning PRS action strategies

In this section we show that PRS, as described above, are learnable. We start with simple
propositional strategies, and gradually increase the expressiveness of the strategies consid-
ered.

For simplicity, the definitions given above assumed that all literals have their values in
{0, 1}. As described by Valiant (1995) expressions over{0, 1, ∗} can be built by considering
a basic literal for each possible set of values. Namely, instead of having two literalsxi , x̄i

we have seven possible literals(xi = 0), (xi = 1), (xi = ∗), (xi ∈ {0, ∗}), (xi ∈ {0, 1}),
(xi ∈ {∗, 1}), (xi ∈ {0, 1, ∗}). These literals can then be combined by logical operators
in the usual manner. The analysis of learning is presented for the{0, 1} case but easily
generalizes to the general case of{0, 1, ∗}.

5.1. Learning propositional PRS

Recall that by Theorem 3.1 it is sufficient to find a strategy consistent with the example
runs in order to learn to act. Sincek-PPRS are stationary we can partition each run into
situation-action pairs and find ak-PPRS consistent with the collection of these pairs.

The class ofk-PPRS strategies is essentially Rivest’s (1987)k-decision list generalized
from a binary valued concept to a multi-valued concept. Rivest showed that a greedy
algorithm succeeds in finding a consistentk-decision list. The same argument (given in the
next two lemmas) holds in the multi-valued case. We include it here so as to facilitate the
discussion that follows.

Lemma 5.1. The number of k-PPRS action strategies is bounded by M= [n(n
k)6

k]! .

Proof: There are(n
k) subsets of variables and each variable can appear in one of six forms

including the goal modality to form a conjunction. Each conjunction can be combined with
up ton different actions. Everyk-PPRS corresponds to an ordering of the set of all possible
rules (where the rules which are never used, since all possible values are matched before,
can be omitted). 2

72 R. KHARDON

Lemma 5.2. There is a polynomial time algorithm that finds a consistent k-PPRS strategy
for any set of runs taken from R(D, t), where t is a k-PPRS.

Proof: Note thatt is a consistent action strategy, and as argued above it is sufficient to
consider situation-action pairs. Suppose we found a rule which explains some subset of the
situation-action pairs. Namely, it recommends the correct actions for this subset but does
not recommend a wrong action for other pairs. Then, if we addt after this rule we get a
consistent strategy. Therefore, explaining some examples never hurts. Furthermore, there
is always a consistent rule which explains at least one example, since by the construction,
at least one of the rules int does. This implies that a greedy algorithm, arbitrarily adding
one consistent rule at a time, succeeds. 2

Therefore by Theorem 3.1 we get:

Corollary 5.3. There is alearn to actalgorithm with respect to the class of k-PPRS action
strategies.

5.2. Learning PRS in structural domains

We now show that PRS for structural domains, with support predicates, and with internal
state are also learnable. To simplify notation, we assume thatn bounds the number of objects
seen in the examples (in addition to the number of predicates, and the number of action
names).

We start by consideringk-SD-PPRS. A similar result was obtained by Valiant (1985)
where the learnability of relational DNF expressions is shown.

Lemma 5.4. The number of k-SD-PPRS action strategies is bounded by M= m0!,where
m0 = n(n+ 1)k6k(a(k+ 1))a(k+1).

Proof: The quantitym0 counts the number of rules that can be constructed. There aren
possible actions, andk predicates to choose for the condition each having(n+ 1) possible
predicate names (including the no predicate option) and one of 6 forms (including the goal
modality). The rest bounds the number of ways we can choose names for the variables (at
mosta(k+ 1) names are needed including the variables in the action). To form a PRS we
order the set of all rules (the ones in the end do not get used but we do not care).2

We have already discussed our assumption on the existence of a teacher. One important
aspect of our strategies is that they do not include object constants. Therefore the class
of strategies implicitly induces the assumption that all objects are the same unless the set
of predicates indicates otherwise. This forces the use of general rules, and reduces the
complexity of the algorithms (since they do not have to consider constants in the con-
struction of rules). In fact if the number of object variables is smaller than the number of
objects in the examples, the size of the class of strategies is smaller than the size of the
corresponding propositional class of strategies where one fixes the number of objects and

LEARNING TO TAKE ACTIONS 73

instantiates all predicates over these objects. Thus while the structure of strategies is more
complex, the sample complexity of the relational learning problem can be smaller than in
the corresponding propositional case.

Lemma 5.5. There is a polynomial time algorithm that finds a consistent k-SD-PPRS
strategy for any set of runs taken from R(D, t), where t is a k-SD-PPRS.

Proof: As before, since the strategies are stationary it is sufficient to consider situation-
action pairs, which we refer to as examples. Also, the same high level argument holds:
explaining a subset of the examples does not hurt since, ast is consistent, there is at least one
consistent rule. It remains to show that given a set of examples we can identify a consistent
rule.

Fix a ruleC→ A, and a set of examples. All the examples for which at least one binding
for C is satisfied must be explained by the rule. That is, if for some example, satisfying the
conditionC, no binding produces the right action, then we can reject this rule. If for some
example more than one binding agrees withC, then if the lexicographically first binding
that matches does not produce the right action then we can reject this rule. If the rule is not
rejected by any example then it is consistent. The claim follows since we can enumerate
the set of rules. 2

As before Theorem 3.1 implies:

Corollary 5.6. There is alearn to actalgorithm with respect to the class of k-SD-PPRS
action strategies.

5.2.1. Support predicates.Consider the PRS for the blocks world given in Section 4. So
far we have seen that one can learn the main part of the strategy, given that a convenient set
of predicates is given. In our example, the predicatesinplaceandaboveenabled the usage
of a simple PRS for the actions. We next consider the classk-IP-SD-PPRS and show that
there is a learning algorithm that can invent such predicates and use them during execution
time.

Lemma 5.7. The number of k-IP-SD-PPRS action strategies is bounded by M= m1!,
where m0 = n(n+ 1)k6k(a(k+ 1))a(k+1), and m1 = nm2k

0 6k(a(k+ 1))a(k+1).

Proof: The same structural restrictions for the PRS itself hold. The only difference is that
we have more predicates. The working memory itself does not increase this size, since the
predicates in this part are fixed. (In fact we can include all of them; removing the predicates
that are not used should only be done for efficiency.)

We next bound the number of predicates. The number of non-recursive predicates that
are allowed is bounded by the number ofk-conjunctions (combined with the variables for
the new predicate)≤ β1 = (n+ 1)k6k(a(k+ 1))a(k+1).

The number of recursive predicates is bounded by

β2 =
[
(n+ 1)k6k(a(k+ 1))a(k+1)

] · [(n+ 1)(k−1)6k−1(a(k+ 1))a(k+1)
]
,

74 R. KHARDON

and the total number of predicates including the original set and the two new sets is bounded
by β1+ β2+ n < m2

0. 2

Lemma 5.8. There is a polynomial time algorithm that finds a consistent k-IP-SD-PPRS
strategy for any set of runs taken from R(D, t), where t is a k-IP-SD-PPRS.

