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Abstract. The automated construction of dynamic system models is an important application area for ILP. We
describe a method that learns qualitative models from time-varying physiological signals. The goalis to understand
the complexity of the learning task when faced with numerical data, what signal processing techniques are required,
and how this affects learning. The qualitative representation is based on Kuipess. The learning algorithm

for model construction is based on Coier@sNMODEL. We show tha€sim models are efficiently PAC learnable

from positive examples only, and th@ENMODEL is an ILP algorithm for efficiently constructing@sim model.

We describe botlsENMODEL which performs RLGG on qualitative states to leai@&m model, and the front-

end processing and segmenting stages that transform a signal into a set of qualitative states. Next we describe
results of experiments on data from six cardiac bypass patients. Useful models were obtained, representing both
normal and abnormal physiological states. Model variation across time and across different levels of temporal
abstraction and fault tolerance is explored. The assumption made by many previous workers that the abstraction
of examples from data can be separated from the learning task is not supported by this study. Firstly, the effects
of noise in the numerical data manifest themselves in the qualitative examples. Secondly, the models learned are
directly dependent on the initial qualitative abstraction chosen.
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1. Introduction

Various learning algorithms have been developed in recent years to automatically con-
struct qualitative models from system behaviors (Schut & Bredeweg, 1996). There has
been a continuing drive to evolve more sophisticated approaches to this learning task,
in the main using artificial data sets (Bratko, Muggleton &3éd; 1991, Vasék, 1991,
Richards, Kraan & Kuipers, 1992, Say & Kuro, 1996). As such, these efforts have essen-
tially insulated the learning algorithm from any complexities introduced by the process of
abstracting examples from raw data. The goal of this work is to understand the complexity
of the learning task when faced with real-time numerical data, to understand what signal
processing techniques are required to extract examples, and to understand how this affects
the learning problem. To this end, we apply a standard qualitative model learning method
to the task of learning models from real-time physiological signals. The qualitative rep-
resentation of physiological models is adopted from Kuip&ysim (Kuipers, 1986). The
learning algorithm is based on Coier&3NMODEL system (Coiera, 1989), to which we
have added signal processing capabilities.
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The task chosen for the study is to learn models of cardiovascular physiology from
patient data, gathered during surgery. Physiological models have a central role in medicine,
encapsulating our understanding of experimentally observed physical processes. They act
both as theories whose predictions can be used for further research, and as clinical models
to assist in the delivery of therapy. However, constructing physiological models by hand
is difficult and time-consuming. Further, exact quantitative models are often unavailable
since many physiological systems are incompletely understood. In such circumstances,
gualitative models can permit useful representations of a system to be developed in the
absence of extensive knowledge.

The paper is structured as follows. Qualitative reasoning,@swl1 in particular, are
introduced first. Th&ENMODEL algorithm is described next. We show tiégtim models
are efficiently PAC learnable from positive examples only, and@&tMODEL is an ILP
algorithm for efficiently constructing@sim model consistent with a given set of examples,
if one exists. Next, we describe the front-end processing and segmenting stages that trans-
form a signal into a set of qualitative states that are processétEbyionEL. Finally, we
describe results of experiments using the learning system on data segments obtained from
six patients during cardiac bypass surgery. Our work shows that useful physiological mod-
els are efficiently learnable from physiological signals usingteMoDEL algorithm and
appropriate signal processing techniques. Model variation across time and across different
levels of temporal abstraction and fault tolerance is then explored. However, the assump-
tion made by many previous workers that the task of abstracting examples from data can
be separated from the learning task is not supported by this study. Firstly, the effects of
noise in the numerical data manifest themselves in the qualitative examples. Secondly, the
models learned are directly dependent on the initial qualitative abstraction chosen.

2. Qualitative Reasoning

A common way of modelling a dynamic system is to use a set of differential equations.
The differential equations capture the structure of the system by specifying relationships
among the functions of the system. From the equations and an initial state, we can derive
a quantitative system behavior using analytical methods or numerical simulation.

A qualitative abstraction of the above procedure allows us to work with an incomplete
specification of the system. A qualitative model can be represented by a set of qualitative
constraints, or qualitative differential equations (QDES). From the QDEs and an initial
state, we can derive a qualitative system behavior using qualitative simulation. Figure 1
illustrates this (Kuipers, 1986).

Among different qualitative representations developed in past years, Kuipsng' has
beenwidely used, and has had some successin medical reasoning applications (Coiera, 1992,
Ironi, 1992, Balestra & Liberati, 1992, Kuipers, 1985).
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Figure 1. Qualitative reasoning is an abstraction of mathematical reasoning with differential equations and
continuously differentiable functions.

2.1. Qualitative Model Constraints

Qsim (Kuipers, 1986) represents a system model through a set of qualitative constraints on
the functions of the system. These include four arithmetic constraints:

1. add(f.g,h) <= f(t) + g(t) = h(t)
2. mult(f,g,h) <= f(t) x g(t) = h(t)
3. minus(f,g) <= f(t) = —g(t)
4. deriv(f.g) <= f'(t) = g(t)
and two monotonic function constraints:

1. M*(f,g9) < f(t) = H(g(t)) where H(z) is a strictly monotonically increasing
function

2. M~(f,g9) < f(t) = H(g(t)) where H(z) is a strictly monotonically decreasing
function

2.2. Qualitative System Behavior

A system’s behavior can be described in terms of a number of system functions which vary
over time. Every system functiof(t) has associated with it a finite and totally ordered set
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of landmark valuesvhich include all the values of interest for the function, and a finite and
totally ordered set adlistinguished time pointshich include all time points at which any
of the system functions reaches a landmark value.

The qualitative state of a system functigrat a distinguished time poirtis defined as
a pair< value, direction >. value is the value off att, and is either a landmark value
or an interval between two landmark valudsrection is the direction of change gf att,
and is one ofnc, std, or decdepending on whethefis increasing, steady or decreasing at
t respectively. A temporal sequence of qualitative stateSfofms a qualitative behavior

of f.

2.3. Qualitative Simulation:Qsim

QsiM takes a qualitative model and an initial state, and generates all possible system
behaviors consistent with the constraints in the model. Starting with the initial Qsite,
repeatedly takes an active state and generates all the possible next-state transitions. These
transitions are then filtered according to restrictions posed by the constraints in the system
model.

3. Learning Qualitative Models

GENMODEL (Coiera, 1989) goes in the opposite directior(ysim. It takes a system be-
havior and generates all the qualitative constraints that permit the system behavior. The
GENMODEL algorithm works by first generating the finite set of all plausibly correct qual-
itative constraints with different permutations of the system functions. Then it progresses
along the state history, examining subsequent system states in turn. At each state it suc-
cessively prunes all constraints that are inconsistent with each state transition. The set of
gualitative constraints remaining at the end representnth&t specifienodel that permits

the given behavior. Any subset of this model also permits the given behavior, and therefore
is also a possible model of the system.

