
Induct ive Inference of Tree A u t o m a t a by
Recursive Neural Networks

P. Frasconi 2, M. Gori 1, M. Maggini 1, E. Martinelli 1, and G. Soda 2

Dipartimento di Ingegneria dell'Informazione
Universit~ di Siena

Via Roma, 56 - 53100 Siena (Italy)
2 Dipartimento di Sistemi e Informatica

Universit~ di Firenze
Via S. Marta, 3 - 50138 Firenze (Italy)

Abs t rac t . Recurrent neural networks are powerful learning machines
capable of processing sequences. A recent extension of these machines
can conveniently be used to process also general data structures like trees
and graphs, which opens the doors to a number of new very interesting
applications previously unexplored.
In this paper, we show that when the problem of learning is restricted
to purely symbolic data structures, like trees, the continuous representa-
tion developed after learning can also be given a symbolic interpretation.
In particular, we show that a proper quantization of the neuron activa-
tion trajectory makes it possible to induce tree automata. We present
preliminary experiments for small-size problems that, however, are very
promising, especially when considering that this methodology is very ro-
bust with respect to accidental or malicious corruption of the learning
set.

1 I n t r o d u c t i o n

The art of building intelligent systems and modeling cognitive processes has been
hovering, pendululum-like, between symbolic artificial intelligence and subsym-
bolic models like neural networks, for over three decades. The resurgence of in-
terest in connectionist models of the past decade, however, has generated many
blind debates on the supposed "actual nature" of intelligence.

M. Boden [1] has recently given her view on these debates by a very colorful
comparison of the two different approaches to intelligence with the color of the
horse in the film The Wizard of Oz. Her conclusion is that , like in the film,
"... the pret ty creature was visibly the same horse, changing colour as it t rot ted
along." Tha t is, "AI is one beast, like the Wizard's pony." Somewhere located
in this story, this paper faces the inductive inference of tree automata, a purely
symbolic task, by adaptive computation, a processing scheme taking place in a
continuous domain.

Inductive inference is nicely reviewed concerning both problem definition and
methodology in seminal papers by D. Angluin [2] and K-S. Fu and T.L. Booth [3],
who also reviewed the case of tree grammars, considered in this paper [4].

37

The idea that symbols can emerge from subsymbolic representations through
proper quantization of the neuron activation t rajectory is not new in its own.
In particular, a number of papers have focused on the inductive inference of
finite state automata by using different recurrent neural network architectures
(see e.g. [5, 6]). Although the complex nonlinear dynamics of neural networks
often departs to some extent from the corresponding au tomata behavior, espe-
cially for long sequences, proper architectures and conditions can be identified
in which, under the given state space quantization, the automata offer a perfect
representation of the neural dynamics [7, 8].

In this paper, we go one step further and face the problem of inducing the
rule(s) that generate a given set of trees. This entails a new crucial step, namely
the definition of connectionist models capable of processing data structures.
Sperduti and Stari ta [9] have proposed a connectionist-based architecture, based
on the concept of generalized recurrent neuron, for classifying data structures.
These approaches to processing data structures, however, were not conceived for
inductive inference of grammars, as their adaptive scheme acts by modifying the
weights of a sort of cryptic black box.

In this paper, we propose two algorithms for the extraction of tree automata
from the learned configuration. In particular, the second one produces tree au-
tomata with don't care conditions, thus simplifying the corresponding represen-
tation significantly. These algorithms are based on proper quantizations of the
state t rajectory of the recursive networks associated with the given training set.
We also introduce third-order recursive neural networks, and show that they
are very well-suited for processing binary trees and that they inherit the basic
features of the recursive networks used to process strings. Our preliminary ex-
perimental results are very promising. In particular, we show the the rule hidden
in the traj~ic policeman problem, a nice cognitive graphical test defined in this
paper, can be inferred successflflly from examples.

2 R e c u r s i v e N e t w o r k s f o r P r o c e s s i n g o f D a t a S t r u c t u r e s

In this section, we review briefly the basic idea proposed in [9] concerning adap-
tive processing of DOAGs (Directed Acyclic Graphs) [10]. The recursive networks
considered in this paper process data structures beginning from a fixed initial
state. The examples can be regarded as a collection of pairs composed of DOAGs
with their own targets. Formally, let d - , d + E R be such that [d-, d +] C [d,
and define l) =" {(Ul,dz), l ---- 1 , . . . ,L}, where Ul is a DOAG and dl E { d - , d +}
its corresponding target.
Ul is a directed acyclic graph, where the set of nodes leaving to a given node is
ordered. For all DOAGs, there exists at least a special node, called supersource
and denoted by Uts, that receives no inputs from other nodes.