Proof: Notice that the strategies considered are still stationary. We use the greedy algo-
rithm as before altering its input by a preprocessing step. In this step, for eachxi we compute
the values ofall possible invented predicates that agree with the syntactic restriction. This
computation is clearly possible for the non-recursive predicates. For the recursive predi-
cates, one can use an iterative procedure to compute these values. First apply the base
case on all possible bindings. Then in each iteration apply the recursive rule until no more
changes occur. This is correct since the recursive rule is monotone in the new predicate.
Namely, addition of new positive instances of the predicate cannot negate previously found
positive instances.

After this preprocessing step we run the greedy algorithm for PRS using the extended set
of literals. We are guaranteed that a consistent PRS exists, and that the greedy algorithm
will find one. Once such a PRS has been found we simply include all the invented predicates
used in this PRS. 2

We therefore conclude:

Corollary 5.9. There is alearn to actalgorithm with respect to the class of k-IP-SD-PPRS
action strategies.

While performed for the purpose of acting, the above algorithm solves a simple problem
of predicate invention. The problem is simple since our syntactic restrictions bound the total
number of possible predicates by a polynomial, and learning is achieved by enumeration.
The learnability of these predicates is therefore not interesting in its own right but rather
as an add on to the learnability of strategies. What it shows is that one can tolerate a small
amount of hidden information. Apart from enhancing the expressiveness of strategies, this
scheme is useful if such invented predicates can help in transferring knowledge from one
learning scenario to the next.

Recursive predicates and predicate invention have been studied before in Explanation
Based Learning (EBL) and Inductive Logic Programming (ILP) (see Section 8). Muggleton
(1994) describes a technique where predicates are invented where they are useful for the
structure of a proof (for example by adding the predicateN such thatA→ N, B→ N, and
Nα→ D, when a bothAα→ D, and Bα→ D exist in the system). Zelle and Mooney
(1994) use predicate invention in the context of a covering method for ILP; if the initial
covering technique fails, they invent a new predicate so as to explain away the examples on
which the clause constructed so far predicts incorrectly. Shavlik (1990) describes an EBL
technique of learning recursive predicates that utilizes the tree structure of an explanation in
identifying recursive constructs. In contrast with Muggleton (1994) and Shavlik (1990) our
method is empirical and does not use an explanation or proof structure. It also differs from
the empirical method of Zelle and Mooney (1994) in the use of the syntactic restrictions.

LEARNING TO TAKE ACTIONS 75

While the scope of our predicates is more limited we are able to guarantee correctness and
efficiency.

5.2.2. Internal state. We further extend the class of strategies learned, allowing a strategy
to include a constant number of internal state variables. The learnability of state machines
has been studied under a variety of conditions, e.g., in (Angluin, 1987; Kaelbling, 1993).
As for the invented predicates our result uses a simple enumeration technique and shows
that a small amount of hidden information can be tolerated; it is of interest mainly as an add
on to the learnability of strategies. PRS with internal state machines may appear hard to
learn at the outset. An internal state machine can make the impression that the output of the
teacher is random, as in hidden variable problems discussed by Kearns and Schapire (1994).
However, since the number of states is small, we can get a learning result for this class.

Lemma 5.10. The number of k-IS-IP-SD-PPRS action strategies is bounded by M=
m2 ·m3!,where m0 = n(n+1)k6k(a(k+1))a(k+1),m2 = m2kc

0 6kc(a(k+1))ca(k+1)3c2
, and

m3 = n(m2
0+ c)k6k(a(k+ 1))a(k+1).

Proof: Again the same arguments apply. We only have to bound the number of state
machines, that can be defined in this way. For each state variable we have to choose a
conjunction of the state variables (3c possibilities) and, ak-conjunction over the input and
support predicates, which is bounded by(m2

0)
k6k(a(k + 1))a(k+1). So the number of state

machines that can be defined in this way is at mostm2 = m2kc
0 6kc(a(k+ 1))ca(k+1)3c2

. The
number of predicates available to the main part of the PRS ism2

0 + c, and the bound is
derived as before. 2

Lemma 5.11. There is a polynomial time algorithm that finds a consistent k-IS-IP-SD-
PPRS strategy for any set of runs taken from R(D, t), where t is a k-IS-IP-SD-PPRS.

Proof: To find a consistent PRS we can enumerate the set of state machines, and for
each machine use the greedy algorithm to find a consistent strategy as before. While the
strategies considered are not stationary, they become stationary if the correct state variables
are added as part of the input. This allows the algorithm to find a consistent strategy even
though it considers only situation-action pairs. 2

We therefore get that the class is learnable. For reference, we describe a high level
description of the learning algorithm in Table 3.

Corollary 5.12. There is alearn to actalgorithm with respect to the class of k-IS-IP-SD-
PPRS action strategies.

6. Hierarchical strategies

The expressiveness of the strategies considered so far, and in particular the invented predi-
cates and internal state is somewhat restricted. Some of the limitations on the expressiveness
of strategies can be overcome using a hierarchical structure.

76 R. KHARDON

Table 3. The algorithmlearn-PRS.

Initialize the strategy to the empty list.

Do for each possible state machine allowed by the restrictions.

Compute all possible support predicates for each example.
Separate the example runs into a setSof situation-action pairs.
Repeat

Find a consistent ruleR= C→ A.
Remove fromS the examples for whichR is used.
Add R at the end of the strategy.

Until S= ∅ or there are no consistent rules.
If S= ∅ then output the strategy collected so far and stop.
Otherwise, initialize the strategy to the empty list,

and go to the next iteration.

Consider a scenario in which the learner has acquired some subroutines, sayS1, . . . , Sl ,
and is trying to learn a new strategy which uses the subroutines as primitive actions. We
consider two possible control structures for such strategies. The first can be thought of
as “interruptible hierarchical strategies”: in each time step the conditions are tested top-
down and if a subroutine is used it is given control for a single time step (just like a basic
operation). The subroutine will be used in the next time step only if all the conditions of
higher priority did not match, and its own invocation condition still matches. This is exactly
the control structure used by the “teleo-reactive” programs (Nilsson, 1994). In this model,
the execution of a subroutine is verified one step at a time, and thereforefor stationary
strategieslearning can be done using the greedy algorithm as before. Namely, for each rule
it is possible to decide whether the rule is consistent with the examples. If a subroutine is
used, one just needs to check which action is taken by the subroutine on the current input.
Notice, though, that this only works if the number of basic rules the learning algorithm
has to consider is still polynomial. Namely, we must restrict the number of possible new
actions as exhibited by the subroutines. As defined so far, a PRS may be associated with an
exponential number of goals, since any conjunction of predicates is in principle allowed as
a goal. Therefore, there are too many possibilities for calling a subroutine, or in other words
too many new actions. There are several possibilities for such restrictions; in particular we
could concentrate on “short goals”. Fix such a restriction and denote this class of hierarchical
strategies with no internal state byk-RIH-IP-SD-PPRS and the class with internal state by
k-RIH-IS-IP-SD-PPRS (RIH stands for restricted interruptible hierarchical). We therefore
get:

Corollary 6.1. There is alearn to actalgorithm with respect to the class of k-RIH-IP-SD-
PPRS action strategies.