3.1. GENMODEL

GENMODEL learns qualitative models by taking a sequence of state descriptions from a dy-
namic behavior and performing arelative least general generalization (RLGG) (Plotkin, 1971)
on them. The algorithm works in a specific to general manner, and so the models that are
learned are the most specific ones that explain the observed behaviors, expressed in the
more general QDE concept language (Coiera, 1992).

GENMODEL is presented with a sequence of qualitative state descriptions, describing a
single time-varying behavior. The program is equipped with background knowledge of
legal QDE types, and rules for deciding which value combinations satisfy those qualita-
tive equation types. These rules are taken from (Kuipers, 1986) and represent arithmetic
definitions of the qualitative constraint&.ENMODEL takes the values of the time-varying
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functions that compose a state description, and using the QDE definitions in its background
knowledge as templates, generates an exhaustive set of possible QDEs. Each such QDE
is a clause instantiated with the parameter values presented in the example state, and to-
gether these represent all the combinations of QDE types and function pairings that may
potentially exist. For example, given an example sfateith system functions, b andc,
at distinguished time poin:
S :a(ty) =< 0,dec >,b(tg) =< —3,dec >, c(ty) =< 3, std >
and the QDEudd(z, y, z) which defines additionGGENMODEL would initially generate:
add(a/0,b/ — 3,¢/3)
add(a/0,¢/3,b/ — 3)
add(b/ —3,a/0,c¢/3)
add(b/ —3,¢/3,a/0)
add(c/3,a/0,b/ — 3)
add(c/3,b/ — 3,a/0)
Each such clause is then tested against the mathematical QDE definitions in the background,
and those that describe illegal value combinations are filtered. Successive example states

repeat the filtering process by testing the surviving clauses, and only those that match the
subsequent examples are retained. The result of filtering would b@ thattODEL retains:

add(b/ — 3,¢/3,a/0)
add(c/3,b/ — 3,a/0)

since these satisfy the background definitioru@f. These clauses are retained in unin-
stantiated form as the generalizations:

add(b, ¢, a)
add(c, b, a)

Since these are mathematically identical, one of the two clauses would be deleted by a
straightforward redundancy check.

3.1.1. TheGENMODEL Algorithm

TheGENMODEL algorithmis implemented in UNSW Prolog V4.2. The original implemen-
tation of GENMODEL described in (Coiera, 1989) is extended here to include dimensional
analysis and fault tolerance.

Input:

e A set of system functiondyunctions.
e A set of units for the system functionSnits

e An ordered set of values at distinguished time points for each system function,
Landmarks.
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e A set of qualitative statestates.

Output:
A gualitative model which consists of all constraints that are consistent with the state
history and dimensionally corredt/ odel.

Algorithm functions used:

search() Afunction for searching corresponding values from a set of qualitative states.
The values of two functions are said to correspond if they occur at the same time
point. Corresponding values are used to define legal behaviors of some qualitative
constraints (Kuipers, 1986).

dimcheck() A function for checking dimensional compatibility of functions within a
proposed constraint.

check() A function for checking validity of a constraint given a qualitative state and
sets of corresponding values.

reduce() A function for removing redundancy from constraints. For example, since
M (A, B) and M+ (B, A) specify the same relationship, one of them can be
removed.

Method:

e Search the entire state hista$yates for sets of corresponding values.

e Generate the initial search space by constructing all dimensionally correct con-
straints and using all permutations of system function8imctions.

e Successively prune inconsistent constraints using each qualitative stéte .
e Remove redundancy from the remaining constraints.
e Output the result as a qualitative model.

Algorithm:

begin
Constraints — (;
Correspondings — search(States);
for eachfi, f2 in Functions such thatf; # f» do
for eachpredicate2 in {inv, deriv, inv_deriv, M+, M~} do
if dimcheck(predicate2, f1, f2, Units) then
addpredicate2(f1,f2) to Constraints;
for eachfi, fa, f3 in Functions such thatf; # fo#f3 do
for eachpredicate3 in {add, mult} do
if dimcheck(predicate3, f1, fa, f3, Units) then
addpredicate3(f1,f2,f3) to Constraints;
for eachs in States do
for eachc in Constraints do
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if notcheck(c, s, Landmarks, Correspondings) then
deletec from Constraints;
reduce(Constraints);
Model + Constraints;
end

3.1.2. Dimensional Analysis

Before generating a constraittENMODEL checks for compatibility of units among func-
tions within the constraint. This approach has been used by several other learning systems,
including ABacus (Falkenhainer & Michalski, 1986), a system for quantitative discovery,
andMisq (Richards, Kraan & Kuipers, 1992), a system based UpaNMODEL.

The dimension of each function is specified at the beginning in terms of the type of
quantity the function represents, elgtime for the heart ratel{ R), volume for the stroke
volume (SV), andvolume/time for the cardiac output{O). This allows the constraint
mult(HR, SV,CO) to be generated sindd /time) x (volume) = volume/time, but
does not allownult(HR,CO, SV) oradd(HR, SV, CO) to be generated since they are
dimensionally incorrect. The functional constraidts™ and M~ are not restricted by
dimensions.

3.1.3. Fault Tolerance

For domains involving noisy learning data, such as hemodynamic monitoring, it is difficult

to implement signal processing which filters the noise and restores the signals completely.
Therefore we need to incorporate fault tolerance @GteNMODEL. We adopt a simple
approach by tagging a counter onto every constraint in the initial search space. This counter
keeps track of how many example states the constraint has failed to match. We set a noise
leveln to a fraction of the total number of states in the example behavior. A constraint has
to be inconsistent with this many states before it is pruned.

3.2. Probably Approximately Correct Learning

A common setting in machine learning is as follows: given a set of examples, produce a
concept consistent with the examples that is likely to correctly classify future instances.
The Probably Approximately Correct (PAC) model of learning introduced by Valiant
(Valiant, 1984) is an attempt to make precise the notion of “learnable from examples” in
such a setting. (Kearns & Vazirani, 1994) and (Rivest, 1987) describe this model in detail.

Stated informally, PAC learnability is the notion that the concept acquired by the learner
should closely approximate the concept being taught, in the sense that the acquired concept
should perform well on new data drawn according to the same probability distribution as
the examples used for learning.
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To define PAC learnability formally, we say that a concept cldss efficiently PAC
learnable if there exists an algorithdnand a polynomia(- , - , -) such that for alh, ¢, and
6, all probability distributions?,, on X,,, and all concepts € C,,, A will with probability
at leastl — §, when given a set of examples of size= s(n, 1, +) drawn according to
P, output ac’ € C,, such thaierror(¢’) < e. Further,A’s running time is polynomially
bounded i andm.

3.2.1. Proving PAC Learnability

One approach of PAC learning due to Blunetral. (Blumer, et al., 1987) is as follows:
draw a “large enough” set of examples accordin@ioand find an algorithm which, given
the examples, outputmny conceptc € C,, consistent with all the examples in polynomial
time. If there exists such an algorithm for the concept das§’ is said to bepolynomial-
time identifiable Blumer shows that a sample sizesatisfying the following lower bound
is sufficient:
1 1

m > . (in|Cy] —|—ln6)
C, is said to bepolynomial-sizedf in|C,| is polynomial inn. Therefore ifC,, is
polynomial-sized, them is polynomial inn, 1 and.