Let o be the maximum outdegree of the given DOAGs. The dependence
of node v from its children ch[v] can be expressed by pointer matrices Ar E
7~ n''~, r = 1 , . . . o. Similarly, the information attached to the nodes can be prop-

Y~ = er (Do" (CXv)) .

agated by weight matr ix B E T¢ n'm. Hence, the parameters of the adaptive model
are 01 "- {A1, . . . , Ao} and 0g - B. The state is updated according to

--1 X ~ = ~ r Ak 'qk X , + B . U v , (1)
\ k = l

where qk I is an operator which returns Xv's children and ~ is a vectorial sig-
moidal function. This equation is a straightforward extension of first-order re-
current neural networks, the only difference being in the generalized form of
processing taking place in the "pseudo-time" dimension v. The output is deter-
mined by a general two-layer perceptron so as to generate any desired map of
the state to the output according to

(2)

C

38

Fig. 1. A DOAG with the corresponding encoding network. Note that ~ = 2 (graph
outdegree), and that the nil pointers are represented by proper frontier (initiM) states.
The nodes must be presented according to a topological sort, e.g. e, c, d, b, a.

Fig. 1 is a pictorial representation of the computation taking place in the re-
cursive neural network. In Fig. 1, all the recursive neurons are represented by
the layer they belong to, whilst a proper notation is used to represent the nil
pointer. Each nil pointer is associated with a frontier state, which is in fact an
initial state that turns out to be useful to terminate recursive equation 1.

High-order neural networks, proposed mainly by Giles and associates for both
static networks [11] and recurrent networks [12], are very interesting models
especially for dealing with symbolic tasks. One can easily conceive high-order
networks for processing data structure as an extension of second-order recurrent

39

networks. For instance, in the special case of binary trees, one can introduce
third-order networks based on 0 "- {Wijkl } as follows

In this equation q/1 and q~l are operators which return X , ' s left and right
children, respectively. The extension to the general case of (o + 1)-dimensional
networks is straightforward. In the case ~ = 1, commonly used in the literature
to carry out sequence processing, these models reduce to second-order recurrent
networks.
According to the classical connectionist learning optimization-based approach,
the output-target data fitting is measured by means of the cost function. The
process of learning the given data structures consists of determining the param-
eters of the defined adaptive models.

3 Extract ion of Symbol ic Rules from Tree A u t o m a t a

The computation of recursive networks rely on on a set of real-valued state and
input variables which are processed using a set of continuous operators such as
multipliers, adders and sigmoidat functions. When a recursive network parses a
symbolic data structure, its state vector Xv E R '~ describes complex trajectories
that encode the network memory about the processed nodes. These trajectories
are generated applying for each node the network transition function to the
o-uple of state vectors produced while processing its descendants. The state
transition function ¢ (X 1 , . . . , Xo , Uv) : [Rn] ° × R m --+ R ° depends on the node
label Uv. For symbolic tasks, the input alphabet is finite and can be encoded by
a finite sets of vectors L /= {U1,.. •, UK}, each corresponding to a symbol of the
input alphabet. As a consequence, the network transition function defines a set
of K different maps, which transform o vectors in R ~ onto a point in R *~. This
computation can be thought of as an extension of Iterated Function Systems
(IFSs) 1 .

The behavior resulting from the application of this set of non-linear maps
may be very complex and may reveal a deep recursive structure. The generated
trajectories may be much more complex than that of recurrent network analyzing
time sequences because of the high dimensionatity of the map input.

In order to give a symbolic interpretation of the continuous computation of
the network, one can introduce an approximation based on the quantization of
the continuous state trajectories. This process can be regarded as a symbolic
projection of the regions of the continuous state space onto a set of discrete

1 An IFS is defined as a set of S transformations qss on a metric space X'. For each
time step we can pick up one of these transformations to map a point x E 2(to
• ~(t)(x) E X. The attractor of the IFS is the set .A C X such that Va E .4 and s E
{1, . . . ,S} =~ ~,(a) CA.

40

states. In particular, because of the nature of the computation performed by
recursive networks, we propose a method to approximate the network behaviour
by means of Frontier to Root A u t o m a t a (FRA).

