
On the Possibilities of the Limited Precision Weights 
Neural Networks in Classification Problems 

Sorin Draghici, Ishwar K. Sethi 

Vision and Neural Networks Laboratory 

Department of Computer Science, Wayne State University, 

431 State Hall, Detroit, 48202 MI, USA 

Abstract - Limited precision neural networks are better suited for hardware 
implementations. Several researchers have proposed various algorithms which are 
able to train neural networks with limited precision weights. Also it has been 
suggested that the limits introduced by the limited precision weights can be 
compensated by an increased number of layers. This paper shows that, from a 
theoretical point of view, neural networks with integer weights in the range [-p,p] 
can solve classification problems for which the minimum euclidian distance in- 
between two patterns from opposite classes is l/p. This result can be used in an 
information theory context to calculate a bound on the number of bits necessary 
for solving a problem. It is shown that the number of bits is limited by 
m*n*log(2pD) where m is the number of patterns, n is the dimensionality of the 
space, p is the weight range and D is the radius of a sphere including all patterns. 
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1.Introduction 

I f  neural networks are to be used widely, they have to be suited to hardware 
implementation which is by far the most cost effective solution for large scale use. 
One problem related to this foreseeable transition towards hardware is that the actual 
software simulations of  neural networks use floating point arithmetic and either 
double or simple precision weights. Storing so many bits for each weight and 
implementing floating point operations would make any hardware implementation 
unreasonably expensive. Limited precision weight neural networks are better suited 
for such purposes. This is because a limited precision requires fewer bits for storing 
the weights and also simpler computations. In turn, this determines a decrease in size 
of  the VLSI chip and therefore, a lower cost for the same performance or, 
alternatively, a better performance for the same price. 

In these conditions, investigating the possibilities of limited precision weights 
becomes very important. One line of  research is to find algorithms able to generate 
neural networks which use limited precision weights while still being able to solve 
difficult problems. Various papers try to approach this problem from different angles. 
[Hohfeld, 1992; Xie, 1991, Coggins 1994; Tang, 1993] use a dynamic rescaling of 
the weights and a corresponding adaptation of the gain of  the activation function. 
[Hohfeld, 1991a, 1991b; Vincent 1992] rely on probabilistic rounding whereas 
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[Dundar, 1995; Khan 1994, Kwan 1992, 1993; Marchesi 1990, 1993; Simard 1994; 
Tang 1993] use weight values which are restricted to powers of two. This latter 
approach is of particular interest because powers of two values and multiplications of 
such are particularly easy to represent in binary circuitry. 

The question is: how far can this approach be used? Given a problem, what sort of 
precision should we use so that a solution will still exist? [Khan, 1996b] 
acknowledges the fact that integer weight neural networks (IWNN) with weight 
values limited at powers of two lack in capabilities in comparison to the real-valued 
networks but it also suggests that the weaker learning capabilities of such networks 
can be compensated by an increase in the number of layers. However, IGhan et.al's 
conclusion comes from empirical experiments. Khan suggested that the answer is 
affirmative. In this case, how many layers should we expect to need? Given a 
problem, can one say anything quantitative about the network able to solve the 
problem? In the following, we shall try to find at least some theoretical answers for 

these questions. 

2.Theoretical considerations regarding the possibilities of limited precision 
neural networks 

In [Beiu, 1996], the author gives an elegant proof for some bounds on the number of 

bits needed in a classification problem in the general case of real values weights 1. 
This paper follows the same line of reasoning and tries to establish similar results for 
the case of neural networks using limited precision weights. 

Proposition 1 

Using integer weights in the range [-p, p], one can correctly classify any set of 
patterns for which the minimum distance between two patterns of opposite classes is 

d~in=l/p. 

Proof 

We first consider the 2 dimensional case. Without loss of generality, we consider all 
patterns are included in the square [-1,1]. If the patterns are spread outside the unit 
square, the problem can be scaled with a proper modification of dmin. 

Firstly, we consider the case p=3. 

1 Actually, from the very result presented in [Beiu, 1996], it follows that there is a 
limit on the number of bits per weight and therefore, the weights need not be 
unlimited real values. However, the proof assumes in its first step (an appropriate 
translation and rotation) that any dividing hyperplane can be placed in any position 
needed. Therefore, for the proof to hold, the weights need to be able to vary 
continuosly. A posteriori, after the hyperplanes have been placed and the problem 
solved, the number of bits for storing the solution is reduced and respects the 

calculated bound. 
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Figure 1 presents the set of hyperplanes which can be implemented with weights in 
the set {-3, -2, -1, 0, 1, 2, 3 }. 