An algorithm that draws at least this many examples according,tand outputs any
concept consistent with all the examples in polynomial time is a PAC learning algorithm.
Therefore ifC,, is polynomial-sized and polynomial-time identifiable, then it is efficiently
PAC learnable.

3.2.2.  An Occam Algorithm for Learning Conjunctions

In (Valiant, 1984) Valiant provides an algorithm for PAC learning conjunctions of single
literals, known as monomials. The algorithm is capable of PAC learning from positive
examples only. In Section 3.2.3 we will map the problem of identifyin@sam model
consistent with a given set of examples to the problem of identifying a monomial consistent
with a given set of examples.

First we calculate the number of examples needed. The number of conjunctions over
the Boolean variables,, ..., z, is 3" since each variable either appears as a positive or
negative literal, or is absent entirely. Applying the formula for the lower bound in the
previous section, we see that a sample of 61£& + @) is sufficient for PAC learning.

The algorithm starts with the hypothesis conjunction which contains all the literals:

=2 ANTLA ATy AT,

Upon each positive exampte the algorithm updates by deleting the literat; if z; = 0
in the example, and deleting the litergl if z; = 1 in the example. Thus the algorithm
deletes any literal that contradicts the data.
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Since the algorithm takes linear time to process each example, giveramples with
m as calculated above, the running time is boundedrlyand hence is bounded by a
polynomial inn, % and % Therefore this is an efficient PAC learning algorithm for the
class of monomials.

3.2.3. QsiM Models are PAC Learnable

In Section 3.2.1 we concluded that to prove that the concept clagsmof models is PAC
learnable, it suffices to prove that the class is polynomial-sized and that it is polynomial-time
identifiable. The following two sections provide these proofs.

The Class ofQsiMm Models is Polynomial-Sized

To show that the concept class@$im models is polynomial-sized, we begin by noting
that in theQsim formalism there are five kinds of two-function constrairits, deriv,
inv_deriv, M andM ~), and two kinds of three-function constraintsl{ andmult).
Therefore withn system functions, the number of non-redundant and mathematically
plausibleQsiv constraintsV is at most:

N<b5n(n—1)+2n(n—1)(n—2)
Therefore the number of possiligsimM models is at most:
|QSIM—M0dels(n)| _ 2N < 25n(n—1)+2n(n—1)(n—2)

since eachl)siM constraint can either be present or absent in the model. This implies
that:

lg (|QSIM—Models(n)|) = N = O(n®)

Therefore the concept class@kim models is polynomial-sized.

To PAC learn aQsim model, we needn examples wheren has the following lower
bound:

1 1
m>=(In2Y +1n <)
€ o

Qsim Models are Polynomial-Time Identifiable

In this section we show th&ENMODEL is an algorithm for efficiently constructing a
QsiM model consistent with a given set of examples. We prove this by mapping the
problem of identifying aQsim model consistent with a given set of examples to the
problem of identifying a monomial consistent with a given set of examples.



186 D.T. HAU AND E.W. COIERA

We view eachQsim model as a conjunction af)sim constraints, and eacsim
constraint as a Boolean variable. Then learriysym models is equivalent to learning
monotone conjunctiodswith V Boolean variables, whet® is the number of possible
QsIM constraints as calculated in the previous section.

The algorithm starts with the hypothesis of a monotone conjunction which contains all
N of the Boolean variables, i.e. all possil)siv constraints:

d=x1N-ANzy

For each positive examplerepresenting a qualitative state givenGe@NMODEL, the
algorithm updates’ by deleting the Boolean variable if the correspondindlsim
constraintis inconsistent with the example. Since each Boolean varigtieresponds

to aQsiM constraint, the algorithm prunes any constraint that is inconsistent with each
qualitative state. This is identical to the approach takefzlB¥MODEL.

Now it remains to show thakENMODEL takes polynomial time to perform each step
in learning aQsiM model. We review these steps:

e Search the entire state history for sets of corresponding valuesn Boalitative
states, there are at mostsets of corresponding values, and the search @kes)
time. Forn system functions, this is equivalent@{n?) time.

e Generate the initial search space by constructing all plausibly correct constraints
with different permutations of system functions. Again, fosystem functions,
this takesO(n?) time.

e Successively prune inconsistent constraints upon each qualitative state. Checking
for consistency of a constraint with a qualitative state involves:

— Checking landmark values and directions of change. This takes constant time.

— Checking corresponding values. Since there are at mastts of correspond-
ing values, this take®(m) time, or equivalentlyO(n?) time.

Therefore, for each qualitative state, checking for consistency with(alf) con-
straints requires a total 6f(n°) time. Form qualitative states, the total processing
time isO(n?) for this step.

e Remove redundancy from the remaining constraints. Since we started offawith
constraints, there are at most the same number of constraints remaining in the final
model. Removing redundancy involves comparing constraints with one another,
and require®)(m?), or equivalentlyO(n%) time.

e Output the result as a qualitative model.

Therefore the total time taken ByENMODEL in learning aQsiv model isO(n?). Since
this is polynomial inn, Qsim models are polynomial-time identifiable BjENMODEL.
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3.2.4. Applicability of PAC Learning

How large a sample size is needed to learn a qualitative model? For our experiments, we used
8 different physiological signals. Out of the 952 constraints representing all the possible 2
and 3 signal combinations, only 99 of these represent non-redundant and mathematically
plausible constraints. Therefore the sample sizieas the following lower bound:

1 1
m> = (In2% +1n <)
€ o

For each of the training sets in our experiments (see Section 6) we used data segments
containing 1000 examples. This sample size corresponds to an accuracy and a confidence
level of 93% € = 6 = 0.07).

There are however a number of characteristics of the qualitative model learning task that
deviate from the PAC formulation.

e The quantitative to qualitative abstraction of data means that there is a large redundancy
inexamples. While a system’s behavior may be sampled many times over a period, if the
system behavior does not qualitatively change, then all the example data points during
the sample period represent an identical qualitative state. Effectively this means that
all these data points have been compressed into a single example. Further, the number
of qualitative states drawn from a data sample increases as the temporal abstraction
becomes finer grained. The abstraction mechanisms used in this work are described in
Section 4.2.

e Qualitative states cannot easily be modellednaependenexamples drawn from an
underlying probability distribution. In a qualitative system behavior, the next state
will always be correlated to its predecessor for two reasons. Firstly, there are math-
ematical constraints on the possible transitions a function can make between states
(Kuipers, 1986). Further, successive states are correlated because of the presence of
functional constraints limiting the values that functions can take.

