Delegating Classifiers

Ceésar Ferri

CFERRI@DSIC.UPV.ES

Dep. de Sist. Informatics i Computacio, Univ. Politécnica de Valéncia, Spain.

Peter Flach

Department of Computer Science, University of Bristol, UK.

José Hernandez-Orallo

PETER.FLACH@BRISTOL.AC.UK

JORALLO@DSIC.UPV.ES

Dep. de Sist. Informatics i Computacio, Univ. Politécnica de Valéncia, Spain.

Abstract

A sensible use of classifiers must be based on the
estimated reliability of their predictions. A cau-
tious classifier would delegate the difficult or un-
certain predictions to other, possibly more spe-
cialised, classifiers. In this paper we analyse and
develop this idea of delegating classifiers in a
systematic way. First, we design a two-step sce-
nario where a first classifier chooses which ex-
amples to classify and delegates the difficult ex-
amples to train a second classifier. Secondly, we
present an iterated scenario involving an arbitrary
number of chained classifiers. We compare these
scenarios to classical ensemble methods, such as
bagging and boosting. We show experimentally
that our approach is not far behind these meth-
ods in terms of accuracy, but with several advan-
tages: (i) improved efficiency, since each classi-
fier learns from fewer examples than the previous
one; (ii) improved comprehensibility, since each
classification derives from a single classifier; and
(i) the possibility to simplify the overall multi-
classifier by removing the parts that lead to dele-
gation.

1. Introduction and Motivation

Many recent approaches in machine learning have bene-
fited from the idea that the predictions of a committee or
ensemble of models will be usually better than the predic-
tions of one single model. The errors of one can be coun-
teracted by the hits of the other models. This collaborative
view of learning can occur without interaction between the

Appearing in Proceedings of the 21 International Conference on
Machine Learning, Banff, Canada, 2004. Copyright 2004 by the
authors.

learning agents, known as ensemble learning, or with in-
teraction during the learning stage, known as co-learning.
In this paper we explore the novel approach of delegation,
which can be summarised by the motto: let others do the
things that you cannot do well. We introduce the notion of
a cautiousclassifier as one that only classifies the examples
for which its predictions have high confidence, leaving the
rejected examples for another classifier. We demonstrate
in this paper that the overall performance of such a hierar-
chical tandem of classifiers is usually better than a single
classifier. By delegating rather than combining models, we
avoid some of the problems of ensemble methods, in partic-
ular the loss of comprehensibility and the use of excessive
computational resources.

From a general point of view, the idea of delegation leads to
several questions, around two main issues. First, we have
to determine a threshold or decision rule to decide when to
apply the first classifier and when to delegate to the second
one. Secondly, and more crucially, we have to determine
good techniques to generate classifiers that perform better
than the first one for the examples that the first one has del-
egated. With these two main issues in mind, we propose a
simple method, with the following features. (1) The deci-
sion whether an example has to be tackled by the first clas-
sifier or by the second classifier is made by the first clas-
sifier itself, by using its own estimated reliability. Because
of this, we will use a good ranker (e.g., a good probability
estimator) as a first classifier. (2) The second classifier is
specialised on the examples for which the first classifier be-
haves worst by training this second classifier solely with the
examples rejected by the first classifier. As we will see in
subsequent sections, these issues and the way in which we
deal with them still allow a range of alternative approaches,
many of them explored in this paper.

We also explore iterated delegating classifiers, which sug-
gests a relationship with other ensemble or combination
methods, such as boosting (Freund & Schapire, 1996) and

stacking (Wolpert, 1992). Boosting assigns higher weight
to incorrectly classified examples and lower weight to the
examples which are classified correctly for each iteration.
Delegation, on the other hand, removes the examples which
are classified with high confidence and leaves the examples
which are classified with lower confidence for subsequent
iterations. Stacking builds a second-stage meta-classifier
which decides which base classifier (from an independent
ensemble of classifiers) to use. Other multiple classifier
methods, such as cascading (Gama & Brazdil, 2000), and,
specially, local cascading, generate new attributes from
the class probability estimations given by the base classi-
fiers or by previous decision tree splits. In contrast, dele-
gation produces models which are completely and exclu-
sively defined in terms of the original attributes and class.
Avrbitrating (Ortega et al., 2001) and grading (Seewald &
Furnkranz, 2001) are also related to delegation, but both
learn external referees to assess the probability of error of
each classifier from the pool of base classifiers, and their
areas of expertise. No new attributes are generated. More-
over, there is only one base classifier and this one decides
which examples to accept and which to reject.

The closest idea to delegation comes from the general
separate-and-conquer technique and, specifically, a variant
introduced by the PART algorithm (Frank & Witten, 1998),
which learns a decision tree, selects the branch with largest
coverage, removes the rest of the tree and retrains a second
tree with the remaining examples. The process continues
until all the examples are covered. Delegation is indepen-
dent from the base classifier used and it is based on the idea
of a confidence threshold, which in the case of decision
trees could select several branches with large coverage.