D e f i n i t i o n 1. (see e.g. [14])
A FRA A is a 5-uple {Z, S, so, M, F} where Z = {a l , . . . , ag} is the input
alphabet used to label the nodes, S is a finite set of q states, So is the initial
state used to label the frontier nodes, M : ~ × S ° --+ S is the state transition
function and F defines the set of accepting states.

The FRA computation is carried out starting from the leaves of the graph which
are supposed to have frontier nodes labeled with state so as descendants; then
for any node the corresponding state is computed as M (a , s l , . . . ,so) being a
the node label and < s l , . . . , Sk > the states computed for the node descendants.
Obviously the computation must take place following the ordering of the nodes
by descending values of their depth.

The symbolic interpretation of a recursive neural network in terms of a FRA
emerges by partitioning the state space into a set of regions that are associated
to the finite set of states of the automaton. The choice of the number of regions
is crucial, since it defines the amount of loss in the memory capacity with respect
to that of the network.
The state space can be partitioned by using the K-MEAN algorithm for the
points of the state space visited by the neural network, while parsing a given set
of data structures. This technique defines convex regions in the state space and
has the property of using the higher resolution in the regions that are mostly vis-
ited. The representative point of each region may be chosen as the centroid of the
corresponding cluster. Possible measures of the resolution are the minimum dis-
tance between two centroids and the number of clusters. If we use more clusters
to approximate the network trajectories, we obtain a more detailed description
and, consequently, the extracted machine is likely to have a larger number of
states. The extraction of a complete FRA from the associated recursive network
Af with training set s e t /) can be carried out by the following algorithm:

A l g o r i t h m 1 FRA extraction
X ~ StateVectors(Af, 7));
States ~-- 2;
repeat

C +- GeneratePartition(X,States);
so +- GetRegion(Xo,C);
for (< s l , . . . , s o , a >6 S ° x ~)

X~-¢(C(sl, C),.. . , C(so, C), V(a));
s +- GetRegion(X,C);
M (s l , . . . , So, a)+-s;

for (s 6 S)
F(s) +- GetNeaxestTarget(C(s, C));

Errors +-- CompareIO(A/',< Z, S, so, M, F >,7));
States +-- States+l;

until (Errors<>0)

41

This algorithm extracts FRAs with increasing number of states (i.e. memory
capacity) until it finds a machine that produces a perfect approximation of the
Inpu t /Outpu t behaviour of the recursive network on the set of examples used
for the extraction process. The comparison (CompareIO) can be carried out for
each node (full I /O equivalence) or only on those nodes for which an output
target is provided (target I /O equivalence).

The algorithm computes the state space parti t ion C (GeneratePart i t ion) us-
ing the state trajectories points X obtained while processing the graphs of the
learning set (StateVectors). The continuous transition function of the recursive
network ¢0 is computed and quantized for any combination of the centroids
of the partit ion regions (C(s, C)). The output corresponding to each state s is
obtained by computing the network output when its state is initialized with the
centroid C(s ,C) and by finding the nearest target defined on the leaning set
(GetNearestTarget).

The previous algorithm produces a FRA in terms of its full state transition
map that is represented by a table with n ° K entries. The number of entries
becomes huge when the number of states increases and can make the extraction
process impractical. Moreover, most of these transitions are not contained in
the training examples; this is often due to constraints in the data structure that
make some combinations of states and inputs impossible.

In order to reduce the computational complexity of the extraction process,
Algorithm 1 can be modified so as to produce don't care conditions for certain
entries in the FRA state transition table. In many cases this choice corresponds to
a drastic reduction of the valid transition rules, thus obtaining simpler solutions.
The algorithm extracts only those state transitions that are activated while
processing the data graphs in the learning set. The extraction algorithm turns
out to be updated as follows:

A l g o r i t h m 2 FRA extraction (don't cares)
X ~ StateVectors(H,:D);
States +- 2;
r epea t

C +- GeneratePartition(X,States);
so +- GetRegion(Xo,C);
for (Graph E :D)

for (Node C Graph)
< S l , . . . , so > +- < State(Node.child[l]) , . . . , State(Node.child[o]) >
X+--¢(C(sl) , . . . , C(so), U(Node.a));
s ~-- GetRegion(X,C);
M (s l , . . . , so, a) +-s;

for (s C S)
F(s) +-- GetNearestTarget(C(s));

Errors +-- CompareIO(Af,< Z, S, so, M, F >,:D);
States ~-- States+l;

unti l (Errors<>0)

42

The main difference between the two algorithms resides in the loops where the
transition extraction is performed. In the case of Algorithm 2 only the transitions
in the learning set :D are considered, while all the others are set to don't care.

