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Abstract. As a special type of Self-Organizing Maps, the Dynamic Cell Struc-
tures (DCS) network has topology-preserving adaptive learning capabilities that
can, in theory, respond and learn to abstract from a much wider variety of com-
plex data manifolds. However, the highly complex learning algorithm and non-
linearity behind the dynamic learning pattern pose serious challenge to validating
the prediction performance of DCS and impede its spread in control applications,
safety-critical systems in particular.

In this paper, we improve the performance of DCS networks by providing
confidence measures on DCS predictions. We present the validity index, an esti-
mated confidence interval associated with each DCS output, as a reliability-like
measure of the network’s prediction performance. Our experiments using artifi-
cial data and a case study on a flight control application demonstrate an effec-
tive validation scheme of DCS networks to achieve better prediction performance
with quantified confidence measures.

1 Introduction

Often viewed as black box tools, neural network models have a proven track of record of
successful applications in various fields. In safety-critical systems such as flight control,
neural networks are adopted as a popular soft-computing paradigm to carry out the
adaptive learning. The appeal of including neural networks in these systems is in their
ability to cope with a changing environment. Unfortunately, the validation of neural
networks is particularly challenging due to their complexity and nonlinearity and thus
reliable prediction performance of such models is hard to assure. The uncertainties (low
confidence levels) existed in the neural network predictions need to be well analyzed
and measured during system operation. In essence, a reliable neural network model
should provide not only predictions, but also confidence measures of its predictions.

The Dynamic Cell Structures (DCS) network is derived as a dynamically grow-
ing structure in order to achieve better adaptability. DCS is proven to have topology-
preserving adaptive learning capabilities that can respond and learn to abstract from a
much wider variety of complex data manifolds [1,2]. The structural flexibility of DCS
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network has gained it a good reputation of adapting faster and better to a new region. A
typical application of DCS is the NASA Intelligent Flight Control System (IFCS). DCS
is employed in IFCS as online adaptive learner and provides derivative corrections as
control adjustments during system operation. Within this application, it has been proven
to outperform Radial Basis Function (RBF) and Multi-Layer Perceptron network mod-
els [3]. As a crucial component of a safety critical system, DCS network is expected to
give robust and reliable prediction performance in operational domains.

Our research focuses on validating and improving the prediction performance of
DCS network by investigating the confidence for DCS outputs. We present the Valid-
ity Index, as a measure of accuracy imposed on each DCS prediction. Each validity
index reflects the confidence level on that particular output. The proposed method is
inspired by J. Leonard’s paper on the validation of Radial Basis Function (RBF) neural
networks [4]. Leonard developed a reliability-like measure called validity index which
statistically evaluates each network output. Different from the pre-defined static RBF
network structure, the DCS progressively adjusts (grows/prunes) its structure including
locations of neurons and connections between them to adapt to the current learning data.
Thus, unbiased estimation of confidence interval is impossible to obtain through S-fold
cross-validation due to constraints of time and space. Yet, DCS emphasizes topological
representation of the data, while RBF does not. By the end of DCS learning, the data
domain is divided into Voronoi regions. Every region has a neuron as its centroid. The
“locality” of DCS learning is such that the output is determined by only two particular
neurons, the best matching unit and the second best matching unit. Intuitively, if the
Voronoi region of a neuron does not contain sufficient data, it is expected that the accu-
racy in that region will be poor. Based on the “local error” computed for each neuron,
our approach provides an estimated confidence interval, called the Validity Index for
DCS outputs.

The paper is organized as follows. The architecture of DCS network and its learning
algorithm are described in Section 2. The concept of validity index and its statistical
computation are presented in detail in Section 3. In Section 4, we further illustrate the
validity index in DCS networks by presenting the experimental results using an artificial
data set. Section 5 describes a case study on a real-world control application, the IFCS,
and presents experimental results on the validity index in DCS using flight simulation
data. In the end, conclusions are discussed in Section 6.

2 The Dynamic Cell Structures

The Dynamic Cell Structure (DCS) network can be seen as a special case of Self-
Organizing Map (SOM) structures. The SOM is introduced by Kohonen [5] and further
improved to offer topology-preserving adaptive learning capabilities that can, in theory,
respond and learn to abstract from a much wider variety of complex data-manifolds.
The DCS network adopts the self-organizing structure and dynamically evolves with
respect to the learning data. It approximates the function that maps the input space. At
last, the input space is divided into different regions, referred to as the Voronoi regions
[1,2,6]. Each Voronoi region is represented by its centroid, a neuron associated with
its reference vector known as the “best matching unit (BMU)”. Further, a “second best
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matching unit (SBU)” is defined as the neuron whose reference vector is the second
closest to a particular input. Euclidean distance metric is adopted for finding both units.
The set of neurons connected to the BMU are considered its neighbors and denoted by
NBR.