Internal state can also be handled if more information is supplied in the examples. A
helpful teacher will supply examples of the complex strategy, and will annotate each action
with the main strategy or the name of the subroutine that is responsible for it. It is clear that
with such annotated examples we can learn action strategies with the same algorithm as

LEARNING TO TAKE ACTIONS 77

before. To do that, simply rewrite the examples by taking out sub-sequences which belong
to subroutines and replacing a sub-sequence with the corresponding new action nameSi .

Corollary 6.2. There is alearn to actalgorithm with respect to the class of k-RIH-IS-IP-
SD-PPRS action strategies, when given access to a source of annotated random examples.

In the second control structure, once a subroutine is invoked it is responsible for choosing
the actions until its goal has been achieved. After that, control is returned to the main strategy.
Thus, subroutines are used just as in standard programming languages. We therefore get
some sequential structure to the runs of the strategy, since the choice of actions depends on
the current subroutine being run. Denote this class of strategies byk-RH-IS-IP-SD-PPRS
(RH stands for restricted hierarchical). It is easy to see that annotation is sufficient to
guarantee learnability of this class as well.

Corollary 6.3. There is alearn to actalgorithm with respect to the class of k-RH-IS-IP-
SD-PPRS action strategies, when given access to a source of annotated random examples.

Unfortunately, as we show below, without annotation the task is computationally hard,
even for propositional PRS withk = 1, two actions, (and no hidden literals or internal state),
and even when only one subroutine is used. Intuitively, the greedy algorithm fails since the
rules in the main part of the strategy do not seem consistent due to the sequential running
mode of the subroutine. In some sense one has to resort to finding a good annotation of the
examples which is hard.

Recall that byk-PPRS we denote the class of propositional PRS as discussed in Section 5.1.
In the following discussion we assume that there are only two actions denoted byA andB.
We define the problem H-PRS as follows:

H-PRS: Hierarchical PRS Consistency

Input: a subroutineS in 1-PPRS form, and a setE of example runs.
Output: Yes iff there is an action strategy in 1-PPRS form which may useSas a subroutine,
and which is consistent with all the examples inE.

Example: A possible input for H-PRS is the subroutinex1→ A; x2→ B;True → A, with
goalx4 = 1, and where the priority is from left to right, and the two example runs:R1 =
01000, A, 01100, B, 10100, A, 11011, andR2 = 10100, B, 11100, A, 11010, A, 10011.
The goal of the PRS being learned is to achievex5 = 1 which is indeed satisfied in the last
state of the example runs. As discussed above given the right annotation for the examples it is
easy to determine whether there is a consistent strategy. For example, using the information
that for R1 the second and third actions are taken byS, and for R2 the second action is
taken byS, it is easy to see that the 1-PPRSx̄3→ A; x2→ S; x1→ B is consistent with
the example runs. However, as the following theorem shows, without this information the
problem is hard.

Theorem 6.4. The problem H-PRS is NP-complete.

78 R. KHARDON

A “representation dependent” hardness of learning follows from standard arguments (Pitt
& Valiant, 1988; Haussler, 1989). The proof of the theorem appears in the Appendix.

7. Practical considerations

The running time of our learning algorithm is exponential in the number of free variables
and the width of the conditions in rules. We have assumed that these are bounded by small
constants so as to obtain polynomial bounds. The question arises therefore whether these
assumptions are not too restrictive. That is, whether the algorithm can be applied in practice
and whether the approach is feasible for problems of interest.

The above bounds ignored various optimizations that may be performed, though possibly
hindering simple analysis. Such techniques are obviously needed in a practical setting. An
experimental evaluation of the applicability of these results has been recently performed
(Khardon, 1997) and various such techniques implemented. The system L2ACT essentially
implements the algorithm for learning relational strategies (without support predicate and
internal state) as in Corollary 5.6. This algorithm is applied to small planning domains that
have been studied before, including a four-operator version of the blocks world, and the
logistics domain (Veloso, 1992). The experiments demonstrate that our results are indeed
applicable, that rule-based strategies are useful for such domains, and that the algorithm
is even robust to some extent to “noise” in the examples, namely to cases where there
is no strategy that is exactly consistent with the examples. Furthermore, the relational
representation enables the use of the learned strategies on instances where the number
of objects is much larger than the number of objects in the training examples. While an
extensive discussion is beyond the scope of this paper, we briefly discuss some of the issues
and illustrate the results. More information regarding the statistical setup and parameters in
the experiments, as well as other practical issues are described elsewhere (Khardon, 1997).

The system uses several techniques for efficient enumeration of rules and bindings. One
of those utilizes the fact that the running time of the system strongly depends on the time
to check whether an example matches a rule. This can be reduced considerably by sharing
information between matchings of different rules. Another technique controls complexity
by considering only rules that cover a non-negligible part of the examples. This pruning
method can be performed using ideas developed recently for data mining of association
rules (Agrawal, Imielinski, & Swami, 1993) where conjunctive conditions are enumerated.
A significant improvement can be gained in domains where object types are important, as
in the logistics domain. In such cases the type information can be automatically gleaned
from the examples and reduce both the number of rules enumerated and the time spent on
solving the binding problem (since combinations that are ruled out by the type information
can be avoided). Finally, our results showed that the agent does not need to have models
of the actions (i.e., what happens when an action is taken and some conditions hold). For
planning problems, however, this information is readily available and can be incorporated
into the algorithm. In particular, by incorporating the preconditions of an action into the
condition of every rule that uses this action, we effectively reduce the size of the conditions
that have to be searched for. Thus, while in principle one can do without action models
they can reduce the complexity considerably.

LEARNING TO TAKE ACTIONS 79

Figure 2. Learning in the blocks world domain.

Figure 2 illustrates the performance of the system on the four operator version of the
blocks world. This domain captures the same problem discussed earlier in the paper, but
involves more predicates and operations and hence makes for a more demanding learning
problem. Examples in this experiment were generated by running a planner to solve random
problems each with 8 blocks; hence, no consistent strategy exists and the examples are
“noisy” as discussed above. The learned strategies were then evaluated on problems of
several sizes. A strategy is deemed to have succeeded only when it finds a complete solution
to the problem (i.e., no partial credit was given). TheX-axis in figure 2 measures the
cumulative run length of examples seen7 and theY-axis describes the success rate. As can
be observed the learning algorithm indeed converges and about 80% of problems of the
same size and 60% of large problems (with 20 blocks) were solved by the strategies learned.
The latter problems are beyond the size that can be solved by the planner that produces the
examples. In addition other measurements demonstrated that the solutions produced by the
learned strategies were better than known heuristics for the problem in terms of the length
of the solutions.

For the logistics domain, examples produced by a planner were too “noisy” for our
learning algorithm. Examples generated by a hand coded strategy (for which again there
was no consistent strategy) produced learning performance similar to the blocks world
domain.