4 I n f e r e n c e o f T r e e A u t o m a t a : E x p e r i m e n t a l R e s u l t s

In this section we show the experimental results we found when using recursive
networks and the FRA extraction algorithm to infer tree automata. The first
two experiments concern binary trees, while the third one involves a graph with
a higher outdegree, but a fixed number of nodes. In all these experiments the
network weights were initialized with random values in the interval [-0.5,0.5].
Input symbols were coded by unitary vectors (i.e. vectors having an entry equal
to 1 and all other entries equal to 0). The learning and the test sets were gen-
erated randomly. Table 1 reports the complete setup for the three experiments.
The rules used to generate the examples are the following:

1. No b : Given a set of binary trees with nodes whose labels are in the
alphabet (a, b), positive trees are those with no b labels, regardless of the
the tree structure.

2. f(a,b) : Given a set of binary trees with nodes whose labels are in the
alphabet {a, b, f}, positive trees are those containing sub-term f(a, b) and
following the rule: labels a and b can be found only in leaves, while term f
must have two children. An example for this class of trees is the "expression"
f(f(b, a), f(a, f(a, b))) that corresponds to a tree with depth 4.

3. The traffic pol iceman problem: It is related to a cognitive task in which
a traffic policeman can stop a car depending on his gestures (see Fig. 2).
The policeman stops the car when he raises one of his arms or when he holds
the red sign in one of his hands. The policeman can be represented by a
graph which is constructed by inspection of the relative positions of its body
components and colors. An empty position results in a nil pointer assigned
to the corresponding direction link for the node. Thus the rule can simply be
translated into the graphical formalism: one of the pointers NW or NE from
the root node (1) must not be nil or one of the hand labels (nodes 7,9,10,11
if linked) must be r.

Table 2 summarizes the results for these experiments. In all the experiments
all the training examples were learned perfectly. From the last column, the ad-
vantage of using the don't care-based extraction algorithm is clear, especially for
the traffic policeman problem.

Figure 3 shows the extraction process for the No-b trees problem. The plot
shows the states generated while parsing the 50 examples of the training set.
Although the state distribution is quite complex, a simple partition into 3 regions
turns out to be sufficient for extracting a FRA that has the same I/O behaviour
as the network on the root nodes (the only nodes with targets). The resulting
FRA has three states: So is the initial state, s2 codes the presence of the b symbol,

43

5 N
~. NW NE t°/,
1 W . ~ . _ _ - - ~ E

4 3~ 2

12 $

Relative position

(child index)

0 4

2

15 3~
Fig . 2. The traffic policeman problem: Each component of the figure can be labeled
with one out of four colors (Ib]lack, [g]reen, [r]ed, [w]hite).

Problem Network Symbols Learning Test Depth Nodes
No b 3rd 2-21 {a/*,b/*} 13-27 32-68 [4,6] [10,33]
f(a,b) 3rd2-21 {a/0,b/0,f /2} 18-32 75-125 [2,5] [3,15]

Policeman l l r 2-37 {b/ - ,g / - , r / - ,w/-} 193-207 243-257 [4,4] [11,11]

T a b l e 1. Experimental setup. The first column reports the problem rule; the second
column specifies the neural network architecture used for the experiments report ing
the network model (3d = third-order, l i t -- feedforward with one layer), the number
of s ta te neurons and the number of learnable parameters; the third column reports
the symbols used to label the nodes and the constraints on the number of required
descendants (* = no constraint, - = depends on node position); the fourth and fifth
columns report the number of positive and negative graphs contained in the learning
and test sets; the last two columns show the ranges for the depth and the number of
nodes of the examples.

Problem Learning Test States Transitions
No b 100% 100% 3 18/18
f(a,b) 100% 100% 8 40/192

Policeman 100% 100% 5 64/62500

T a b l e 2. Experimental results. The first two columns report the accuracy of the in-
ferred rule on the training and test sets, respectively; the th i rd column reports the
number of states of the extracted FRA; the last column represents the number of
extracted transitions with respect to the total entries in the F R A state table.

4 4

~.0 ~ ~ " t~;'." "m~6';~. '
• ... ~.'~. : ~ . .