While example states from within a behavior cannot be modelled as independent exam-
ples, the selection afxample behaviorsould be. Thus it may ultimately make more
sense to formulate the PAC sample size bounds not on the number of example states,
but on the number of example histories.

e Signals may be corrupted by artifact and noise. The PAC learning algorithm previously
developed assumes learning examples to be noise-free. In noisy domains, one would
require more examples than in a noise-free one.

3.3. Comparison ofSENMODEL with Approaches to Learning Qualitative Models
3.3.1. GENMODEL does not require negative examples.

GENMODEL learns from positive examples only. While modern ILP systemsitikecoL
(Muggleton, 1995) are similarly able to handle only positive examples, older ILP systems
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like GoLEM (Muggleton, 1992) anél'o1L (Quinlan, 1990) have an additional requirement
for negative examples. Most reported attempts at learning qualitative models have however,
been made with these older systems.

Bratkoet al. (Bratko, Muggleton & Vasék, 1991) report that learning the U-tube model
with GOLEM requires six hand-generated negative example states, in addition to the three
positive example states needed GgnMODEL. For each iteration ilGoLEM, a fixed
number of clauses are first generated by relative least general generalization (RLGG)
(Plotkin, 1971). The clause that covers the most positive examples and none of the neg-
ative examples is chosen for propagation to the next iteration. In comparison, with di-
mensional analysi&:ENMODEL comes up with exactly the six constraints for the U-tube
system. (The U-tube system is a standard reference problem in qualitative modelling
(Bratko, Muggleton & Vasék, 1991, Coiera, 1989).)

In (VarSek, 1991), Vasék's genetic algorithm approach requires 17 positive example
states and 78 negative example states to learn the U-tube model. In each cycle, candidate
solutions are selected for “reproduction” based on a fithess function which is the sum of the
fraction of positive and negative examples covered correctly and a “bonus” indicating the
size of the solution.

In both approaches, itis essential for the user to give the “right” negative examples. Badly
chosen negative examples or an inadequate number of them will cause an inappropriate
clause to be propagated to the next iteration, which will ultimately affect the concept output
in the end. However, there are no existing rules to guide the selection of negative examples.
It could be argued that the dimensional analysis used in the present experiments is a form of
directed negative example generation, utilizing background knowledge about the structure
of the domain.

3.3.2. GENMODEL does not require ground facts for background knowledge

GoOLEM accepts definitions of background predicates in terms of ground facts. In learn-
ing QsiM models, explicit ground facts describirigsim constraint definitions must be
generated according to functions and landmark lists relevant to the modelling problem at
hand. In (Bratko, Muggleton & Vaek, 1991), Bratket al. report that learning the U-tube
model requires a total of 5408 ground facts as background knowledge. This is already a
simplification which excludes rules regarding corresponding values idAfieand M~
constraints, rules regarding consistency of infinite values irtlaeconstraint, and rules

on themult constraint. In a more complex domain such as human physiology which po-
tentially involves long landmark lists, the size of the background knowledge required can
grow exceedingly large.

GENMODEL stores theQsim constraint definitions as non-ground clauses in its back-
ground. These clauses are instantiated with values from examples, and when these clauses
satisfy the constraint definitions, they are stored as active hypotheses. In this réspect,
MODEL’S strategy is more closely related to recent ILP systemsHikecor (Muggleton,

1995) than it is tdGoLEM or FoIL.
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3.3.3. GENMODEL is guaranteed to produce a correct model if one exists.

SinceGENMODEL exhaustively generates all constraints consistent with an initial example
and its background knowledge, and then prunes these constraints with successive examples,
it is guaranteed to produce a correct model if one exists within its description language.

On the other handixoLEM and genetic algorithms perform heuristic searches across the
concept spacex0oLEM performs hill climbing with positive and negative example coverage
as the heuristic guiding the search. Genetic algorithms similarly perform hill climbing with
the fitness function serving as the heuristic. Since neither heuristic is a perfect quality mea-
surement of the current modé€loLEM and genetic algorithms are not guaranteed to produce
a correctmodel even if one exists, unless the search becomes exhaustive. Burthi,is
unable to learn non-deterministic concepts likkl (Bratko, Muggleton & Vasék, 1991).

3.3.4. GENMODEL does not attempt to discover new variables

Unmeasured variables may participate in significant relationships with those variables that
are included in the example dat&ENMODEL as described here, does not look for such
variables, but confines its search to the space of possible relationships between measured
variables.

The search for new variables can be guided by postulating extensions to relationships
already in the data. For example, if the data supports the relationghif4, B), then one
could postulate a new variab(e such thatdd(A, C, B). Such approaches have featured
in a number of algorithms focussed on the qualitative learning problem, inclidisg
(Richards, Kraan & Kuipers, 1992) aiGiSI (Say & Kuro, 1996).

Since it cannot be guaranteed that all important variables have been included in a data set,
such facilities are ultimately necessary in attacking the type of real-time data sets explored in
this paper. However, the focus of the present work is to establish how reliably relationships
amongstknownvariables can be learned. Given the difficulties associated with handling
noise, and temporal abstraction that will be discussed in Section 6.3, current approaches to
variable creation may need to be modified in this light.

3.3.5. Data Handling

None of the current approaches to learning qualitative models have addressed the problem
of learning from raw numerical data in any significant way. Ateacus system used sim-

ple error margins to accommodate noise in a set of static data about chemical compounds
(Falkenhainer & Michalski, 1986). All the “special purpose” systems for learning qualita-
tive models have assumed that the learning algorithm is presented with a set of example
gualitative behaviors that are correct (Say & Kuro, 1996). This effectively insulates the
learning system from any problems that may exist in the raw data. It also assumes that the
learning stage does not need to take into account any effects from the process of abstracting
gualitative examples from numerical data. There is no evidence that such assumptions are
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valid, and one of the prime motivations for the present work is to explore how the qualitative
abstraction stage, which generates examples, influences the learning stage.

4. System Architecture
4.1. Overview

The goal of the learning system is to generate qualitative models from physiological signals.
The overall architecture of the system is illustrated in Figure 2.

Processed
Signal x[n] | Front-end | Signalyln] Qualitative Qualitative
— = Processing & Derivative Segmenter Behavior GENMODEL %Model
y'[n]

Figure 2. Overall architecture of the learning system.

The physiological signal is first processed by a front-end system, which outputs a filtered
signal and its derivative. These are entered into the segmenter to produce a set of qualitative
states GENMODEL then uses these states to generate a qualitative model. The architecture
used for front-end processing of physiological signals is shown in Figure 3.

In overview, the signal first passes through an artifact filter which removes various artifacts
and linearly interpolates the intervals of the artifacts removed. The resulting signal is then
processed by a median filter which removes impulsive features. A Gaussian filter then

Incoming Signal
x[n]

Artifact
Filter
Median
Filter

Gaussian
Filter

Differentiator

yln] y'[n]
Processed Signal Derivative Signal

Figure 3. Architecture used for front-end processing of physiological signals.
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smooths the signal to the desired level of temporal abstraction by convolving it with a
Gaussian kernel of an appropriate standard deviationFinally, this smoothed signal

is passed through a differentiator to obtain its derivative. The smoothed signal and its
derivative are passed on to the segmenter for segmentation, producing a set of qualitative
states describing the system behavior represented by the signal.