Delegation is hence a serial (not parallel or hierarchical),
transferring (no combination), attribute-preserving, self-
refereeing, multi-classifier method. The advantages of the
delegation approach are manifold. First, since each classi-
fier is keeping part of the examples, the next classifier has
fewer examples for training and, hence, the process can be
much more efficient than other ensemble methods. Sec-
ondly, the resulting overall classifier is not a combination
of classifiers, but a decision list; if we use decision trees as
base classifiers, the overall classifier is a decision tree, and
its decisions can be traced and understood. Thirdly, since
some parts of the models will not be used for any example
at all, we can, in some cases, simplify the models; e.g., in
the case of decision trees, we could prune a subtree if all its
leaves lead to delegation.

The rest of the paper is organised as follows. Section 2
defines the notion of cautious classifiers, how they can be
constructed from a soft classifier and how they are used
to perform delegation. In Section 3 we analyse delegating
classifiers as a generalised separate-and-conquer method.

Section 4 starts the experimental evaluation with an anal-
ysis of the behaviour for a delegation tandem of just two
classifiers. Section 5 discusses the round rebound tech-
nique, which bounces part of the delegated examples back
to the first classifier, an iterated scenario, and the general al-
gorithm. The approach is extensively evaluated for several
configurations and compared to classical ensemble meth-
ods. Section 6 discusses the overall results. Section 7
closes the paper with a summary and future work.

2. Cautious Classifiers and Delegation

In many application areas, a classifier that abstains from
making a prediction when it is not sure of being able to
make the right decision is preferable over a greedy clas-
sifier that always makes a classification. While under 0-1
loss accuracy and error are complementary, this is not the
case when the classifier has the ability to abstain. We define
a cautious classifier as a classifier that gives predictions for
the subset of inputs for which it is more confident (that may
still be right or wrong) but abstains for the rest of its inputs.
In other words, a cautious classifier is a partial function.

Any soft classifier, that is, a classifier that estimates the
class probabilities or the reliability of each prediction, can
be converted to a cautious classifier. We use the follow-
ing definitions. For a classifier f we consider the asso-
ciated functions fciass(e), fconr(€), and fprog.(€) (for
each class ¢ from a total of C classes). The function
fcLass(e) returns the class assigned by classifier f to exam-
ple e, the function fconr (€) returns the confidence (i.e., an
estimate of the reliability) of the prediction given by clas-
sifier f to example e, and fprog, (€) returns the probability
of class c¢ for example e. Unless stated otherwise, we as-
sume that fcass(€) = argmaxc feros.(€) and fcone (€) =
maxc{ fproa.(€) }-

Given these definitions, a cautious classifier f can be ob-
tained from a soft classifier using a confidence threshold.

Decision Rule for a Cautious Classifier with threshold t:
IF fconp(€) > T THEN PREDICT fcass(e)
ELSE ABSTAIN

A soft classifier will be converted into a good cautious clas-
sifier if the reliabilities are well estimated, as achieved by,
for instance, a good class probability estimator, or, for bi-
nary problems, a good ranker. Note that for two-class prob-
lems, a cautious classifier gives predictions for the reliable
positives and the reliable negatives, abstaining for the rest.
This represents an abstention window (see Figure 1).

The notion of a cautious classifier is an interesting concept
in itself, but in this paper we are concerned with the design
of good complete classifiers. It is the idea of completing
these cautious classifiers that leads to the concept of del-
egation. If a cautious classifier f(1) decides that it is not

ROC Curve of a Complete Classifier ROC Curve of a Cautious Classifier

1.0

1.0

Fos. Del
Jhreshold

.

Neg. Del Predicts
hreshold positive

Predicts \\ Abs_lennk
negative ., Predicts Window
negative /

00 10 " 00 10
False Positive Rate False Positive Rate

Figure 1. Left: a ROC curve of a complete classifier with a sin-
gle threshold separating positives from negatives. Right: a ROC
curve with two thresholds, representing an abstention window.

Class
Threshold Predicts

\\ positive

True Positive Rate
True Positive Rate

competent to classify an example with enough confidence,
but wants to complete the work, then it can delegate the
example to another classifier. If we have this second classi-
fier, denoted by (@, and a confidence threshold 7, then the

delegating decision rule is as follows.
Decision Rule for a Delegating Classifier with threshold 1t:
IF félo)NF(e) > 1T THEN PREDICT fé&ss(e)

2
ELSE PREDICT fr ass(€)

A key issue is to establish a good way for obtaining clas-
sifier £, A natural way to obtain classifier @ is to
train it only on the training examples for which f 1) has
low confidence. In this way, the second classifier will
be specialised for these examples. More formally, if we
have a training set Tr, a soft classifier f and a confidence
threshold t, then we just divide this set into two data sets
Try = {e€ Tr: fcone(€) > 1} and Try = Tr —Tr7. In-
formally, we will refer to Tr¢ as the “retained” or “high-

confidence” examples and TrfS as the “delegated” or “low-
confidence” examples.

The same threshold is used for training and for prediction
(the delegating decision rule). The question arises how to
determine this threshold. One approach we consider in this
paper is that a classifier retains a fixed percentage of the ex-
amples. For instance, we may stipulate that the first classi-
fier should retain 60% of the most highly ranked examples,
delegating the rest to the second classifier. More formally,
given a fraction p, a classifier f and a training set Tr, we
can obtain the threshold 7 in the following way:

t=max{t:|{e€ Tr: fconr(e) > t}| > p x |Tr|}

That is, T is the greatest threshold such that at least a pro-
portion p of the training examples have higher confidence.
It does not ensure a proportion of exactly p, because there
may be many examples with the same confidence, but it
returns an upper approximation of this proportion. The
method is called Global Absolute Percentage.