• a:l ...~ < SL,SR > a b
o.s "'~J~ < so, s o > s 1 s2

80~Sl ~ S l 82

0.6 < S0~ 82 > 82 82

• • 2 : ~ < 81,80 > 81 82

0.4 - A* ~ 81~81 > 8 1 82

<~ 81,82 > 8 2 82

0.2 < S2~So > 8 2 82

t • ~ ~ S 2 ~ 8 1 > $ 2 82

0 . 0 ~ < 82,82 > 8 2 82
0.0 0.2 0.4 0.6 0.8 1.0

Out(s0) = -
Out(s1)= +
Out(s2)=-

Fig. 3. FRA extraction for the No-b problem. The plot shows the state vectors, the
state space partitions and the corresponding centroids. The table reports the FRA
transition rules and the state/output map.

Sl is the accepting state. The FRA state becomes s2 whenever symbol b is read
in a tree node.

For the f (a , b) experiment, the extracted FRA is more complex. Only the
transitions that are compatible with the term constraints are present. In partic-
ular, from the initial state only the transitions with symbols a and b are defined,
while from all the other states only transitions with symbol .f are extracted. The
8 state FRA can be minimized to an equivalent 4 state FRA that implements
exactly the classification rule. The four states represent a leaf containing sym-
bol a, a leaf labeled with b, an internal node having a sub-tree containing term
f (a , b), and an internal node which has no subtree containing] (a , b). In Fig. 4
it is shown that 8 regions are required by the automata extraction process, since
the extraction with 7 clusters is not successful, as the two states near the origin
are not equivalent.

Figure 5 reports the extraction results for the traffic policeman problem. The
extraction is performed using 5 regions. It is easy to see that the classification
rule was extracted successfully by inspection of the developed state transitions.
Because of the fixed structure of the graphs, it can be seen that transitions 1
through 5 are always applied to the root node. Transitions 1 and 2 deal with a
raised arm (SNW and sNE not nil, i.e. so); transitions 4 and 5 correspond to the
case of a red sign in the hand with both arms down (respectively in the left and
right hand); transition 3 represents a non-stopping policeman (state s2 is not
accepting). Transition 6 says whether the color of a leaf is red (s3). Transition
7 (8) is used to propagate the presence (absence) of a red sign in a hand to the
root node when the arm is down (through the s s link). The other transitions
are necessary to manage the other nodes and reflect the independence on the
component color.

45

1.0 , , ' ' , ,
& A

0,8

0.6 A

0'4 t

0 .2

00
0,0 0 .2 0 ,4 06 0.8 1 0

0 ,6 ~ , & I 0,4

0.0 L- . , ,
0.0 0.2 0 .4 0,6 0,8 1,0

(a) (b)

Fig. 4. FRA extraction for the f(a, b) problem: (a) state space partition using 7 states.
This resolution is not sufficient to satisfy the network-FRA I /O equivalence condition.
(b) State space partition using 8 states. The network I /O behaviour is exactly approx-
imated by the extracted FRA.

lo . °°

°'2 ! ~. '~ , . :

A

8 N l S N E , S E ~ S S ~ S W y 8 N W ~ b g r w

1 < 81180183~82~80~81 ~> 81 81 3.1 81

~ 81~81~80~$2~83~80 ~> 81 81 81 81

3 "~ 81~80~83~82~S3~30 ~ 82 $2 82 82

4 < s l , 8 0 ~ 8 3 ~ s 2 1 8 4 y 8 0 ~> 84 s1 84 81

5 ~:~ 8 1 ~ s o ~ 8 4 y 8 2 ~ s 3 ; 8 0 ~> 84 84 84 84

6 ~ 80, 80, 80, 80~ 80~ so ~ 81 81 83 81
7 ~ 80~ soy soy 83~ 80, 80 ~ 84 84 84 84
8 <~ 80~So~So~81,SOySO :> S3 S3 83 S3

9 < 8 1 , 8 0 , 8 0 , 8 0 , 8 0 , 8 0 > 81 81 81 81

10 < 83~ so, 80, 80, 80, 80 ~> 81 81 81 81
11 < so, s l , s o , s o , s o , so > s l s l s l s l

,.o 12 < so, s3, so, so, so, so > sl sl sl sl
13 < so, so, so, SOy so, s3 > 81 sl sl sl
14 < so, so, so, s o , s o , s l > s l s l s l s l

15 < so, 80, 84~ 80y 84, 80 ~, 82 s2 82 s2

16 <:: so, so, 83, so, 83, so :> 82 82 82 82

Fig. 5. FRA extraction from the traffic policeman problem. The plot shows the state
vectors, the state space partitions, and the corresponding centroids. The table reports
the FRA transition rules. States sl and s4 are accepting.