4.2. Temporal Abstraction

A complex system such as the cardiovascular system involves processes operating at dif-
ferent time scales. From the same set of signals, depending on the particular time scale we
are interested in, different sets of qualitative states and therefore different models can be
obtained.

In (Kuipers, 1987) Kuipers describes a temporal abstraction relation among mechanisms
operating at significantly different time scales. Processes that occur significantly faster than
the time scale of a model can be considered as instantaneous with respect to the model,
while those that occur much slower can be considered as constant. For example, if we look
at a system on the order of hours, processes that occur within seconds can be considered
as instantaneous, while those occurring over days can be viewed as constant. Therefore
if we perturb a system by increasing a functidn and observe that another functiéh
responds to this change within seconds by increasing its value, then we can still model the
relationship betweer and B with the functional constraimt/ * (A, B) even though there
is a delay between the perturbation and the response, since the response within seconds is
seen as occurring instantaneously at this time scale.

The temporal abstraction at which data is processed depends on two processes:

1. First, a Gaussian filter is used to remove changes lasting significantly shorter than the
time scale of interest. This avoidéiasing(Hau, 1994).

2. Next, the segmenter determines that critical points of different functions that occur
within 7 sampling periods are labelled as occurring at the same distinguished time
point, wherer corresponds to the time scale of interest.

4.2.1. Gaussian Filter

The idea of using a Gaussian filter to analyze changes in a signal at different scales is
borrowed from the technique atale-space filteringn edge detection. Scale-space fil-
tering constructs hierarchic symbolic signal descriptions by transforming the signal into

a continuum of versions of the original signal convolved with a kernel containing a scale
parameter. In an image, changes of intensity take place at many spatial scales depending
on their physical origin. Marr and Hildreth (Marr & Hildreth, 1980) observed that detect-
ing zero crossings in the Laplacian of the intensity values across different scales enables a
system to distinguish a physical edge from surface markings or shadows. They suggested
that the original image be band-limited at several different cut-off frequencies and that an
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edge detection algorithm be applied to each of the images. The resulting edge maps have
edges corresponding to different scales.

In our learning system, we need to segment a set of signals at different time scales. We
can do so by band-limiting our original signals at several different cut-off frequencies and
segmenting the signals by detecting zero crossings in the first derivative of the signals at
different scales. The segmentation then produces a set of qualitative behaviors at different
time scales which can be given @ENMODEL to produce qualitative models at different
scales.

To band-limit an image at different cut-off frequencies, the impulse response of the
lowpass filter proposed by Marr and Hildreth is Gaussian shaped. This choice is motivated
by the fact that the Gaussian function is smooth and localized in both the spatial and
frequency domaind.A smooth impulse response is less likely to introduce any changes
that are not present in the original shape. A localized impulse response is less likely to shift
the location of edges. Further, Yuille and Poggio (Yuille & Poggio, 1986) and Badtald
(Babaud, et al., 1986) have separately shown that the Gaussian filter has a unique property
concerning zero crossings of the first derivative of the filtered sigmabving from coarse
to fine scale, new zero crossings appeatr, but existing ones never disappear. Consequently,
the extrema can be used to construct a tree describing the successive partitioning of the signal
into finer subintervals as new zero crossings appear at finer scales. This partitioning of the
signal by extrema moving from coarse to fine scale forms a strict hierarchy. Scale-space
filtering in edge detection can be seen as a form of the more general technique of wavelet
transforms in multi-resolution signal analysis, with the wavelets here being Laplacians of
shifted Gaussians, and signal edges located by zero crossings of the wavelet transform
(Strang, 1989).

We adopt a similar approach for segmenting our signals. The impulse response of the
lowpass filter used is based on the Gaussian function, wittplaced byn to yield a
discrete-time functiog|n|:

1 n?

e 202

gln] = 5o

for —oo < n < oo ando > 0. The standard deviation determines the cut-off frequency

with a largero corresponding to a lower cut-off frequeneytherefore determines the time
scale we are operating at, with a smalecorresponding to a finer time scale and a larger

o corresponding to a coarser scale. The frequency response of the lowpass filter is the
Fourier transform ofy[n] which is also Gaussian shaped. The infinite impulse response
g[n] is multiplied by the Hanning window to obtain a finite impulse response (E}R)]
(Oppenheim & Schafer, 1989).

The length of the finite impulse respon&eas set to three standard deviations from the
origin. Thereforel is proportional to the level of temporal abstraction. In our experiments,
we use values of at 10, 20, 40, 60, 80 and 100, corresponding to valuds af61, 121,
241, 361, 481 and 601 respectively.
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Figure 4. Equivalent frequency responses of a Gaussian filter in cascade with a bandlimited differentiator for
o = 20,40, 60, 80, 100.

4.2.2. Differentiator

The differentiator is implemented as an FIR filter based on the frequency response of
a band-limited differentiator (Oppenheim & Schafer, 1989). It is interesting to note that
the lowpass filtering operation of the Gaussian filter and the derivative operation of the
differentiator may be combined to obtain a single filter with the derivative of the Gaussian
function as its impulse responag;(t):

t 2
hga(t) = g'(t) = ——27“736 207

The corresponding frequency response is as follows:
Q202
Hya(9) = j0e™ "5
This frequency response is plotted in Figure 4.

From the frequency response, we note that the combined operation is equivalent to band-
pass filtering wherer controls the bandwidth of the bandpass filter. Band-limiting the
signals tends to reduce noise, thus reducing the noise sensitivity problem associated with
detecting zero crossing points. With increasing values,adhe bandwidth of the band-
pass filter decreases and therefore more noise rejection is achieved. This agrees with our
expectation since larger valuesotorrespond to coarser time scales.

4.2.3. Segmenter

The segmenter consists of two partfuaction segmentdor each function of the system,
and agqualitative behavior generatdo coordinate the whole segmentation process.
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The function segmenter segments each signal either at zero crossings of its derivative
obtained from the differentiator, or when the segmenter of another function has detected a
zero crossing. Itthen looks up its local landmark list to see if there is any existing landmark
within a tolerance from the current value of the function. If so, the existing landmark
becomes the qualitative value of the function in this state. If not, the segmenter creates a
new landmark corresponding to the current value of the function, returns this landmark as
the qualitative value of the function in this state, and stores the new landmark in the local
landmark list. The direction of change of the function in the current state is obtained by
observing the sign of the derivative. A positive derivative correspondsd¢increasing).

A negative derivative correspondsdex (decreasing). A derivative within a tolerance from
zero corresponds tgd (steady). The qualitative value and the direction of change together
form a qualitative state of the function.