We also introduce an alternative decision rule for delegat-
ing classifiers, in order to handle imbalanced data sets. In
this case, we have a different threshold t for each class c.

Decision Rule for a Delegating Classifier with
stratified thresholds 14, 12, ..., Tc:

TF (e (€) > Tc THEN PREDICT f{lhes(€)

ELSE PREDICT fé?,&(e)

where ¢ = f((tLA$(e)
If we denote by Tr the examples in Tr of class ¢, we can
obtain each threshold as follows:

te=max{t:|{e€ Tr¢: fpros.(€) >t}| > p X [Trc|}

The retained examples in this case are: Try = {e€ Tr:c=
fcLass(€) A fcone (€) > 1c}. This method is called Strati-
fied Absolute Percentage.

The above outlines well-defined techniques for training and
testing delegating classifiers. In particular, the predicted
class and associated confidence for each test instance is ob-
tained from one of the base classifiers. Computing the ac-
curacy of the overall delegating accuracy is thus straightfor-
ward. In addition, we use the Area Under the ROC Curve
(AUC). AUC is not only suitable in contexts with vari-
able misclassification costs or class distributions (Provost
& Fawcett, 2001), it also provides an estimate of a soft
classifier’s ranking performance, as it is equivalent to the
Whitney-Mann-Wilcoxon sum of ranks test. For multi-
class problems we employ the approximation presented in
(Hand & Till, 2001), which averages the AUC of all 1-vs-1
ROC curves. It may happen that the first classifier retains
all the examples of one class and hence the second classi-
fier has fewer classes than the first one. To calculate AUC
in this case, we simply assume that the second classifier
assigns 0 probability for non-delegated classes.

3. Delegation as a Gener alisation of
Separ ate-and-Conquer Methods

In this section we put delegation in a general machine
learning context and discuss its relation with separate-and-
conquer methods such as the sequential covering algorithm
for learning sets of rules. Clearly, the behaviour of a tan-
dem of delegating classifiers depends on the machine learn-
ing method used for the base classifiers. Here, we analyse
the use of fence-and-fill methods (i.e., methods that parti-
tion the instance space into regions). In that case, the first
classifier will retain the bigger, relatively purer areas of the
instance space and delegate the smaller, less pure areas to
the second classifier. Interestingly, since the Tr¢ examples
are removed for the second classifier, the removed areas can
“clear the space” so that the remaining small areas may be
joined into bigger areas for the second classifier. This will
be particularly useful in the presence of real patterns that
were obscured by the patterns extracted by the first classi-
fier. Figure 2 illustrates the process with two decision tree
learners. Here, we assume some form of smoothing (e.g.,
Laplace correction), so that the confidences associated with

Training Data //.\\ e

° Fe e First
° ° e e /f’}-\ Classifier
- 0 Y : ~
o []
[]
)]
e m = a2.2.1
= mo
]] o a2.2.2
s 2122
Partition made Examples “retai;&f" """""""""" First Classifier can be
by the First Classifier by the First Classifier ‘A Simplified

) al o

° ° e ° ° °
° " s " " " " - "
@2l ey |::> L
. ° —
1222 g2.12.| a21.23

@ Abstention area

/‘\ Second
° g AN Classifier
. ne e
//’ ~
"7 % o [4)
b2.1 b2.2

Partition made by
the Second Classifier

b2.1

The second classifier will only be used
in the abstention area of the first one

Figure 2. The delegation process using decision trees.

the smallest leaves drop below the threshold and thus these
areas are delegated to the second classifier.

In this particular example we can simplify the first classi-
fier, replacing the subtrees that lead to only low-confidence
leaves with “delegation nodes” that lead into the second
tree. On the meta-level, the entire delegating classifier is
again a decision tree. In fact, we can change the tree into a
graph by combining all delegation nodes into a single node,
so that we only represent the second tree once (Figure 3).
This process, which we refer to as grafting, is a very natural
way to learn decision graphs.

There is an analogy between delegating classifiers and
separate-and-conquer rule learners such as CN2 (Clark
& Niblett, 1989) and FOIL (Quinlan, 1990). With the
separate-and-conquer approach, a single rule is learned in
each iteration and the area it covers is removed from the
training set. Delegating classifiers perform a similar strat-
egy but work at the meta-level, learning a full classifier in
each step. This entails several important differences. First,
the area covered in each iteration contains examples of
multiple classes. Secondly, the area can have a much more
sophisticated shape than the axis-parallel hyper-rectangles
covered by a single rule. Thirdly, the reliability estimates
over the area are in general not constant. Consequently,
delegation, especially under the iterative scenario explored

Partition made
by the Delegating Classider

Figure 3. Grafting delegating classifiers.

in Section 5, can be seen as a powerful generalisation of
separate-and-conquer methods. This connection highlights
that the potential applications and kinds of problems where
delegation can work well will be those where separate-
and-conquer methods are applicable (see e.g. (Flrnkranz,
1999)). The use of a complete classifier in each iteration
makes delegation a much more powerful method.