The experiments were run with large numbers of examples and the results indeed demon-
strate that our approach is feasible and may be used in small planning domains of interest.

80 R. KHARDON

The tradeoff between expressiveness and running time is still an important issue and more
efficient algorithms if found will certainly be of use.

8. Related work

This work draws on several previous lines of research on learning, planning, and rule-based
systems of which only some were mentioned above. We next discuss our model in light of
related work emphasizing some differences and thus perhaps clarifying when it might be
useful.

8.1. Computational learning theory

From a learning theory perspective (Valiant, 1984; Kearns & Vazirani, 1994) our work
extends the scope of problems studied into the domain of goal directed agents, acting in
structural non-stationary domains. An important aspect of the current paper is the adoption
of a “PAC-semantics” for the problem of acting. In Valiant’s (1984) model it is assumed
that the world may be very complex and hard to describe, whereas the agent tries to find
simple classification rules that will help it cope with this world. The world is thus mod-
eled as a stationary probability distribution over the input domain that may be arbitrarily
complex. The agent sees examples of a particular concept drawn from this distribution and
tries to find a classification rule that is good relative to the distribution, without knowing
what the distribution actually is. In this way probably-approximately-correctness (PAC)
is guaranteed regardless of the complexity of the world, and with no attempt to model it.
We refer to this notion of correctness as PAC-semantics. Our formulation follows the same
line defining the PAC-semantics relative to a non-stationary world, and the “contemporary
state of procedural knowledge” as supplied by the teacher. We show that results on Occam
algorithms still hold in this extended framework, and generalize Rivest’s (1987) arguments
for structural domains. On the other hand, new questions arise as for validity of other ap-
proaches to learning, and possible benefits or disadvantages that may exist in the extended
framework.

8.2. Planning

Planning and acting have been mainly studied in AI with a logical perspective, where
knowledge about the world is encoded in declarative form. In order to achieve goals, one
proves that they are true in some world state, and as a side effect derives a plan for these goals
(McCarthy, 1958). Similarly, in partial order planning declarative information is given, and
search in plan space is performed to find a plan (Weld, 1994). However, the problems
involved in these approaches are computationally hard (Cook, 1971; Bylander, 1994).
Recently, the approach has been generalized to handle stochastic domains, but as this is a
generalization of the planning problem similar computational difficulties arise. Since the
planning problem is computationally hard we cannot hope to find a new efficient solution to
the problem. The main line of research in planning tries to remedy this situation by finding

LEARNING TO TAKE ACTIONS 81

algorithms which are efficient for real-world planning problems.8 Instead, our approach is
to reformulate the problem so that the competence required of an agent is defined relative
to its learning interface (its teacher). The new formulation will naturally not fit all possible
aspects of planning and in particular it is not intended as a generic optimization procedure.
It offers, however, a complementary view on the problems which can thus lead to different
kinds of solutions.

8.3. Universal plans

Our approach is also reminiscent of Schoppers’ (1987) universal plans, as well as some
other works on “reactive agents” (Georgeff & Lansky, 1987; Brooks, 1991; Maes, 1991;
Nilsson, 1994). A universal plan describes an algorithm for a particular domain so that the
action in each situation is in some sense pre-compiled and can be taken instantly. Our action
strategies are similar in that respect; they provide an efficient way to choose an action in
every situation, notably, without using a world model or performing any search. Our work
elaborates on that idea in two respects. First, we suggest that the strategies be learned.
(Schoppers’ original scheme tried to compile the universal plan in a manner not far from
that of traditional planners.) Second, the semantics of “universality” of strategies is not the
same. While universal plans should solve all instances, our strategies are only required to
solve a fraction of them, similar to what the teacher can achieve. This is important since
various negative results regarding strategies that solve all instances have been obtained
(Selman, 1994; Jonsson & B¨ackström, 1996). In fact, it was suggested (Schoppers, 1989)
that it may be sufficient for universal plans to solve only a subset of problem instances.
Our formulation indicates how this might be done using PAC-semantics to choose which
subset of instances to consider, and how to acquire such a strategy. As mentioned above our
results hold for Nilsson’s (1994) teleo-reactive programs, supplying one form of learnable
universal plans under the PAC-semantics.

8.4. Reinforcement learning

The problem of learning and acting in stochastic worlds is studied in reinforcement learning
(RL) (Kaelbling, Littman, & Moore, 1996). In fact our world model as a dynamic stochas-
tic partially observable state machine is borrowed from the RL paradigm. However, our
formalization differs in important aspects. Most importantly, the learning model in RL is
unsupervised, that is, no teacher or examples are given; the agent receives information by
acting in the world and receiving some reinforcement from the world as a result of its actions.
Another difference is that normally the learner is intended to find an optimal strategy for
acting in the world. Our formalization makes the task easier in both these aspects. Several
interesting theoretical and empirical results have been obtained for RL (Sutton, 1988, 1990;
Watkins & Dayan, 1992; Kaelbling, 1993; Fiechter, 1994; Tesauro, 1995). In particular, the
success of Tesauro’s (1992, 1995) backgammon playing program is remarkable. However,
the unsupervised learning problem being solved in RL is very general, and the formulation
does not admit efficient solutions.9 Theoretically derived solutions typically enumerate the

82 R. KHARDON

state space. Our work provides an alternative formulation of the problem that allows for
provably correct and efficient solutions. This is obtained by using examples for behavior
and by relaxing the requirement for optimality. As discussed above the reformulation is
not intended to solve the original RL problem. Instead, supervised learning being easier
than unsupervised learning, the model and results would be useful whenever our conditions
hold. In particular it may be useful for structural domains whose state space is large and
where the number of objects is not fixed in advance.

8.5. Rule-based systems

Our model can be seen to suggest an engineering principle where all agents use a single
language for representing their strategies, and the language is chosen so as to ensure learn-
ability. In this way, when facing a new problem an agent can use any unsupervised or search
method at its disposal, but once a strategy is acquired by one agent it can be transferred to
other agents by way of demonstration through examples and learning from these examples.
Rule-based systems are particularly interesting on this account since several algorithms
for using and learning such systems have already been studied. In particular, algorithms
for classifier systems (Booker, Goldberg, & Holland, 1989) applied to problem of acting
in a dynamic world (Grefenstette, Ramsey, & Schultz, 1990; Baum, 1996) are rule-based
and can therefore be used in combination with our algorithm in this manner. Recently,
Lin (1993) demonstrated that ideas of supervised learning can be useful in RL tasks, by
incorporating examples and using a hierarchical decomposition of tasks, in combination
with a temporal difference algorithm. Our work can be seen as a partial formalization of
this effort, quantifying the utility of supervision; a combination of the two approaches can
again be done via the rule-based systems of (Grefenstette, Ramsey, & Schultz, 1990; Baum,
1996). Another nice property of rule-based systems is that it allows for a combination of
reactive condition-action rules, and declarative knowledge that can be used for search, un-
der the same framework. Our representation indeed incorporates both reactive rules and
declarative rules but does not use search.