The qualitative behavior generator keeps track of distinguished time points and coordi-
nates the entire segmentation process. Each function’s segmenter stores its values over the
previousr time points. When any one or more of the function segmenters detects a zero
crossing in their derivatives, the generator waitsif@ampling periods to see if any other
segmenters also detect a zero crossing in their derivatives. The parartieteefore deter-
mines the level of temporal abstraction, as discussed in Section 4.2. The generator labels all
times within these sampling periods as the same distinguished time point. It then signals
all segmenters to segment their signals at the time point that is the average for all functions
that have had a zero crossing detected. The generator then collects a qualitative state of
each function from its segmenter, and combines the qualitative states of all the functions
of the system into a qualitative state of the system at the current distinguished time point.
A series of such qualitative states form a qualitative behavior of the system which is input
into GENMODEL.

5. Physiological Signals and Models

The cardiovascular system is a relatively well understood physiological system, is easily
measured through a number of signals, and is clinically important. It thus provides us with
an excellent real world domain to test the applicability of ienmMoDEL approach.

5.1. Physiological Signals from Hemodynamic Monitoring

Hemodynamic monitoring provides information on many aspects of the cardiovascular
system (CVS), including heart rate, arterial blood pressure, central venous pressure, skin
temperature, core temperature and others. The data used in our study consists of eight such
signals derived at 1 Hz. These are:

e Heartrate (HR)
e Mean arterial blood pressure (ABP M)

e Mean central venous pressure'V P M)
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e Stroke volume (SV) - derived from the arterial blood pressure waveform using the
pulse contour method (Wesseling, et al., 1983).

e Cardiac output (C'O) - derived from the heart rate and the stroke volume by the
equationCO = HR x SV.

e Ventricular contractility ( V'C) - derived from the slope of the arterial blood pressure
waveform at the onset of systole (Saidman & Smith, 1984).

e Skin-to-core temperature gradient (AT) - the difference between the skin and core
temperatures.

e Rate pressure product (P P) - the product of the heart rate and the systolic arterial
blood pressure; agood indicator of myocardial oxygen consumption (Gobel, et al., 1978).

For a detailed description of the derivation of these signals refer to (Hau, 1994), (Guyton,
1981), (Oh, 1990), (Saidman & Smith, 1984) and (Wyngaarden, Smith & Bennett, 1992).

5.2. A Qualitative Cardiovascular Model

In this section, we describe a set of possible qualitative constraints that may exist among
the eight measurements in our data set. These constraints form a “gold-standard” target
model of the CVS which allows us to compare our experimental results and evaluate the
performance of the learning system.

Because of the enormous complexity of the CVS, formulating a model is by no means
a simple task (Toal & Hunter, 1990, Weinberg, Biswas & Uckun, 1990). The constraints
included in this section are not meant to be a comprehensive coverage of the system. Also,
different models may exist for different clinical conditions, for example disease states. Thus
a constraint may be valid only under certain circumstances.

5.2.1. Relationship Among Heart Rate, Stroke Volume and Cardiac Output

The heartrate (HR), stroke volume (SV) and cardiac output (CO) are related by the equation:
CO = HR x SV. This translates into the qualitative constrainiult(HR, SV, CO).

Since CO is automatically derived in our data set, this relationship holds across all the
training data, and should always be discovered by a learning algorithm.

5.2.2. Relationship Among Heart Rate, Arterial Blood Pressure and Rate Pressure Product

The heart rate (HR), systolic arterial blood pressure (ABPS) and rate pressure product
(RPP) are related by the equatiaRPP = HR x ABPS. Since the behavior of the mean
arterial blood pressure (ABPM) approximates that of the systolic arterial blood pressure
(ABPS)wellin most circumstances, the relationship translates into the qualitative constraint:
mult(HR, ABPM, RPP).
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5.2.3. The Frank-Starling Law of the Heart

The Frank-Starling law states that within physiological limits, the heart pumps all the blood
that comes to it without allowing excessive damming of blood in the veins. This translates
into the qualitative constraintV/*(CV PM, CO).

5.2.4. Autoregulation of the Heart

When extra amounts of blood enter the heart chambers, the stretched muscle contracts with
a greatly increased force, thereby automatically pumping the extra blood into the arteries.
Therefore, within the physiological limit of the heart, the ventricular contractility (VC) of

the heart increases with the stroke volume (SM)t (SV, V C).

5.2.5. Effect of Heart Rate on Cardiac Output

Anincrease in heart rate can be caused by a higher oxygen demand in tissues and organs, as
in physical exercise. It can also occur as a compensatory mechanism for a decreased arterial
blood pressure in conditions like hypovolemia, when there is a decrease in circulating blood
volume. This results in different sets of constraints which model different conditions:

e Under normal conditions, the more times the heart beats per minute, the more blood
it can pump, since the stroke volume stays roughly the same. This can be seen from
the equation:CO = HR x SV. This can be represented by the qualitative con-
straint: M (HR,CO). Further, a rise in heart rate increases the net influx of cal-
cium ions per minute into the myocardial cells, and enhances ventricular contractility:
M+ (HR,VC).

e However, once the heart rate exceeds a critical level (150-170 beats per minute in
normal individuals) the heart strength itself decreases, presumably because of over-
utilization of metabolic substrates in the cardiac musale: (H R,V C). This results
in a significant decrease in diastolic filling time and consequently a decrease in the
stroke volume:M ~ (HR, SV).

e Hypovolemia refers to an absolute and often sudden reduction in circulating blood
volume relative to the capacity of the vascular system (Schlant & Alexander, 1994).
When present, the body mounts a series of compensatory mechanisms including:

— Arteriolar vasoconstriction with resultant decreased perfusion to skin and skeletal
muscle. This causes an increase in the skin-to-core temperature gradient
M~ (CO,AT).

— Increased heart rate (tachycardid):— (CO, HR).
— Increased myocardial contractilitg/ — (CO, VC).
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6. Results and Interpretation

The learning system was applied to data segments obtained from six patients during cardiac
bypass surgery.One data segment from each of the first five patients was used to study
how qualitative models learned vary across patients. Six data segments obtained from one
patient (Patient 6) were used to study how qualitative models learned vary within a patient
over time.

Each data segment was 1000 seconds (16.7 minutes) long, sampled at 1 Hz. The fault
tolerance level iIlGENMODEL was set at 20% of the total number of qualitative statesin each
data segment. The operation performed in each case was to insert coronary artery bypass
grafts, except in the case of Patient 2 which was to replace the aortic valve. Models were
learned from the data segments at six different levels of temporal abstraction, represented
by the six different values df mentioned in Section 4.2.1. The results for the data segment
from Patient 5 and two of the six data segments from Patient 6 are described below, at three
of the six levels of temporal abstraction uséd=€ 61,241, 601). (Hau, 1994) reports the
results in full.

For each data segment, a brief overview of the patient’s condition is given, followed
by a plot of the original signals. Then the filtered signals at the three levels of temporal
abstraction are shown followed by the model learned and an interpretation of each of the
model constraint§.

In the following results, spurious constraints are not considered to be generally valid but
are supported by the example data, i.e. they are over-specific and likely to be lost as more
examples come in (see Section 6.3.4).