In the next sections we experimentally validate the method
in three different scenarios: the two-stage scenario con-
sidered above, a round-rebound scenario where the second
classifier can delegate examples back to the first, and an it-
erative scenario with a variable number of base classifiers.

4. Two-stage Scenario and Experiments

The two-stage scenario was introduced in Section 2. In
this section we experimentally analyse the behaviour of this
type of delegating classifiers. Table 1 lists the 22 datasets
from the UCI dataset repository (Blake & Merz, 1998) we
used. We applied 20x5-fold cross-validation instead of a
more usual 10x 10-fold cross-validation because for com-
puting the AUC we need examples of every class and some
datasets have small minority classes. For a set of datasets
we use arithmetic means unless stated otherwise.

In the experiments, we employ Probability Estimation
Trees (PETS), which estimate the probability of class mem-
bership for every class. A trained decision tree can be eas-
ily adapted to be a probability estimator by using the ab-
solute class frequencies of each leaf in the tree. However,
the probability estimates obtained by PETs can be poor in
comparison with other probability estimators. In order to
obtain better estimates, we employ the improvements pre-
sented in (Ferri et al., 2003), using the SMILES system.
These improvements involve a new splitting criterion and a
new smoothing method (mbranch smooth), both devoted to
improve the AUC of the learned trees. Pruning is not en-
abled, since it is not beneficial for increasing the estimated
probabilities (Domingos & Provost, 2003).

Table 2 shows a mean increase of about one point in accu-
racy with respect to a single tree, obtained by just retraining
a second tree with around 50% of the initial dataset. Ac-
cording to t-tests there are 8 significant wins and 1 loss in
accuracy, and 7 wins and 1 loss in AUC. It can be seen (see
columns AcTZ1 and AcT > 2) that the second classifier

Table 1. Datasets used in the experiments: number of examples,
number of classes, number of nominal and numeric attributes.

DATASETS SIZE C Nom. NUM.
1 BALANCE SCALE 625 3 0 4
2 BREAST CANCER WDBC 699 2 0 9
3 BREAST CANCER Wis. 569 2 1 30
4 CONTRA. METHOD (CMC) 1473 3 7 2
5 DERMATOLOGY 366 6 33 1
6 HAYES-ROTH 160 3 4 0
7 HEART DISEASE 920 5 8 5
8 House CONG. VOTING 435 2 16 0
9 IRIS PLAN 150 3 0 4
10 MONK’s1 566 2 6 0
11 MONK’s2 601 2 6 0
12 MONK’s3 554 2 6 0
13 NEW THYROID 215 3 0 5
14 SEGMENTATION 2310 7 0 19
15 TEACHING A. EVAL. 151 3 2 3
16 Tic-TAC-TOE 958 2 8 0
17 WINE RECOGNITION 178 3 0 13
18 SPECT 267 2 22 0
19 CARS 1728 4 6 0
20 OPTDIGITS 5620 10 0 64
21 SPAM 4601 2 0 57
22 THYROID SICK EU 3163 2 19 6

has higher accuracy than the first one precisely on the low-
confidence examples delegated by the first classifier. This
is the key to the overall improvement in accuracy achieved
by the delegating classifier.

To analyse the effect of the first classifier’s ranking per-
formance, we considered four configurations for the first
classifier: pruning and no smoothing, no pruning and no
smoothing, no pruning and Laplace smoothing as used
in (Domingos & Provost, 2003), and no pruning and m-
branch improvements presented in (Ferri et al., 2003). Ta-
ble 3 gives mean results (over 22 datasets) of these four
configurations for the global absolute percentage method
(50%). As we can see, it is the ranking performance rather
than the accuracy of the first classifier which is crucial for
accuracy and particularly AUC of the delegating classifier.

Table 4 demonstrates that accuracy is not very sensitive to
the percentage of examples retained, although it seems that
around 50% is a good compromise. With lower percent-
ages most of the work is left to the second classifier, which
is then very similar to the first one and not specialised suffi-
ciently to improve the results. A high retention percentage
lowers the influence of the second classifier and may also
lead to overfitting. The method appears to be robust in the
sense that, with several configurations, mean accuracy is
never worse than for a single classifier. The AUC of the
stratified method is worse than for the global method. This
may be due to the fact that the non-stratified method usually
levels the proportion of classes for the second sample since
examples of the majority class are usually better ranked
than the examples of the minority class. Hence, the sec-
ond classifier can pay more attention to minority classes.

5. Round Rebound and lter ative Scenarios

In this section we consider variants of the two-stage delega-
tion scenario. The first scenario we consider is that the sec-

Table 2. Experimental results for two-stage delegating classifiers:
accuracy of the first tree on all test examples (Aclst), accuracy
of the whole delegating classifier with p = 50% using global ab-
solute percentage (AcDel), AUC of the first tree (AUC1st) and
the whole delegating classifier (AUCDel), percentage of exam-
ples retained by the first tree (%Retd), accuracy of first (AcT=1)
and second (AcTZ2) tree on the delegated test set. Symbols o,
e show a statistically significant improvement or degradation in
accuracy and AUC according to the t-test with 99% significance
of the whole delegating classifier wrt. the first tree.