8.6. Speedup learning

Our work is also closely related to work in Explanation Based Learning (EBL) and speedup
learning (Rosenbloom & Laird, 1986; DeJong & Mooney, 1986; Mitchell, Keller, & Kedar-
Cabelli, 1986; Minton, 1990; Veloso et al., 1995). Generally speaking this line of work tries
to compile declarative knowledge into a more procedural form via some form of learning.
In EBL, solved problems are “explained”, namely, the declarative knowledge is used to
find minimal conditions so that the solutions are still valid; these generalized explanations
are then used in the system as guidance when solving new problems. The explanations are
used either as control knowledge or just added as new rules into the knowledge base. In
some of this work (DeJong & Mooney, 1986) solved problems are supplied by a teacher as
in our case, but others use a general search engine to find such solutions. Our approach is
similar in the effort to use learning for the purpose of finding efficient strategies for acting
(or solving problems). It differs however in the method of learning and more importantly

LEARNING TO TAKE ACTIONS 83

in the fact that the output of the learner is not used as part of a search engine. Instead,
the rule-based strategies that we show learnable can operate without search, in the spirit
of universal plans discussed above. In this line, our model is closest to several works
by Natarajan and Tadepalli (Natarajan, 1989; Natarajan & Tadepalli, 1988; Tadepalli,
1991, 1992; Tadepalli & Natarajan, 1996) who formalize learnability of action strategies in
deterministic domains, combining some aspects of speedup learning with the PAC learning
framework. Our formalization in fact generalizes the model presented by Tadepalli and
Natarajan (1996) to deal with stochastic domains. A related approach considering bias in
the context of EBL is discussed by DeJong and Bennett (1995).

8.7. Inductive logic programming

The rules used in our strategies incorporate first order conjunctive conditions. The learning
problem is therefore technically similar to that of Inductive Logic Programming (ILP)
(Muggleton, 1994; Muggleton & De Raedt, 1994). However, the models differ in details
that are crucial. One source of difference is the structure of examples. An example in the
standard form of ILP (Quinlan, 1990; Dzeroski, Muggleton, & Russell, 1992, Muggleton,
1994; Mooney & Califf, 1995) includes a single ground instance of a relation and the rest of
the information on this example is provided through the background knowledge. In contrast
an example in our model describes a complete situation and the ground action taken in that
situation, and is therefore more explicit. On the other hand, since the state information
changes from one step to the next, in some sense our examples have “changing background
knowledge” in ILP terms. The non-monotonic setting of ILP (De Raedt & Dzeroski, 1994;
Muggleton & De Raedt, 1994) uses interpretations as examples and is thus similar to our
form, but the task there is different. Our formalization comes closest to Cohen’s (1995) use of
extended instances as examples. Another difference results from the fact that clauses in ILP
are taken as generally applicable logical rules and therefore any instantiation of a rule must
be valid in the examples. On the other hand our rules are procedural and support a single
action in each situation, namely one of the instantiations is preferred to others. Despite
those differences, the structure of induced expressions is similar, and similar techniques can
be used in both models. Our learning approach is similar to the covering method in FOIL
(Quinlan, 1990), and the representation is similar to the first order decision lists studied by
Mooney and Califf (1995). Moreover, our arguments are similar to the ones in (De Raedt &
Dzeroski, 1994; Valiant, 1985) and can yield positive results on learning first order decision
lists in the ILP context. On the other hand, several sophisticated methods for learning have
been applied in ILP that may be useful in our framework.

9. Conclusions

We presented a new framework, calledlearning to act, for the study of supervised learning
of action strategies in dynamic stochastic domains. When learning to act, one does not use
a general problem solver in order to choose its actions. Instead, some interaction with a
teacher enables the agent to learn about the domain in question. Using the information thus
collected, the agent can efficiently solve future instances of the problem. Furthermore, the

84 R. KHARDON

performance is measured relative to the teacher so that the agent does not need to achieve
optimal performance. We have shown that in this model Occam algorithms, which find
strategies which are consistent with the examples, are good learning algorithms. We have
also shown that some rule-based strategies enjoy such learning algorithms, and derived
positive and negative results for the learnability of hierarchical strategies.

Our model reformulates the problem of acting in the world diverging both from the
planning and the reinforcement learning perspectives. In particular our assumptions on
the existence of examples and restricted classes of strategies made for tractable learning
problems. The important point is that the supervised learning approach can be used for
these complex problems and that analysis can be performed. More research is needed to
find better algorithms and analysis, other representations for strategies, and refinements of
the model. The questions of learnability of randomized strategies, and cases where there is
“noise” in the examples, can be pursued. Another issue is whether ideas from EBL or ILP
can be used to derive better results.

Another direction for further work is the use of different models of interaction with the
environment. An interesting model is suggested by Natarajan (1989) who studies learning
to act in deterministic domains. A notion of exercises is formulated where the learner does
not get solved problems as examples but instead it first has to tackle easy problems and the
difficulty is increased gradually. It seems that several experimental systems of learning to
act have used this idea implicitly. A formalization of this idea for stochastic domains may
be useful in studying the behavior of such systems.

Finally, the success of the system L2ACT (Khardon, 1997) and similarly of many AI
systems relies heavily on the selection of a small set of predicates for describing the domain
in question. In any large-scale system, however, one might have many predicates of which
only a small number may be relevant to a particular task. Therefore, the algorithms used
must be efficient even when many irrelevant predicates exist in the system. This issue
is discussed by Valiant (1996) who suggests that linear threshold elements be used to
represent prioritized rule-based systems and that in this way learning algorithms that can
tolerate irrelevant attributes can be used. Preliminary progress in this direction was made
(Khardon, 1997) by adapting Littlestone’s (1988) Winnow algorithm to deal with relational
rule-based action strategies.

Appendix

A. Proof of Theorem 6.4

First observe that the problem is in NP since we can guess a 1-PPRS and check whether it
is consistent withE. We reduce the satisfiability problem 3SAT (Garey & Johnson, 1979)
to H-PRS.

We are given a 3-CNF expression, withm clauses,f = c1∧ c2∧ · · · ∧ cm, onn variables
x1, . . . , xn, and translate it into a set ofm + 2n example runs, where we use 2n + 3
variables. The variables for the H-PRS problem would bey1, . . . , yn, z1, . . . , zn, and
q1,q2,q3. Intuitively, yi corresponds toxi , andzi corresponds tōxi . The variablesqi

serve for special functions;q1 is the goal of the strategy being learned,q2 is the goal of the
subroutineS, andq3 is an additional variable.

LEARNING TO TAKE ACTIONS 85

Table 4. The constructions used for the H-PRS reduction.

Examples runs used in the reduction:

• Type (1) includes 1yi ,zi , A, 1yi ,zi , A, 1q1, for i ≤ n.

• Type (2) includes 1ci , A, 1q3, A, 1q1, for i ≤ m.

• Type (3) includes 1yi , A, 1zi , B, 1q1,q2, for i ≤ n.