Due to the symmetry of the weights, we only need to consider the triangle (0,0), 
+ ", (0.5,0.5), (0,0.5) determined by Ox, y=l/3 and y=-x 1/~. In this triangle, the largest 

area is the triangle ABC (0,0), (0,1/3), (1/4, 1/12). In this area, the largest distance 
between two points inside it, is 1/3-e. Therefore, any set of patterns of two classes 
included in [-1,1] and which has the minimum distance between two patterns of  
opposite classes larger than 1/3 can be classified correctly using these boundaries. 

We now consider the same problem for any p. We assume the statement holds for p 
and show it follows for p+l. 

Because the set {-p, -(p-l), ... 0, 1 . . . .  , p-l ,  p} is included in the set {-(p+l), -p, -(p- 
1), ... 0, 1 . . . . .  p-l, p, p+l}, all the boundaries present in the figure drawn for p will 
be also present in the figure drawn for p+l. Therefore, each individual region can 
only be divided subsequently into smaller regions by the newly added lines 
corresponding to p+l. We need to show that in the p+l case, the largest distance in 
any of the regions is 1/(p+l). However, in the p case, there is just one region where 
there are internal distances larger than 1/(p+I) and this region is the region R p 
determined by Ox, y=l/p and y=-x+l/p. Since regions cannot become larger by 
increasing p, the only region which needs to be considered is region R. 

When p becomes p+l, region R p will be intersected by y=l/(p+l)  and y=-x+l/(p+l) 
which will determine R p+I and other (smaller) regions. Therefore, R p+I will be the 
region with the largest internal distance in the new situation (for p+l). However, the 
largest internal distance in R p+I is 1/(p+l)-a QED. 

We now consider the n-dimensional case. Again, we assume the statement holds for n 
and we show that it will then hold for n+l. We want to show that there will be no 
other possible internal distance when we add a new dimension. For reasons similar to 
those presented in the 2D case, we can concentrate on the volumes V n. Without loss 
of generality, we shall use a figure drawn for the 319 case. 

We shall concentrate on the transition from n to n+l. When we add a new dimension 
(the n+l-th), the statement will be true for any n dimensional figure obtained by 
choosing any n dimensions out of the n+l available. In Figure 2, the intersection of 
the volume V 3 with any 2D space (xOy, xOz, yOz) is the triangle A 2 discussed in the 
2D case in which the largest distance is 1/p-a 

Furthermore, the largest internal distance will always be found along the axes because 
the space is cut by hyperplanes of the form: 

-x,1+1 +px,l+.. �9 +px 1 =0 

which go through the origin and 'slice' the space. In Figure 2, the (hyper)plane: 

-x+py+pz=0 

intersects xOy in OAxy (-x+p*y=0 or y=l/p*x) and xOz in Oaxz (-x+l/p*z=0 or 
z=l/p*x). 
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(Bias = 0) (Bias = +1) (Bias = 4-2) (Bias = 4-3) (Combined) 

Figure 1 Possible positions for hyperplanes implemented with integer weights in the 
range [-3, 3] in two dimensions. The picture is drawn for the [-1, 1] square (from 
[Khan, 1996]). 

Ax~ 

Y 

X 

Figure 2 The volume V 3 (in 3D). The largest distance between two points in this 

volume is OB along the x axis and is 1/p-~. 
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Because of the hyperplanes similar to AxyOA• which 'slice' the space radially from 
the origin, there are 2n volumes V n each pair of them orientated in the + and - 
direction along one axis. Each such volume can be imagined as being a union of 
convex hyperprisms ( like AxyOA• in Figure 2). All of them have n+2 facets (in 
n+l dimensions) and the common OB segment along axis x. But, in each such convex 
hyperprism (or simplex) the largest distance between two interior points cannot be 
larger than the longest edge which in this case is precisely OB. Therefore, the largest 
distance in each such volume V" will be along the axis associated with that particular 
volume and it will be still 1/p-~. 

Because the largest distance will remain along the axes, increasing the number of 
dimensions does not affect the largest distance in one particular volume. Therefore, 
the largest overall distance is not affected by the added dimension and the largest 
internal distance in n+l dimensions will still be 1/p-e. (However the number of such 
volumes V" does increase with the number of dimensions). QED. 