6.1. Patient5

The patient was a 66-year-old gentleman with a fairly long history of angina and a proven
inferior myocardial infarct 3 months before the operation. His angiogram showed severe
triple vessel disease with reasonably good left ventricular function. He was hypertensive
and was treated with beta-blockers (Atenolol).

The data segment was taken some time after the surgery had started. Before the period,
lightness of anesthesia caused a sharp rise in ABP from 90 mmHg systolic up to 160
mmHg systolic that was sustained for several minutes. During the period the dosage of
anesthetic (Enflurane), analgesic (Alfentanil) and GTN (glyceryl trinitrate or nitroglycerin,

a vasodilator) were increased to bring the ABP back down.

L=61

M~ (CVPM,AT) (Spurious)

M™*(SV,CO) Correct given that HR was constant due to beta-blockers.
MY (CVPM,AT) (Spurious)

L=241

MT(SV,CO) Correct given that HR was constant due to beta-blockers.
mult(HR, SV,CO) (Correct)
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L=601

M+(ABPM,HR) (Spurious)

M*(ABPM, RPP) Correct given that HR was constant due to beta-blockers. ABPM
dropped because of increased depth of anesthesia.

M*(CVPM,CO) Frank-Starling Law of the Heart.

M*(HR, RPP) (Spurious)

mult(HR, ABPM, RPP) (Correct)

mult(HR,CVPM, RPP) (Spurious)

mult(HR, SV,CO) (Correct)
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Figure 9. Patient 6, Segment 1: Original Signals

6.2. Patient6

The patient was a 63-year-old gentleman having 1 internal mammary artery and 3 coronary
artery grafts. He had a history of hypertension and angina. His angiogram showed severe
disease at the origin of all left sided vessels. He was not on beta-blockers.

6.2.1. Segmentl

Prior to this segment, lightness in anesthesia caused rises in ABP (up to 180 mmHg systolic)
in response to surgery. The patient then developed myocardial ischemia. In response to
this, the GTN dosage was increased, which along with hypovolemia caused the ABP to

drop, with the result that ischemia improved at the expense of blood pressure. The depth
of anesthesia was also increased.

L=61

mult(HR, ABPM, RPP) (Correct)

L=241

M~(HR,SV) (Spurious)

inv_deriv(ABPM, RPP) (Spurious)

inv_deriv(ABPM,VC) (Spurious)
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L=601

M*(ABPM,CO) Both dropped because of vasodilation and increased venous tone
caused by increased GTN dosage.

M*(HR, RPP) Both dropped because of increased depth of anesthesia.

M*(ABPM,AT) Both dropped because of vasodilating effect of GTN.

M™*(CO,AT) Both dropped because of vasodilation and increased venous tone caused
by increased GTN dosage.

inv_deriv(ABPM, RPP) (Spurious)

inv_deriv(ABPM,VC) (Spurious)

mult(HR, ABPM, RPP) (Correct)

mult(HR,CV PM, RPP) (Spurious)

mult(HR, SV,CO) (Correct)

6.2.2. Segment5

The patient experienced low ABP post bypass due to poor cardiac performance secondary
to a technically poor graft and possibly hypovolemia. Inotropic therapy (Dobutamine) was
given and a blood transfusion was commenced, both to bring the ABP back up.

L=61

mult(HR, ABPM, RPP) (Correct)

mult(HR, SV,CO) (Correct)
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L=241

M*(ABPM,CO) Both dropped initially because of poor cardiac performance and hy-
povolemia, and started to rise following blood infusion.

M*(ABPM,SV) Both dropped initially because of poor cardiac performance and hy-
povolemia, and started to rise following blood infusion.

MT(SV,CO) This follows from the above two constraints.

mult(HR, ABPM, RPP) (Correct)

mult(HR, SV,CO) (Correct)

L=601

M (SV,CO) Both dropped because of hypovolemia.

M~(HR,CO) HR increased both as a compensatory response to decreasing CO due to
hypovolemia, and as a response to inotropic therapy.

M~ (HR,SV) This follows from the above two constraints.

inv_deriv(SV,CO) (Spurious)

mult(HR, ABPM, RPP) (Correct)

mult(HR, SV,CO) (Correct)

6.3. Validity of Models Learned

The results in Sections 6.1 and 6.2 show that reasonable qualitative models can be learned
from raw clinical data. Model constraints in our “gold standard” model constructed in
Section 5.2 and other useful constraints showed up repeatedly in the models learned from
our clinical data. These include:
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e constraints valid in general suchmaslt(H R, SV,CO) and
mult(HR, ABPM, RPP).

e constraints valid in specific patient conditions, possibly representing compensatory
mechanisms, such d&§ ~(H R, CO) andM ~ (CO, AT) in hypovolemia.

e constraints valid under the effect of certain drugs. For exanige(SV, CO) showed
upin patients on beta-blockers because of their steady heartrafe, apdlBP M, AT)
showed up in patients with an increased dosage of GTN causing vasodilation.

6.3.1. Model Variation Across Time

As discussed in Section & ENMODEL learns a qualitative model by creating an initial
search space of all possiblgsim constraints, and successively pruning inconsistent con-
straints upon each given system state. Therefore if the system changes within the modelling
period (in our case 16.7 minutes), resulting in a different underlying model, neither the old
model nor the new model may be obtained. Constraints in the old model are pruned because
they are inconsistent with the states after the system change. Constraints in the new model
are pruned before the system change because they are inconsistent with the previous system.
This may explain cases where we obtain very few or no model constraints. For example,
if a patient is previously stable with an increasing relationship between the heart rate (HR)
and the cardiac output (CO){ ™ (H R, CO)), but develops hypovolemia in the middle of a
modelling process, resulting in a decreasing cardiac output and a compensatory mechanism
involving an increasing heart rate, the new valid constraint/is(H R, CO). But this
will not appear in the final model because at the onset of hypovolemia, this constraint has
already been pruned ¥ ENMODEL according to states corresponding to the previously
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stable condition. Further, the previously valid constrdifit (H R, CO) will be pruned
because it is now inconsistent with the system states corresponding to hypovolemia.

It may be necessary to develop a mechanism for regenerating the initial search space when
there is evidence that the system being modelled has undergone a change in its functional
status. One may actually exploit this feature of model variation across time in the context
of intelligent patient monitoring systems (see Section 7.2).

6.3.2. Model Variation Across Different Levels of Temporal Abstraction

The models learned in Sections 6.1 and 6.2 varied across different levels of temporal ab-
straction represented by the filter length For example, constraints which involve the
skin-to-core temperature gradiehf” representing the level of vasoconstriction in the body
generally appeared only under large values gfe. in coarser time scales. This means the
response oAT generally lags behind the responses of other parameters.