The Subroutine S (goal isq2): The Main PRS H1 (goal isq1):

• q3→ B • q3→ A

• z1→ B • α1→ A (α1 ∈ {y1, z1})
• z2→ B • α2→ A (α2 ∈ {y2, z2})
• . . . • . . .
• zn→ B • αn→ A (αn ∈ {yn, zn})
• True → A • True → S

The subroutineSwhose goal isq2 is described in Table 4, and consists of the following
1-PPRS:q3→ B; z1→ B; z2→ B; . . . ; zn→ B; True → A. Namely, ifq3 is 1, or anyzi

is 1, it outputsB and otherwise it outputsA.
We produce three types of example runs, for which we use the following notation (Pitt &

Valiant, 1988; Haussler, 1989): forα ⊆ {y1, . . . , yn, z1, . . . , zn,q1,q2,q3}, the assignment
1α is the assignment in which all the variables inα are assigned 1, and all other variables
are assigned 0. For example, ifn = 2 then 1y2,z1,q1 = (01 10 100). The runs are listed in
Table 4, and are all of length 2.

Runs of type (1) include the runs 1yi ,zi , A, 1yi ,zi , A, 1q1, for i ≤ n.
Runs of type (2) include the runs 1ci , A, 1q3, A, 1q1, for i ≤ m, where the literals inci

are translated to the correspondingyj , zj . For example, ifn = 2 andci = (x1 ∨ x̄2)

then 1ci = (10 01 000).
Runs of type (3) include the runs 1yi , A, 1zi , B, 1q1,q2, for i ≤ n.

We now show that there is a 1-PPRS consistent with this set of runs if and only if the CNF
expressionf is satisfiable. The main idea is that runs in types (1), and (3) force a consistent
strategy to choose exactly one ofyi → A, zi → A, to be on the list. Moreover, these are the
only rules on the list that can produce the actionA (except for usage ofS). Therefore, runs
of type (2), for whichS is not consistent, must be produced by these rules, and since runs in
type (2) encode the clauses off , the choice ofyi or zi for the rule constitutes a satisfying
assignment forf .

More formally, let v ∈ {0, 1}n be a satisfying assignment forf , and letαi = yi if
vi = 1, andαi = zi if vi = 0. Then, the main strategyH1 consisting of the listq3→ A;
α1→ A; α2→ A; . . . ;αn→ A;True → S is consistent with the runs. For reference the
main strategyH1 is described in Table 4. The strategy is consistent with runs of type (1)
since each run has bothyi , zi in each state, and one ofyi , zi appears in the list ofαi . For
runs of type (2), observe that since each clause is satisfied byv, the actionA on the first
step is chosen by the list ofαi , and that in the second step the actionA is chosen by the
first rule. For runs of type (3), there are two cases. Ifvi = 0, αi = zi and the first step is
consistent withS(which is the rule chosen by the strategy). The next step is also consistent

86 R. KHARDON

with S. If vi = 1,αi = yi and the first step is consistent with the ruleαi → A. The second
step is consistent withS (which is the rule chosen by the strategy).10

For the other direction, assume that there is a strategyH2 consistent with the example runs.
We would argue that the structure ofH2 is very similar toH1 and show the satisfiability off .

Notice thatq3 = 1 appears only in one place in the runs, and that every time it appears
the actionA is chosen. We may therefore assume that ifq3 appears in any rule then it is
of the formq3→ A. Also, observe that the value ofq1,q2 is fixed at 0 for all the runs on
which actions are chosen. Therefore without loss of generality we may assume that they
do not appear inH2. We therefore concentrate on rules that do not involveq1,q2,q3.

Consider the first such ruleα→O in H2. Observe thatO 6= B since otherwiseH2 is not
consistent with at least one of the runs of type (1). For the same reason we also getO 6= S,
and thereforeO = A. Furthermore, we claim thatαmust be a positive literal (eitheryi or zi

for somei). This is true since otherwise runs of type (3) with index different fromα would
not be consistent withH2. (That is ifα = ȳi then for j 6= i , the run 1yj , A, 1zj , B, 1q1,q2 is
not consistent withH2 in the second step.) Therefore, the first rule is of the formαi → A
whereαi ∈ {yi , zi }.

Consider the next ruleα→O in H2 (which does not haveqi). As before we argue that
O 6= B, andO 6= S, andα ∈ {yi , zi } for somei . However, we claim that ifyi appeared
in some ruleyi → A earlier on the list thenzi → A cannot be the current rule. This is true
since otherwise the second step of the i’th run of type (3) would not be consistent with
H2. Similarly, if zi appeared earlier on the list, then the current rule cannot beyi → A.
Therefore the next rule is of the formαi → A, and it uses a new indexi .

We can continue this argument to show thatH2 has a list ofn rules similar to the one
in H1; call this the first part ofH2. The next rules on the list cannot choose the actionA
(since otherwise as argued above runs of type (3) would not be consistent). Therefore they
choose eitherB or S. Notice that ifzi appeared in the first part ofH2 thenyi → B would
not be consistent with runs of type (3). So the possible rules are of the formzi → B where
yi appears in the first part ofH2, and any rule choosingS. (Notice that, as inH1, simply
appendingS is sufficient.)

We now claim that, sinceH2 is consistent with runs of type (2), the expressionf is
satisfiable. Runs of type (2) are of the form 1ci , A, 1q3, A, 1q1. Notice that actionA can
either be chosen using the first part ofH2 or usingS in the second part ofH2. However, for
runs of type (2) the first action must be chosen using the first part ofH2, since otherwise
the second step would be performed byS which choosesB on 1q3. Therefore each clause
must have a literal which is on the first part of the list. Hence, the list ofαi constitutes a
satisfying assignment forf .

We therefore get that there is a 1-PPRS consistent with this set of runs if and only if the
CNF expressionf is satisfiable, completing the proof.

Acknowledgments

I am grateful to Les Valiant for many discussions that helped in developing these ideas, and
to Prasad Tadepalli for helpful comments on an earlier draft. I wish to thank Jude Shavlik
and the referees of this paper for their comments that helped improve the presentation.

LEARNING TO TAKE ACTIONS 87

Notes

1. For ease of reference, we use the wordteacherin a loose sense to refer to the example provider. The model
is not intended to capture notions of teaching as such.

2. This is in contrast with previous work (Khardon & Roth, 1995) where a special semantics is given to partial
assignments.

3. In fact, since we do not assume anything about the Markov process, the results presented hold for any stochastic
process (where the random variable at timet depends on the entire history). It seems useful, however, to think
in terms of states and therefore we present the model in this way.

4. The merits of explicit symbolic reasoning on the one hand, and reactive operation on the other, have been
debated (Brooks, 1991; Hayes, Ford, & Agnew, 1994; Vera & Simon, 1993; Maes, 1991; Ginsberg, 1989;
Chapman, 1989; Schoppers, 1989). However, as recently argued (Vera & Simon, 1993; Hayes, Ford, &
Agnew, 1994), neither approach can succeed on its own; ultimately a system must have some reactive features
but must also retain forms of symbolic computation. Our work exemplifies this point.