The training algorithm of the DCS network combines the competitive Hebbian
learning rule and the Kohonen learning rule. The competitive Hebbian learning rule
is used to adjust the connection strength between two neurons. It induces a Delaunay
Triangulation into the network by preserving the neighborhood structure of the feature
manifold. Denoted by Cij(t), the connection between neuron i and neuron j at time t
is updated as follows:

Cij(t + 1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 (i = BMU) ∧ (j = SBU)
0 (i = BMU) ∧ (Cij < θ)

∧(j ∈ NBR \ {SBU})
αCij(t) (i = BMU) ∧ (Cij ≥ θ)

∧(j ∈ NBR \ {SBU})
Cij(t) (i, j �= BMU)

where α is a predefined forgetting constant and θ is a threshold preset for dropping
connections.

The Kohonen learning rule is used to adjust the weight representations of the neu-
rons which are activated based on the best-matching methods during the learning. Over
every training cycle, let ∆wi = wi(t+1)−wi(t) represent the adjustment of the refer-
ence vector needed for neuron i, the Kohonen learning rule followed in DCS computes
∆wi as follows.

∆wi =

⎧
⎨

⎩

εBMU (m − wi(t)) (i = BMU)
εNBR(m − wi(t)) (i ∈ NBR)

0 (i �= BMU) ∧ (i /∈ NBR)

where m is the desired output, and 0 < εBMU , εNBR < 1 are predefined constants
known as the learning rates that define the momentum of the update process. For ev-
ery particular input, the DCS learning algorithm applies the competitive Hebbian rule
before any other adjustment to ensure that the SBU is a member of NBR for further
structural updates.

The DCS learning algorithm is diplayed in Figure 1. According to the algorithm,
N is the number of training examples. Resource values are computed at each epoch
as local error measurements associated with each neuron. They are used to determine
the sum of squared error of the whole network. Starting initially from two connected
neurons randomly selected from the training set, the DCS learning continues adjusting
its topologically representative structure until the stopping criterion is met. The adapta-
tion of lateral connections and weights of neurons are updated by the aforementioned
Hebbian learning rule and Kohonen learning rule, respectively. The resource values of
the neurons are updated using the quantization vector. In the final step of an iteration,
the local error is reduced by inserting new neuron(s) in certain area(s) of the input space
where the errors are large. The whole neural network is constructed in a dynamic way
such that in the end of each learning epoch, the insertion or pruning of a neuron can be
triggered if necessary.
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Fig. 1. A brief description of the DCS learning algorithm

It should be noted that while the DCS network is used for prediction, the computa-
tion of output is different from that during training. When DCS is in recall, the output
is computed based on two neurons for a particular input. One is the BMU of the input;
the other is the closest neighbor of the BMU other than the SBU of the input. In the
absence of neighboring neurons of the BMU, the output value is calculated using the
BMU only.

3 The Validity Index in DCS Networks

As a V&V method, validity check is usually performed through the aide of software
tools or manually to to verify the correctness of system functionality and the confor-
mance of system performance to pre-determined standards. The validity index proposed
by J. Leonard [4] is a reliability-like measure provided for further validity checking. Va-
lidity index is a confidence interval associated with each output predicted by the neural
network. Since a poorly fitted region will result in lower accuracy, it should be reflected
by poor validity index and later captured through validity checking.

Given a testing input, the validity index in DCS networks is defined as an estimated
confidence interval with respect to the DCS output. It can be used to model the accuracy
of the DCS network fitting. Based on the primary rules of DCS learning and certain
properties of final network structure, we employ the same statistical definition as for
confidence intervals and variances for a random variable to calculate the validity index
in DCS. The computation of a validity index for a given input x consists of two steps: 1)
compute the local error associated with each neuron, and 2) estimate the standard error
of the DCS output for x using information obtained from step 1). The detail description
of these two steps are as follows.
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1. The final form of DCS network structure is represented by neurons as centroids of
Voronoi regions. Since the selection of the best matching unit must be unique, only
those data points whose BMU are the same will be contained in the same region.
Therefore, all Voronoi regions are non-overlapping and cover the entire learned
domain. The data points inside each region significantly affect the local fitting ac-
curacy. The local estimate of variance of the network residual in a particular region
can be calculated over these data points contained in the region and then be associ-
ated with its representative neuron. More specifically, the local estimate of variance
s2

i associated with neuron i can be computed as:

s2
i =

1
(ni − 1)

ni∑

k=1

Ek,

where ni is the number of data points covered by neuron i and Ek is the residual
returned from the DCS recall function for data point k.
In Section 3, we show that the adjustment by competitive Hebbian learning rule
concerns connections only between the BMU and its neighbors. The further update
of weight values by Kohonen learning rule is performed only on the BMU and its
neighbors as well. Consequently, training data points covered by the neighboring
neurons of neuron i make proportional contributions to the local error of neuron i.
Considering such contributions, we modify the computation of the local estimate
of variance, now denoted by s

′2
i , as follows.

s
′2
i =

s2
i +

∑
j∈NBR Cijs

2
j

1 +
∑

j∈NBR Cij
.