AclsT AcDEL AUC1sT AUCDEL %RETD ACTZ1 AcCT=2
78.40 78.94 82.26 84.730 51.48 61.88 62.92
93.12 93.10 97.37 87.17 65.60 83.19 83.37
93.55 93.66 97.89 97.92 54.07 87.14 87.37
46.80 46.60 69.64 66.51e 50.08 33.73 33.30
90.30 92.520 98.87 99.11 52,93 82.24 86.88
7171 77.350 91.44 92.95 52.14 49.15 60.25
49.10 4894 68.27 67.560 50.19 26.59 26.32
94.26 93.72 98.33 98.16 59.91 86.13 84.45
94.14 93.55 98.39 98.22 64.88 90.49 87.82
10 96.97 97.59 98.08 98.40 51.14 9524 96.31
11 76.60 80.380 78.17 84.250 50.29 68.43 75.10
12 97.52 96.97e 98.90 98.77 52.46 96.14 95.06
13 93.36 93.74 98.20 97.96 54.34 88.26 88.89
14 96.14 96.13 99.71 99.71 54.42 92.23 9217
15 60.70 60.57 77.18 75.04 51.02 56.70 56.46
16 76.73 78.850 85.77 88.320 50.50 61.83 65.84
17 92.49 9257 97.58 97.62 57.41 88.59 88.69
18 76.60 78.32 77.64 77.36 51.64 62.23 65.36
19 89.87 94.720 95.79 98.940 55.42 76.96 87.99
20 90.54 91.100 99.49 99.50 51.78 81.86 83.01
21 92.38 93.050 97.29 97.540 51.42 85.82 87.22
22 90.67 91.720 91.00 91.720 51.45 81.20 83.35
MEAN 83.72 84.73 90.78 91.31 53.84 7437 76.28
GEOM 82.14 83.14 90.16 90.64 53.68 71.09 73.07

© O~ UAWN R #*

Table 3. Influence of good probability estimation: comparison of
accuracy and AUC of the first decision tree (Single) with accuracy
and AUC of the overall delegating classifier (Del50%).

Pr NoSmooth NoPr NoSmooth NoPr Laplace NoPr Mbranch
Single Acc 83.88 83.72 83.72 83.72
Single AUC 86.46 87.16 90.18 90.78
Del50% Acc 84.01 83.81 84.77 84.73
Del50% AUC 85.93 87.16 90.89 91.31

ond classifier delegates its low-confidence examples back
to the first; we call this round rebound. The rationale is
that if an example is rejected by both the first and the sec-
ond classifier, it would be best classified by the first rather
than the second because the first classifier is more general
and potentially less overfitting. This leads to the following
decision rule.

Decision Rule for a Round Rebound Delegating Classifier

with thresholds (), (?):
1F 10\ (€) > (1) THEN PREDICT {1, (e)
ELSE TF f)r(€) > t(?) THEN PREDICT fC)yo(€)

(1)
ELSE PREDICT f3 'acs(€)

For the second threshold ©(2), we can again select a per-
centage of the complete training set (Absolute Percentage),
or we can select a percentage of the examples delegated by
the first classifier (Relative Percentage):

2
1@ = max{t: [{ee Tr5, : & e (0 >t} >px TSyl

The difference is that, given a percentage of 40%, using
the absolute percentage method both classifiers retain ap-

Table 4. Influence of delegation percentage and methods for set-
ting the thresholds: global absolute percentage (GAP) and strati-
fied absolute percentage (SAP).

None 20% 33% 45% 50% 55% 67% 80%

GAP Acc 83.72 84.23 84.13 84.67 84.73 84.72 84.61 84.60
GAP AUC 90.78 91.02 91.14 91.27 9131 91.24 91.04 90.92
SAP Acc 84.73 84.29 84.42 84.37 84.34 84.32 84.48 84.32
SAP AUC 91.31 90.79 90.79 90.65 90.61 90.47 90.26 89.85

proximately 40% of all examples, while with the relative
percentage method, from the 60% delegated to the second
classifier, 24% would be retained.

We now have four different methods of determining the
thresholds for the first and second classifiers: global abso-
lute percentage, stratified absolute percentage, global rel-
ative percentage and stratified relative percentage. Table
5 shows the mean accuracy and AUC results (over the 22
datasets) of the round rebound scenario with the four dif-
ferent methods and several retention percentages. Compar-
ing these results with previous results, the mean accuracy is
slightly better (from 84.73 to 85.04 in the best case, with 10
significant wins and 0 losses) and for AUC it almost stays
constant (from 91.31 to 91.33, with the same 7 wins and 1
loss). While this is a small improvement, it should be noted
that it is achieved without additional learning cost.

The second variation we consider is an iteration of several
delegating classifiers with the following decision rule.

Decision Rule for a Delegating Classifier

with thresholds (1), t(2), ..., t("):

IF fégNF((z) > t(1) THEN PREDICT félL)ASS(g)
ELSE TF f)\ (€) > 1(?) THEN PREDICT fcs(€)

.) .
ELSE TF 52 (e) > 1("1) TEN PREDICT f{" 2L (e)
ELSE PREDICT ', ()

It is again possible to include the round rebound; however,
if the number of examples in the last iteration are few the
effect of rebound will be negligible, so we will not use it in
the iterative scenario.