5. Anderson (1983) includes a third component of declarative memory and the operation of the system is
intuitively similar, though it differs a lot in details. In outline we will follow the Soar system (Newell, 1990;
Rosenbloom, Laird, & Newell, 1993), though not in full detail.

6. The first rule makes constructive moves. The next rules clear the way in case a constructive move cannot be
taken. If the blocky is already in place and the blockx is to be placed on it, then the rules 2 and 4 clear the
tower abovex (notice that apart from the use ofsadthey are identical) while the rule 3 clears the tower above
y. Therefore to an external observer that does not know when the agent issadthe choice of which tower to
clear first might seem non-deterministic.

7. There were 315 runs (on average) for a cumulative run length of 4800 steps. The learning time for these
experiments was roughly 130 minutes on a SUN/20 workstation.

8. See for example the discussion by Kambhampati (1995).
9. This for example follows since RL is a generalization of classical propositional planning.

10. Notice that the hardness of the problem is encoded into the annotation of runs of type (3). The runs of
types (1) and (2) are always performed by the main strategy, and for type (3) there is a choice between using
the subroutine for both steps, and using the subroutine just for the second step. This choice encodes the
assignment for the variablexi .

References

Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases.
Proceedings of the ACM Conference on Management of Data (SIGMOD)(pp. 207–216). Washington, DC: ACM
Press.

Allen, J., Hendler, J., & Tate, A. (1990).Readings in planning. San Mateo, CA: Morgan Kaufmann.
Anderson, J. (1983).The architecture of cognition. Cambridge, MA: Harvard University Press.
Angluin, D. (1987). Learning regular sets from queries and counterexamples.Information and Computation, 75,

87–106.
Baum, E. (1996). Toward a model of mind as a laissez-faire economy of idiots.Proceedings of the International

Conference on Machine Learning(pp. 28–36). Bari, Italy: Morgan Kaufmann.
Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M.K. (1987). Occam’s razor.Information Processing

Letters, 24, 377–380.
Booker, L., Goldberg, D., & Holland, J. (1989). Classifier systems and genetic algorithms.Artificial Intelligence,

40, 235–282.
Brooks, R.A. (1991). Intelligence without representation.Artificial Intelligence, 47, 139–159.
Bylander, T. (1994). The computational complexity of propositional STRIPS planning.Artificial Intelligence, 69,

165–204.
Chapman, D. (1989). Penguins can make cake.AI Magazine, 10(4), 45–50.
Cohen, W. (1995). PAC-learning recursive logic programs: Efficient algorithms.Journal of Artificial Intelligence

Research, 2, 501–539.

88 R. KHARDON

Cook, S.A. (1971). The complexity of theorem proving procedures.Proceedings of the 3rd Annual ACM Symposium
of the Theory of Computing(pp. 151–158). Shaker Heights, Ohio: ACM Press.

DeJong, G., & Bennett, S. (1995). Extending classical planning to real world execution with machine learning.
Proceedings of the International Joint Conference of Artificial Intelligence(pp. 1153–1159). Montreal, Canada:
Morgan Kaufmann.

DeJong, G., & Mooney, R. (1986). Explanation based learning: An alternative view.Machine Learning, 1,
145–176.

De Raedt, L., & Dzeroski, S. (1994). First orderjk-clausal theories are PAC-learnable.Artificial Intelligence, 70,
375–392.

Dzeroski, S., Muggleton, S., & Russell, S. (1992). PAC-learnability of determinate logic programs.Proceedings
of the Conference on Computational Learning Theory(pp. 128–135). Pittsburgh, PA: ACM Press.

Fiechter, C.N. (1994). Efficient reinforcement learning.Proceedings of the Conference on Computational Learning
Theory(pp. 88–97). New Brunswick, NJ: ACM Press.

Garey, M., & Johnson, D. (1979).Computers and intractability: A guide to the theory of NP-completeness. San
Francisco: W.H. Freeman.

Georgeff, M., & Lansky, A. (1987). Reactive reasoning and planning.Proceedings of the National Conference on
Artificial Intelligence(pp. 677–682). Philadelphia, PA: AAAI Press.

Ginsberg, M. (1989). Universal planning: An (almost) universally bad idea.AI Magazine, 10(4), 40–44.
Grefenstette, J., Ramsey, C., & Schultz, A. (1990). Learning sequential decision rules using simulation models

and competition.Machine Learning, 5, 355–381.
Gupta, N., & Nau, D. (1991). Complexity results for blocks world planning.Proceedings of the National Conference

on Artificial Intelligence(pp. 629–633). Anaheim, CA: AAAI Press.
Haussler, D. (1989). Learning conjunctive concepts in structural domains.Machine Learning, 4, 7–40.
Hayes, P., Ford, K., & Agnew, N. (1994). On babies and bathwather.AI Magazine, 15(4), 15–26.
Jonsson, P., & B¨ackström, C. (1996). On the size of reactive plans.Proceedings of the National Conference on

Artificial Intelligence(pp. 1182–1187). Portland, Oregon: AAAI Press.
Kaelbling, L. (1993).Learning in embedded systems. Cambridge, MA: MIT Press.
Kaelbling, L., Littman, M., & Moore, A. (1996). Reinforcement learning: A survey.Journal of Artificial Intelli-

gence Research, 4, 237–285.
Kambhampati, S. (1995). A comparative analysis of partial order planning and task reduction planning.SIGART

Bulletin, 6(1), 16–25.
Kearns, M.J., & Schapire, R.E. (1994). Efficient distribution-free learning of probabilistic concepts.Journal of

Computer and System Sciences, 48, 464–497.
Kearns, M., & Vazirani, U. (1994).An introduction to computational learning theory. Cambridge, MA: MIT Press.
Khardon, R. (1997).Learning action strategies for planning domains(Tech. Rep. TR-09-97). Harvard University:

Aiken Computation Lab.
Khardon, R., & Roth, D. (1995). Learning to reason with a restricted view.Proceedings of the Conference on

Computational Learning Theory(pp. 301–310). Santa Cruz, CA: ACM Press.
Khardon, R., & Roth, D. (1997). Learning to reason.Journal of the ACM, 44, 697–725.
Klahr, D., Langley, P., & Neches, R. (1986).Production system models of learning and development. Cambridge,

MA: MIT Press.
Korf, R.E. (1985). Macro operators: A weak method for learning.Artificial Intelligence, 26, 35–77.
Laird, J., Rosenbloom, P., & Newell, A. (1986). Chunking in Soar: The anatomy of a general learning mechanism.

Machine Learning, 1, 11–46.
Lin, L. (1993). Scaling up reinforcement learning for robot control.Proceedings of the International Conference

on Machine Learning(pp. 182–189). Amherst, MA: Morgan Kaufmann.
Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm.

Machine Learning, 2, 285–318.
Littman, M., Cassandra, A., & Kaelbling, L. (1995). Learning policies for partially observable environments:

Scaling up.Proceedings of the International Conference on Machine Learning(pp. 362–370). Tahoe, CA:
Morgan Kaufmann.

Maes, P. (1991). Situated agents can have goals. In P. Maes (Ed.),Designing autonomous agents(pp. 49–70).
Cambridge, MA: MIT Press.