In general, we observe that fewer model constraints were learned with decréasing
finer time scales. This may be due to the following reasons:

e Smaller values ofl. and therefore smaller values of correspond to larger cut-off
frequencies in the lowpass Gaussian filters, and larger bandwidths in the bandpass
filtering operation equivalent to the cascade of the Gaussian filter with the differentiator.
This reduces the amount of noise rejection achieved, and results in noise sensitivity
problems in detecting zero crossing points and therefore less accurate segmentation.
This additional amount of noise may have caused correct constraints to be pruned,
resulting in fewer or even no constraints left in the final model.

e Smaller values ofl correspond to faster processes which may have more dynamic
models. A system change within a modelling period can cause constraints belonging
to both the previous and the current model to be pruned, resulting in a smaller model
or even one with no constraints.

6.3.3. Model Variation Across Different Levels of Fault Tolerance

We observe that in general the size of the model learned increases with increasing levels of
fault tolerance. A fault tolerance level gimeans thaGENMODEL allows for inconsistent
states up to a fraction of the total number of states in the system behavior before pruning
a constraint. Therefore with larger fewer constraints will be pruned and the resulting
model will contain more constraints.

An indication ofy being set too high is that conflicting constraints start to appear. For ex-
ample, in Patient5 with = 61 (Figure 6), botilV/ +(CV PM, AT)andM ~(CV PM, AT)
appear in the model learned. This is because B8thP M and AT are relatively steady
and contain only fewnc anddec segments which distinguish between thie~ and A/~
constraints. Within a high level of tolerance, the distinction is obscured.
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6.3.4. Sources of Error

False Positives: In the models learned, we observe that spurious constraints sometimes
appeared in the resulting model. For example, in Segment 1 of Patignt6601),
we obtained the spurious constraintv_deriv(ABPM, RPP). This may be due to
several possible reasons:

e The waveforms are relatively smooth with few critical points. This results in a sys-
tem behavior with few states, corresponding to few examples for learning. With this
small sample size, these examples are consistent with the incorrect constraint. For
instance, if whenever ABPM decreases, RPP is positive, then the above incorrect
inv_deriv constraint will be learned.

e The level of fault tolerance is set too high resulting in incorrect constraints not
being pruned.

False Negatives: We observe that even constraints that are generally valid in all conditions,
such asnult(HR, SV, CO), did not appear in every model learned. There are several
possible reasons for this:

e Since only a few states are available in a smooth data segment, they may have a
disproportionate effect if they are corrupted by noise, causing correct constraints
to be pruned.

e Values corrupted by noise are recorded as corresponding values by the system
(Hau, 1994). This may cause correct constraints to be pruned.

e The level of fault tolerance is set too low resulting in correct constraints being
pruned.

Landmark Values: Temporal abstraction refers to how close two times have to be before
we label them as the same distinguished time point. Similarly, we have to decide how
close two function values have to be before we label them as the same landmark value.
If the tolerance is set too low, we may amplify trends of relatively steady signals. This
is the case in the heart rate signals of Patient 5 (Figure 6) which are relatively steady
due to the effect of beta-blockers. The fluctuations within 2-3 beats per minute are
amplified into a series aofuc (increasing) andec (decreasing) segments. The whole
segment could have been labeledas(steady) with an appropriate tolerance set.

7. Further Work

The goal of this work has been to both understand the complexities that real data sets
introduce into the qualitative modelling task, as well as to develop a robust method for
learning qualitative models from physiological signals. Further work can be contemplated
on both fronts.
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7.1. Abstracting qualitative examples drawn from numerical data

The assumption made by many previous workers that the abstraction of qualitative examples
from data can be separated from the learning task is not supported by the results of this study.
Firstly, the effects of noise in the numerical data continue to manifest themselves up into
the qualitative examples, despite significant signal processing. Secondly, the final models
learned are directly dependent on the way that the initial qualitative abstraction occurs. This
is demonstrated by the effects of choosing different temporal abstraction levels.

Further work is needed on both fronts. There should be a significant body of work from
the signal processing literature to assist with the problems of noise. The abstraction issue
however, is much deeper. The way one views data is guided by the hypotheses being
pursued. There is thus no “correct” qualitative abstraction of the data. This suggests that
a more interactive approach needs to be adopted for the learning task, with much more
emphasis being placed on the influence that the view taken of data has on the final result.

7.2. A Learning-Based Approach to Diagnostic Patient Monitoring

From the results in Section 6, it was shown that constraints learned do track changes in
patient condition over time. For example, the following changes were observed:

Compensatory mechanisms during shock e.g. the constraints/ —(HR,CO) and
M~ (CO, AT) learned when the patient experienced hypovolemia.

Effects of drugs e.g. the constraint/ *(SV, CO) tracked the effect of beta-blockers be-
cause of the patient's relatively constant heart rate, and the condtfaipt BPM, AT)
tracked the effect of an increased dosage of GTN causing vasodilation.

Since learned constraints can track patient condition over time, we might be able to build a
diagnostic patient monitoring system based on our learning system. The patient monitoring
system would continually learn models from patient data and detect changes in the models
over time. Diagnoses are made based on these changes. This learning-based approach to
diagnostic patient monitoring is summarized in Figure 17.

Such a system would look for stability in constraints over time, recorded as some percent-
age of match to incoming data. It would attempt to detect when such measures changed,
indicating that the constraint was no longer valid and that a new model was being generated
by an altered patient state.

In contrast, the traditional history-based approach to diagnostic patient monitoring goes
in the opposite direction. It generates histories based on different models. These histories
are matched with the patient data. Diagnoses are based on the histories that best match the
patient data. This approach can be achieved by a hypothesize-test-refine cycle as shown in
Figure 17 (Coiera, 1992, Coiera, 1993).

The learning-based approach may be more accurate since the hypothesized model is
generated directly from the patient data, rather than inferred according to some matching
criteria with models stored in the monitor’s knowledge base.
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Learning-based History-based
Approach: Approach:
Diagnosis Diagnosis
Refine
Model Model
LEARNING SIMULATION

Patient . Patient
Data History Data

Figure 17. Two approaches to diagnostic patient monitoring. In the learning-based approach, models are con-
tinually learned from the patient data. In the history-based approach, a hypothesize-test-refine cycle is used to
generate models that best match the patient data. In each approach, diagnoses are made based on the current
model.
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Notes

Monotone conjunctions are ones with positive literals only.
2. The front-end system and the segmenter are implemented in ObjectBark#italk on the HP9000/720.

3. The Gaussian function has the smallest duration-bandwidth product with duration and bandwidth as defined
in (Siebert, 1986), and is therefore optimally localized in both the spatial and frequency domains.

4. Ingeneral, this property holds true for zero crossings obtained by applyiimear differential operator (in-
cluding the Laplacian and the first derivative) to the filtered signal (Yuille & Poggio, 1986, Babaud, et al., 1986).

5. Raw data was recorded from the Hewlett-Packard Component Monitoring System. The eight signals used for
the experiments were derived from the primary measurements, described in (Hau, 1994).

6. The plots shown have arbitrary units because of constant factors omitted in the front-end processing stages,
which do not affect thgualitativebehavior.
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