We thus arrive at the following general algorithm for learn-
ing a delegating classifier. The algorithm has several pa-
rameters, some of them already explained (the method and
percentage for obtaining the threshold), but also the max-
imum number of iterations, which is especially important

Table 5. Round rebound two-stage scenario results for different
retention percentages and methods to determine the thresholds.

33% 45% 50% 55% 67%
GLOBAL ABSOLUTE Acc 84.68 85.04 84.97 84.95 84.87
GLOBAL ABSOLUTE AUC 91.20 91.33 91.33 91.26 91.11
STRATIFIED ABSOLUTE Acc 84.44 84.55 84.40 84.39 84.53
STRATIFIED ABSOLUTE AUC 91.05 90.77 90.64 90.51 90.27
GLOBAL RELATIVE Acc 84.41 84.59 84.63 84.66 84.77
GLOBAL RELATIVE AUC 91.19 91.16 91.20 91.11 90.96
STRATIFIED RELATIVE Acc 84.37 84.43 84.44 84.50 84.50
STRATIFIED RELATIVE AUC 91.06 90.92 90.84 90.71 90.31

when using the relative methods of obtaining the threshold.

Procedure Learn_Delegating_Classifier(Train)

Tr « Train, i« 0

do

i+l '

LEARN f® with Tr()

Obtain t(V) // with any of the 4 possible methods
Try, ={eeTr: fc(%NF(e) >}
Trs, = {eeTr(: fc(%NF(e) <1y
Tri+D T

until Trg, =0 ori > maxiterations

Table 6 shows the mean results (accuracy, AUC and num-
ber of iterations) for different retention percentages for the
absolute methods, and Table 7 shows similar results for
the relative methods (stratified not shown since results are
worse). These tables demonstrate that the results improve
with the number of iterations. This is easy to do and to con-
trol with the absolute methods, although since the thresh-
olds are upper approximations, a percentage of 1% in the
global absolute does not translate into 100 iterations but
only a mean of 31.31. The important thing about the abso-
lute methods, apart from the fact that the results are better,
is that there seems to be no saturation point; whereas with
the relative method we have to find a good combination of
the relative proportion of examples retained and the maxi-
mum number of iterations. In the absolute case, just reduc-
ing the percentage increments the number of iterations and
the results. With respect to the two-stage scenario, now the
best improvement in accuracy is considerable (from 83.72
to 85.93) and the improvement in AUC begins to be impor-
tant (from 90.78 to 91.82).

Finally, we compare delegating (global absolute percent-
age of 1% and 2%) with two ensemble methods: boost-
ing and bagging. For this last experiment, we use Weka
(Witten & Frank, 1999), using J4.8 for all the experiments
(Laplace smoothing enabled), with pruning only enabled
for boosting. In this case, in order to use the same base
algorithm for the comparison, we use an implementation
of our delegation algorithm in Weka, without the AUC im-
provements (no m-branch smoothing and no special split-
ting criteria). The results of delegation are hence slightly
different to those shown in previous tables, but are consis-
tent with them. We again used 20 x 5-fold cross-validation.

Table 6. Results for the iterative scenario with absolute methods
and different retention percentages.

50% 33% 20% 10% 5% 2% 1%

GLOBAL Acc 84.73 85.20 85.33 85.64 85.82 85.85 85.93
GLOBAL AUC 91.31 91.40 91.43 91.61 91.75 91.82 91.82

GLOBAL #IT 2.00 3.16 4.68 7.74 12,50 21.64 31.31
STRAT. Acc 84.34 84.75 85.09 85.30 85.42 85.53 85.58
STRAT. AUC 90.61 90.70 90.74 91.02 91.25 91.44 91.51
STRAT. #IT 2.00 3.06 4.33 6.70 9.83 15.30 18.24

Table 7. Results for the iterative scenario with relative methods,
different retention percentages and different number of iterations.

MAXITERATIONS: 2 3 5 10 20 50

GLOBAL 50% Acc 84.73 85.42 85.49 85.48 85.47 85.47
GLOBAL 50% AUC 91.31 91.50 91.51 91.50 91.50 91.50
GLOBAL 50% #1T 2.00 2.99 4.85 7.06 7.11 7.11
GLOBAL 33% Acc 84.13 85.13 85.57 85.66 85.65 85.65
GLOBAL 33% AUC 91.14 91.56 91.71 91.78 91.71 91.71
GLOBAL 33% #IT 2.00 3.00 4.95 8.74 10.52 10.52
GLOBAL 10% Acc 84.08 84.56 84.92 85.50 85.83 85.85
GLOBAL 10% AUC 91.01 91.24 91.29 91.65 91.80 91.79
GLOBAL 10% #IT 2.00 3.00 4.98 9.52 16.83 25.52

Table 8. Comparison between delegation and ensemble methods.
Results of J48 from Weka, delegating 2%, bagging and boosting
with 10 iterations, delegating 1%, and bagging and boosting with
20 iterations. Significance tests are with respect to J48.