LEARNING TO TAKE ACTIONS 89

McCarthy, J. (1958). Programs with common sense.Proceedings of the Symposium on the Mechanization of
Thought Processes(Vol. 1, pp. 77–84), National Physical Laboratory. Reprinted in R. Brachman and H. Levesque
(Eds.),Readings in Knowledge Representation, 1985, Los Altos, CA: Morgan Kaufmann.

Minton, S. (1990). Quantitative results concerning the utility of explanation based learning.Artificial Intelligence,
42, 363–391.

Mitchell, T., Keller, R., & Kedar-Cabelli, S. (1986). Explanation based learning: A unifying view.Machine
Learning, 1, 47–80.

Mooney, R.J., & Califf, M.E. (1995). Induction of first-order decision lists: Results on learning the past tense of
English verbs.Journal of Artificial Intelligence Research, 3, 1–24.

Muggleton, S. (1994). Inductive logic programming: Derivations, successes and shortcomings.SIGART Bulletin,
5(1), 5–11.

Muggleton, S., & De Raedt, L. (1994). Inductive logic programming: Theory and methods.Journal of Logic
Programming, 20, 629–679.

Natarajan, B.K. (1989). On learning from exercises.Proceedings of the Conference on Computational Learning
Theory(pp. 72–87). Santa Cruz, CA: Morgan Kaufmann.

Natarajan, B.K., & Tadepalli, P. (1988). Two new frameworks for learning.Proceedings of the International
Conference on Machine Learning(pp. 402–415). Ann Arbor, Michigan: Morgan Kaufmann.

Newell, A. (1990).Unified theories of cognition. Cambridge, MA: Harvard University Press.
Newell, A., & Simon, H.A. (1972).Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.
Nilsson, N.J. (1994). Teleo-reactive programs for agent control.Journal of Artificial Intelligence Research, 1,

139–158.
Pitt, L., & Valiant, L.G. (1988). Computational limitations on learning from examples.Journal of the ACM, 35,

965–984.
Quinlan, J.R. (1990). Learning logical definitions from relations.Machine Learning, 5, 239–266.
Rivest, R.L. (1987). Learning decision lists.Machine Learning, 2, 229–246.
Rosenbloom, P., & Laird, J. (1986). Mapping explanation based learning onto Soar.Proceedings of the National

Conference on Artificial Intelligence(pp. 561–567). Philadelphia, PA: AAAI Press.
Rosenbloom, P.S., Laird, J.E., & Newell, A. (1993).The Soar papers : Research on integrated intelligence.

Cambridge, MA: MIT Press.
Roth, D. (1995). Learning to reason: The non-monotonic case.Proceedings of the International Joint Conference

of Artificial Intelligence(pp. 1178–1184). Montreal, Canada: Morgan Kaufmann.
Sammut, C., Hurst, S., Kedzier, D., & Michie, D. (1992). Learning to fly.Proceedings of the International

Conference on Machine Learning(pp. 385–393). Aberdeen, Scotland: Morgan Kaufmann.
Schoppers, M. (1987). Universal plans for reactive robots in unpredictable domains.Proceedings of the Interna-

tional Joint Conference of Artificial Intelligence(pp. 1039–1046). Milan, Italy: Morgan Kaufmann.
Schoppers, M. (1989). In defense of reaction plans as caches.AI Magazine, 10(4), 51–62.
Selman, B. (1994). Near-optimal plans, tractability, and reactivity.Proceedings of the International Conference

on Knowledge Representation and Reasoning(pp. 521–529). Bonn, Germany: Morgan Kaufmann.
Shavlik, J.W. (1990). Acquiring recursive and iterative concepts with explanation based learning.Machine Learn-

ing, 5, 39–70.
Slaney, J., & Thiebaux, S. (1996). Linear time near-optimal planning in the blocks world.Proceedings of the

National Conference on Artificial Intelligence(pp. 1208–1214). Portland, Oregon: AAAI Press.
Sutton, R.S. (1988). Learning to predict by the methods of temporal differences.Machine Learning, 3, 9–44.
Sutton, R.S. (1990). Integrated architectures for learning, planning, and reacting based on approximating dynamic

programming.Proceedings of the International Conference on Machine Learning(pp. 216–224). Austin, Texas:
Morgan Kaufmann.

Tadepalli, P. (1991). A formalization of explanation based macro-operator learning.Proceedings of the Interna-
tional Joint Conference of Artificial Intelligence(pp. 616–622). Sydney, Australia: Morgan Kaufmann.

Tadepalli, P. (1992). A theory of unsupervised speedup learning.Proceedings of the National Conference on
Artificial Intelligence(pp. 229–234). San Jose, CA: AAAI Press.

Tadepalli, P., & Natarajan, B. (1996). A formal framework for speedup learning from problems and solutions.
Journal of Artificial Intelligence Research, 4, 445–475.

Tesauro, G. (1992). Temporal difference learning of backgammon strategy.Proceedings of the International
Conference on Machine Learning(pp. 451–457). Aberdeen, Scotland: Morgan Kaufmann.

90 R. KHARDON

Tesauro, G. (1995). Temporal difference learning and TD-Gammon.Communications of the ACM, 38, 58–68.
Valiant, L.G. (1984). A theory of the learnable.Communications of the ACM, 27, 1134–1142.
Valiant, L.G. (1985). Learning disjunctions of conjunctions.Proceedings of the International Joint Conference of

Artificial Intelligence(pp. 560–566). Los Angeles, CA: Morgan Kaufmann.
Valiant, L.G. (1994).Circuits of the mind. Oxford, UK: Oxford University Press.
Valiant, L.G. (1995). Rationality.Proceedings of the Conference on Computational Learning Theory(pp. 3–14).

Santa Cruz, CA: ACM Press.
Valiant, L.G. (1996). Aneuroidal architecture for cognitive computation(Tech. Rep. TR-11-96). Harvard Univer-

sity: Aiken Computation Lab.
VanLehn, K. (1987). Learning one subprocedure per lesson.Artificial Intelligence, 31, 1–40.
Veloso, M. (1992).Learning by analogical reasoning in general problem solving. Ph.D. thesis, School of Computer

Science, Carnegie Mellon University. Also appeared as Technical Report CMU-CS-92-174.
Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrating learning and planning:

The PRODIGY architecture.Journal of Experimental and Theoretical Artificial Intelligence, 7, 81–120.
Vera, A., & Simon, H. (1993). Situated action: A symbolic interpretation.Cognitive Science, 17, 7–48.
Watkins, C., & Dayan, P. (1992). Q-learning.Machine Learning, 8, 279–292.
Weld, D. (1994). An introduction to least commitment planning.AI Magazine, 15(4), 27–61.
Zelle, J.M., & Mooney, R.J. (1994). Inducing deterministic Prolog parsers from treebanks: A machine learning

approach.Proceedings of the National Conference on Artificial Intelligence(pp. 748–753). Seattle, Washington:
AAAI Press.

Received July 1, 1996
Accepted June 26, 1998
Final manuscript June 26, 1998