As a result, the influence of all related data points is taken into account accordingly
based on connections, referred to as Cij , between the BMU and its neighbors. It
should be noted that since the DCS networks are often adopted for online learning,
no cross-validation is allowed. Hence, the residual calculated for each data point is
in fact a biased estimate of the expected value of residual due to the fact that each
data point itself contributed to its own prediction. Nonetheless, under the assump-
tion that there is no severe multi-collinearity and relatively few outliers exist in the
data, the probability that the deviation from the expected value will be significant
is very low and thus can be ignored.

2. Recall that the output produced by DCS is determined by the BMU and its closest
neighbor (CNB) of the given input. Thus, the local errors associated with these
two neurons are the source of inaccuracies of fitting. We use the standard error, a
statistic that is often used to place a confidence interval for an estimated statistical
value. Provided with the local estimate of variance for every neuron from step 1),
we now define the 95% confidence limit for the local prediction error estimate with
respect to neuron i as:

CLi = t.95

√

1 +
1
ni

s′i,

where t.95 is the critical value of the Student’s t-distribution with ni − 1 degrees
of freedom. The 95% confidence interval for the network output y given a testing
input is thus given by:



Predicting with Confidence - An Improved Dynamic Cell Structure 755

(y − (CLi + CLj)
2

, y +
(CLi + CLj)

2
),

where i = BMU and j = CNB with respect to the input x.

Now we slightly modify the DCS training algorithm in order to calculate the validity
index. Note that because all needed information is already saved at the final step of
each training cycle, without any additional cost required, we simply calculate s

′2
i for

each neuron after the learning stops. When the DCS is in recall for prediction, the
validity index is computed based on the local errors and then associated with every DCS
output. In order to complete the validity check, further examination needs to be done
by software tools or system operators. In the case of a control application, a domain
specific threshold can be pre-defined to help verify that the accuracy indicated by the
validity index is acceptable.

4 An Example with Artificial Data

In order to demonstrate the validity index in DCS network model as an improvement of
the network prediction, we present an example using an artificial data set. The DCS is
trained on a single-input, single-output function as seen in [4]:

f(x) = 0.2 sin(1.5πx + 0.5π) + 2.0 + ε,

where ε is a Gaussian noise.
We sample x’s from the interval [−1, 1] randomly. Therefore, at least initially, there

exist regions where the learning data points are not as dense as in the others. We then
obtain two different DCS network models by varying the stopping criterion. Figure 2
illustrates the validity index for these two DCS models, one with 13 neurons and the
other with 27 neurons, shown as plot (a) and plot (b), respectively. By comparing the
prediction performance of these two models using the validity index, which is shown as
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Fig. 2. Examples of validity index for a DCS model. (a): The model with 13 neurons. (b): The
model with 27 neurons.
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confidence band in both figures, we can conclude that the DCS network model shown
in Figure 2 (b) has better prediction performance. Furthermore, we can observe that
regions with sparse learning data have low confidence levels.

5 A Case Study

We investigate the prediction performance of DCS networks for the Intelligent Flight
Control System (IFCS). The IFCS is an example of adaptive flight control application
for NASA F-15 aircraft. As the post-adaptation validation approach, the validity index
is a major component of our validation framework for IFCS [7].

5.1 The Intelligent Flight Control System

The Intelligent Flight Control System (IFCS) was developed by NASA with the primary
goal to “flight evaluate control concepts that incorporate emerging soft computing al-
gorithms to provide an extremely robust aircraft capable of handling multiple accident
and/or an off-nominal flight scenario” [8,9].

The diagram in Figure 3 (a) shows the architectural overview of NASA’s first gen-
eration IFCS implementation using Online Learning Neural Network (OLNN). Figure
3 (b) shows the user interface of an experimental IFCS simulator [10]. The control con-
cept can be briefly described as follows. Notable discrepancies from the outputs of the
Baseline Neural Network and the Real-time Parameter Identification (PID), either due
to a change in the aircraft dynamics (loss of control surface, aileron, stabilator) or due
to sensor noise/failure, are accounted by the Online Learning Neural Network.