3.An entropy bound for the number of bits 

As already mentioned, another interesting issue is how complex should the network 
be for a given problem. Many measures of complexity have been proposed. Among 
them, there are the depth (the number of edges on the longest input to the output path) 
and the size (the number of nodes). For VLSI implementation purposes, the depth can 
be put into correspondence with the delay and the area can be put into 
correspondence with the area of a VLSI chip. However, these measures are not the 
best criteria because the area of a neuron depends on the precision of its associated 
weights. Better criteria are the total number of connections [Hammerstrom, 1988; 
Abu-Mostafa, 1988; Klaggers, 1993; Phatak, 1994; Mason, 1995], the total number- 
of-bits needed to represent the weights [Bruck, 1990; Williamson, 1991] or the sum 
of all the weights and thresholds [Beiu, 1994a, 1995a, 1995b]. The total number of 
bits is discussed further in [Denker, 1988; Beiu, 1994a] etc. Some entropy bounds for 
the number of bits have been given by Beiu in [Beiu, 1996] for the case of unlimited 
precision weights. An similar calculus can be done for the limited precision weights. 

We shall consider the case of a set of patterns of two classes with the minimum 
distance between two patterns from opposite classes dmin. 

Proposition 2 

Let us consider a set of m patterns of two classes in the hypersphere of radius D<=I 
centred in origin of R". Let us consider dmi,=l/p the minimum distance between two 
patterns belonging to different classes. Then, the number of bits necessary for the 
separation of the patterns (in general positions) using weights in the set {-p, -p-l, 
.... 0, 1 . . . .  ,p} is bounded by 

#bits > mn~-log 2pD~ 
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Proof  

From proposition 1, it follows that one can divide the space using hyperplanes 
implemented with the given limited precision weights such that the maximum internal 
distance in any one region is less than 1/p. As shown in the proof of proposition 1, 
there will be a certain number of 'large' volumes in which the maximum internal 
distance is 1/p-e and a number of smaller volumes. 

One can calculate the number of bits necessary for the representation of one example 
p~ as 

where Vtota ~ is the total volume of the problem and V~v is the individual volume of the 
region which encloses (and separates) the pattern p~. But all individual volumes are 
smaller or equal to the 'large' volumes which have the maximum internal distance 
1/p-e. In turn, this volume is convex (from construction) and therefore smaller than 
the volume Vh~ of the hypersphere of diameter 1/p. Therefore: 
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But, from hypothesis, all patterns are included in the sphere of radius D centred in the 
origin. Note that 1/2p<D<l. The first inequality comes from the fact that 1/p is the 
minimum distance in-between two patterns and 2D is the diameter of the hypersphere 
containing all patterns. The second one is necessary because proposition 1 was 
proved for the hypercube [-1,1]" . In these conditions, Vtot,l is the volume of the 
sphere of radius D and the bound can be written as: 

#bitsp, > g t o t a l  log ~ 

.r1.2 
_ _ d  n 

= log 

n 
m 

2-( 2 
- - D "  

n m 

~r 2 

n l o g - ~  

2 p  

:F log2pV7 

By multiplying with the number of patterns m: 

#bits > mnVlog2pD ~ 

A similar expression can be obtained for n odd. 

QED. 

4.Discussion 

The previous bound must not be interpreted as an absolute lower bound. For a 
particular problem, when the patterns are in particularly favourable positions, more 
than one pattern from the same class can share the same volume and thus, the number 
of bits can be further reduced. 

A similar result has been proved in [Beiu, 1996] for the general case in which the 

weights can have unlimited precision 2 (which allows for a uniform quantization of 
the space in "elementary" hypercubes of hyperdiagonal d). This allows Beiu to prove 
the following upper bound: 

2 See the previous remark regarding the fact that in [Beiu, 1996] the precision of the 
weights can be reduced a posteriori. 
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where D is the radius of the hypersphere which includes all patterns and d is the 
minimmn distance in-between the closest patterns from opposite classes. However, 
the case in which the weights are limited is a particular case of the general case and 
the Beiu bound must hold. Indeed, in this particular case both bounds hold: 

mn{II~176 +5} 
[Beiu, 1997] gives even a tighter bounds for the same number of  bits. Assuming there 
are m=m++m, examples where m+ and m_ is the number of patterns in each class 
respectively then: 

m i n ( m + , m  ) < m/2 
and a tight upper bound will be: 

which is again consistent with our results: 

{t m§ mn log  <#bits < log + 2 
2 

5.Conclusions 

These results show from a theoretical point of view that neural networks using limited 
precision weights are indeed a viable alternative to neural network using real valued 
weights. However, the results presented here do not lead directly to an algorithm 
which is able to actually give the network for a specific problem. 
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