J48 DEL2% BAG10 B00s10 DEL1% BAG20 B0020
1 78.84 81.610 81.380 78.82 81.770 81.610 T77.73
2 94.13 94.63 95.930 96.140 94.56 96.020 96.370
3 93.42 94.190 95.040 96.000 94.170 95.250 96.230
4 49.18 47.69¢ 51.390 50.180 48.09¢ 51.520 50.210
5 93.87 93.89 96.120 96.430 93.24 96.160 96.600
6 73.22 79.630 75.66 0 77.190 79.530 76.470 77.250
7 51.74 51.41 55.920 54.410 51.93 56.090 54.800
8 95.34 95.23 96.06 0 95.11 94.94 96.280 95.09

9 94.43 94.47 94.33 94.03 94.03 94.20 94.13

10 93.60 99.970 99.430 98.930 99.970 99.770 98.930
11 61.81 84.280 65.000 73.840 84.730 65.810 75.470
12 98.63 98.790 98.760 97.90e 98.810 98.820 97.89e
13 91.98 92.810 93.530 94.530 92.72 93.580 94.700

14 96.55 96.59 97.300 98.050 96.55 97.380 98.310
15 53.81 54.60 56.310 59.870 54.80 57.680 60.240
16 78.88 86.590 82.380 82.810 86.760 82.760 83.280
17 92.23 92.56 94.780 95.670 92.65 95.200 96.010
18 79.20 79.44 82.130 80.500 79.46 82.060 80.880

19 93.73 96.640 93.70 95.250 96.840 93.86 95.970
20 90.02 92.820 95.050 97.160 92.890 95.490 97.880
21 92.36 93.460 94.250 94.950 93.480 94.420 95.030
22 97.51 97.09¢ 97.710 97.52 96.99¢ 97.740 97.700

MEeAN 83.84 86.29 86.01 86.60 86.31 86.28 86.85
Geom 82.10 84.61 84.43 85.09 84.68 84.75 85.35

From the results in Table 8, delegation is not far behind
other ensemble methods in terms of accuracy. The impor-
tant point is that delegation requires much more modest re-
sources, as at each iteration there is fewer data for training.
For instance, delegation with global absolute percentage
at 2% requires 21.64 iterations on the average and a total
of 8933.67 examples handled (Tr W) + Tr@ 4+ 4 Tr(My),
with an average dataset size of 1195.41 examples (Tr ().
This means with 20 iterations, the time complexity is only
around 8 times higher. Similarly, for delegation at 1% there
are 31.31 mean iterations and a total of 11923.40 examples
handled. This means that the execution time is only around
10 times the time it takes to generate a single tree.

In Table 9 we show a pairwise comparison of the number
of win/losses (t-test 99% significance) between the follow-
ing algorithms: Delegating (2%), J48, Bagging (10 itera-
tions), and Boosting (10 iterations). Although delegating
improves significantly the performance of J48, it does not
reach the level of Bagging or Boosting.

Table 9. Number of datasets where the algorithm of the column is

significantly better than the algorithm of the row.
Del 2% J48 Bag10 Boos10

Del 2% - 2 12 13
J48 11 - 20 17
Bag10 5 0 - 9
Boos10 7 1 7 -

6. Discussion

The experimental results in the previous sections demon-
strate that delegation is a technique with a very good trade-
off between the quality of models and the resources needed
to obtain them. The efficiency of the method derives from
its separate-and-conquer philosophy and the serial multi-
classifier topology, resulting in a sub-linear increase of re-
sources with respect to the number of classifiers.

We have also demonstrated a clear improvement in accu-
racy. A formal analysis is beyond the scope of this paper,
particularly since the delegating technique is not a combi-
nation technique, hence we cannot justify the improvement
from a reduction of variance as with other ensemble meth-
ods. Here, we discuss a number of factors that seem to
play an important role. First and foremost, since classifiers
decide themselves which examples to retain and which to
delegate, the quality of the reliability estimation of each
delegating classifiers is crucial. This is why we used un-
pruned decision trees optimised for probability estimation.
Secondly, the idea of iteratively removing patterns (from
easier to more difficult patterns, see), common to separate-
and-conquer methods, is likely to assist in obtaining good
accuracy. Thirdly, class distribution is modified by the non-
stratified threshold, usually balancing classes as the process
evolves, which also intuitively seems beneficial. Fourthly,
there is the reduction of training sets as a result of delega-
tion. A smaller training dataset means better specialisation
but may also lead to overfitting. However, the results are
improved by the iterated scenario, at least if retention per-
centages are small, showing that overfitting may be com-
pensated by better specialisation or by other factors. Fi-
nally, the kind of base classifier is also relevant. Divide-
and-conquer methods, such as decision trees, particularly
benefit from delegation because there will be several del-
egating nodes which can be joined into a graft node, as
discussed in section 3. We would argue that the good be-
haviour of the round rebound configuration demonstrates
some of these factors. Although the second classifier gener-
ally improves classification accuracy on the delegated sam-
ple, there is also a small subsample which is better bounced
back to the original classifier, thus avoiding overfitting.