(a) (b)

Fig. 3. (a): The Intelligent Flight Control System and (b): NASA-WVU F-15 Simulator

The primary goal of OLNN is to accomplish in-flight accommodation of discrep-
ancies. The critical role played by the OLNN is to fine-tune the control parameters and
provide a smooth and reliable control adjustments to system operation. When OLNN
performs adaptation, its behavior has a direct consequence on the performance of the
flight control system. In such a safety-critical application, it is necessary to understand
and assure the prediction performance of the OLNN.
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Our previous research provides a validation framework for validating the OLNN
learning. It consists of a novelty detection tool to detect novel (abnormal) conditions
entering the OLNN, and online stability monitoring techniques to investigate the NN’s
stability behavior during adaptation [7,11,12]. Although learning can be closely moni-
tored and analyzed, when the system is in operation, it is probable that the predictions of
the OLNN will become unreliable and erroneous due to extrapolation. Therefore, pro-
viding a reliability-like measurement with respect to each particular output can further
enforce safety of the system in operation. In IFCS, the neural network that implements
the OLNN component is the Dynamic Cell Structure (DCS).

5.2 Experimental Results

With the aide of the high-fidelity flight control simulator, we are able to test our ap-
proach for adaptive flight control through experimentation in simulated environments.
The online neural networks in IFCS learn on the environmental changes and accommo-
date failures. They generate derivative corrections as compensation to the PTNN output
(see Figure 3). We use validity index to evaluate the accommodation performance and
validate the predictions of the DCS network. In our experiment, we simulate the online
learning of a DCS network on a failure mode condition and compute the validity index
in real-time.

We simulate the online learning of the DCS network under two different failure
mode conditions. One is the stuck-at-surface type of failure. The simulated failed flight
condition in this case is the aircraft¡s stuck left stabilator, which is simulated to stuck
at an angle of +3 degree. The other is the loss-of-surface type of failure. This simulated
failure has 50% of surface loss at the left stabilator. In each run, the DCS network
updates its learning data buffer at every second and learns on the up-to-date data set of
size 200 at a frequency of 20Hz. We first start the DCS network under nominal flight
conditions with 200 data points. After that, every second, we first set the DCS network
in recall mode and calculate the derivative corrections for the freshly generated 20 data
points, as well as their validity index. Then we set the DCS network back to the learning
mode and update the data buffer. While updating the data buffer, we discard the first
incoming 20 data points and add the freshly generated 20 data points to maintain the
buffer size, i.e., 200. The DCS network continues learning and repeats the recall-learn
procedure.

Figure 4 and Figure 5 show the experimental results of the simulations on these two
failures, respectively. Plot (a)’s show the final form of the DCS network structure at
the end of the simulation. As a three-dimensional demonstration, the x-axis and y-axis
represent two independent variables, α and β, respectively. The z-axis represents one
derivative correction, ∆Czα. The 200 data points in the data buffer at the end of the
simulation are shown as crosses in the 3-D space. The network structure is represented
by circles (as neurons) connected by lines as a topological mapping to the learning data.
Plot (b)’s present the validity index, shown as error bars. The x-axis here represents
the time frames. In both simulations, the failure occurs at the 100th data frame. We
compute the validity index for the data points that are generated five seconds before
and five seconds after the failure occurs. In total, Plot (b) illustrates the validity index
for 200 data points.



758 Y. Liu et al.

−50
−40

−30
−20

−10
0

10

−5

−4

−3

−2

−1

0

1
−1

0

1

2

3

4

5

6

7

Dynamic Cell Structures

20 40 60 80 100 120 140 160 180 200
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) (b)

Fig. 4. A stuck-at-surface failure simulation in real-time (20Hz). (a): The final form of DCS
network structures. (b): Validity Index shown as error bars for each DCS output.
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Fig. 5. Testing on loss-of-surface failure simulation data in real-time. (a): The final form of DCS
network structures. (b): Validity Index shown as error bars for each DCS output.

A common trend revealed in both figures by the validity index is the increasingly
larger error bars after the failure occurs. Then, the error bars start shrinking while the
DCS network starts adapting to the new domain and accommodating the failure. After
the failure occurs, the change (increase/decrease) of the validity index varies. This de-
pends on the characteristics of the failure as well as the accommodation performance
of the DCS network. Nevertheless, the validity index explicitly indicates how well and
how fast the DCS network accommodates the failures.

6 Conclusions

Known for its structural flexibility, DCS networks are adopted in safety-critical systems
for online learning in order to quickly adapt to a changing environment and provide re-
liable outputs when needed. However, DCS network predictions cannot be constantly
trusted because locally poor fitting will unavoidably occur due to extrapolation. We pro-
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pose the validity index in DCS for validating its prediction performance as an improve-
ment to DCS network models. The implementation of validity index is straightforward
and does not require any additional learning. Experimental results were obtained by
running tests on failure flight data collected from the IFCS simulator. The computed
validity index effectively indicates poor fitting within regions characterized by sparse
data. It demonstrates that the validity index is a feasible improvement to DCS and can
be applied to validate the DCS performance by predicting with confidence.
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