46

5 C o n c l u s i o n s

In this paper we have shown tha t recursive neural networks, used for processing
da ta structures, can be given an intriguing symbolic interpretat ion in terms of
tree au tomata . On the basis of the experience gained from some preliminary
experiments, we have shown tha t proper quantization algorithms can be con-
ceived tha t make it possible to infer tree au t oma ta from examples. I t is worth
mentioning that , at the moment , we do not have evidence to s ta te tha t the pro-
posed methodology can challenge symbolic approaches to inductive inference.
Our own feeling is that the proposed adaptive model can in fact hardly compete
in a purely symbolic domain, like the inductive inference of tree au tomata . On
the other hand, unlike most symbolic approaches to inductive inference, the one
we propose is likely to be very robust with respect to accidental or malicious
modifications of the training set, since the optimization process on which learn-
ing relies is inherently robust. Finally, Boden's moral on artificial intelligence,
mentioned in the introduction, seems to suggest tha t the new "color" emerging
from connectionist models could play his own role, part icularly in the case of
noisy examples: "when lighting conditions change, the Wizard ' s pony could t rot
along with this new color.

Acknowledgements
We thank Alessandro Sperduti (Dipart imento di Informatica, Universit~ di Pisa)
for fruitful discussions on recursive neural networks and their links with tree
automata .

R e f e r e n c e s

1. M. Boden, "Horses of a different colour?," in Artificial Intelligence and Neural
Networks (V. Honavar and L. Uhr, eds.), pp. 3-19, Academic Press, 1994.

2. D. Angluin and C. Smith, "Inductive inference: Theory and methods," Computing
Surveys, vol. 15, no. 3, pp. 237-269, 1983.

3. K.-S. Fu and T. Booth, "Grammatical inference: Introduction and survey - part i,"
IEEE Transactions on Systems, Man, and Cybernetics, vol. 5, pp. 95-111, January
1975.

4. K.-S. Fu and T. Booth, "Grammatical inference: Introduction and survey - part
ii," IEEE Transactions on Systems, Man, and Cybernetics, vol. 5, pp. 409-423,
May 1975.

5. R. Watrous and G. Kuhn, "Induction of finite-state languages using second-order
recurrent networks," Neural Computation, vol. 4, no. 3, pp. 406-414, 1992.

6. C. Giles, C. Miller, D. Chen, G. Sun, H. Chen, and Y. Lee, "Learning and extract-
ing finite state automata with second-order recurrent neural networks," Neural
Computation, vol. 4, no. 3, pp. 393-405, 1992.

7. P. Frasconi, M. Gori, M. Maggini, and G. Soda, "Representation of finite state
automata in recurrent radial basis function networks," Machine Learning, vol. 23,
pp. 5-32, 1996.

47

8. C. Omlin and C. Giles, "Constructing deterministic finite-state automata in recur-
rent neural networks," Journal of the ACM, vol. 43, no. 6, pp. 937-972, 1996.

9. A. Sperduti and T. Starita, "Supervised neural networks for classification of struc-
tures," IEEE Transactions on Neural Networks. to appear.

10. M. Arbib and Y. Given'on, "Algebra automata i: Parallel programming as a pro-
legomena to the categorical approach," Information and Control, vol. 12, pp. 331-
345, 1968.

11. C. Giles and T. Maxwell, "Learning, invariance, and generalization in high-order
neural networks," Applied Optics, vol. 26, no. 23, p. 4972, 1987.

12. C. Miller and C. Giles, "Experimental comparison of the effect of order in recurrent
neural networks," Int. Journal of Pattern Recognition and Artificial Intelligence,
1993. Special Issue on Applications of Neural Networks to Pattern Recognition (I.
Guyon Ed.).

13. E. Sontag and H. Sussman, "Backpropagation separates when perceptrons do,"
in International Joint Conference on Neural Networks, vol. 1, (Washington DC),
pp. 639-642, IEEE Press, June 1989.

14. J. Thatcher, "Tree automata: An informal survey," in Current Trends in the Theory
of Computing (A. Aho, ed.), pp. 143-172, Prentice-Hall, Inc.