Although AUC is also increased, the results are less con-
clusive. One explanation could be found in the fact that
the base probability estimation trees we are using are re-
ally specialised for AUC, and hence improving their per-
formance is difficult. Combining the predictions of the del-
egating classifiers, or selecting the classifiers globally in-
stead of hierarchically could improve the results in AUC.
Another reason might be that some classes could have no
delegated examples, and this may affect the overall AUC.

The experimental results are inconclusive as to whether
delegating works better with large datasets than smaller

ones, but there does seem to be a preference for larger
datasets. This and the better efficiency of delegating versus
other combination techniques could justify the following
modus operandi: (1) If comprehensibility and efficiency
are crucial, use delegated decision trees with a no-rebound
two-stage scenario. (2) If only efficiency is crucial, use the
two-stage scenario with round-rebound or the iterated sce-
nario (possibly employing efficient classifiers first and pos-
sibly more computation-intensive classifiers for subsequent
models). (3) If neither comprehensibility nor efficiency are
crucial, try other classical ensemble methods. Finally, re-
garding robustness, we have seen that for all the schemes
discussed in this paper, delegation only degrades perfor-
mance for at most 2 of the 22 datasets.

7. Conclusions and Future Work

The key idea of a delegating classifier is that it only makes
predictions with a minimum level of confidence and del-
egates the prediction to another classifier otherwise. We
have argued that delegation is a fundamental notion in ma-
chine learning, and we have analysed the similarities and
differences with other general techniques such as separate-
and-conquer rule learning and ensemble methods. We have
investigated the performance of different configurations of
delegating classifiers. In general, the results show that del-
egating classifiers can significantly improve the accuracy
of the predictions, without some of the disadvantages of
other multiclassifiers. In particular, we do not combine the
predictions of classifiers: each instance is classified by a
single classifier. This does not degrade the comprehensi-
bility of the model as ensemble methods do. Secondly, the
resulting multi-classifier can often be simplified. For in-
stance, delegating decision trees can be simplified to deci-
sion graphs. Finally, our approach is considerably more ef-
ficient than classical ensemble methods, because each sub-
sequent classifier is learned using fewer examples than the
previous one.

As future work, we will investigate the use of different
methods for the base classifiers at each stage. For exam-
ple, the first classifier can be an efficient classifier such as
Naive Bayes, while further down the delegation chain we
use more data-intensive methods. We also plan to investi-
gate combination of the predictions of the base classifiers,
e.g., by weighting their prediction depending on the confi-
dence and iteration. We would lose comprehensibility and
the possibility of simplifying the partial solutions but we
would maintain the same efficiency, and we could possibly
come even closer to the accuracy of boosting or bagging.
Another idea to pursue, when using decision trees, is a safe
pre-pruning, which would detect when a node is not leading
to leaves with confidence greater than the threshold. This
would increase efficiency. We also plan to investigate the

applicability of delegation beyond classification. Most of
the presented ideas can be applied to regression and cluster-
ing, provided each learned model has a good estimated re-
liability for predictions or cluster membership. Finally, for
multi-class problems, we can use the first classifier to deter-
mine the most likely classes for an example, and then use
several binary classifiers in the second stage. This would
be specially interesting for support vector machines.

Acknowledgements

We would like to thank the anonymous reviewers for their in-
sightful comments and pointers to related work. This work has
partially been supported under grant TIC2001-2705-C03-01.

References

Blake, C., & Merz, C. (1998). UCI repository of machine learning
databases.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm.
Machine Learning, 3, 261-283.

Domingos, P., & Provost, F. (2003). Tree induction for
probability-based ranking. Mach. Learn., 52, 199-216.

Ferri, C., Flach, P., & Hernandez, J. (2003). Improving the AUC
of Probabilistic Estimation Trees. Proc. of the 14th European
Conf. on Machine Learning (pp. 121-132).

Frank, E., & Witten, I. H. (1998). Generating accurate rule sets
without global optimization. Proc. of the 15th Int. Conf. on
Machine Learning (ICML-98) (pp. 144-151).

Freund, Y., & Schapire, R. E. (1996). Experiments with a new
boosting algorithm. Proc. 13th Int. Conf. on Machine Learning
(pp. 148-146). Morgan Kaufmann.

Furnkranz, J. (1999). Separate-and-conquer rule learning. Artifi-
cial Intelligence Review, 13, 3-54.

Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine
Learning, 41, 315-343.

Hand, D., & Till, R. (2001). A simple generalisation of the area
under the ROC curve for multiple class classification problems.
Machine Learning, 45, 171-186.

Ortega, J., Koppel, M., & Argamon, S. (2001). Arbitrating among
competing classifiers using learned referees. Knowledge and
Information Systems, 3, 470—490.

Provost, F., & Fawcett, T. (2001). Robust classification for impre-
cise environments. Mach. Learn., 42, 203-231.

Quinlan, J. R. (1990). Learning Logical Definitions from Rela-
tions. Machine Learning, 5, 239-266.

Seewald, A. K., & Fiirnkranz, J. (2001). An evaluation of grading
classifiers. Advancesin Intelligent Data Analysis: Proc. of the
4th Int. Conf. (IDA-01) (pp. 115-124).

Witten, I. H., & Frank, E. (1999). Data mining: Practical ma-
chinelearning tools and techniques with java implementations.
Morgan Kaufmann Publishers.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks,
5, 241-259.

