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“Fuzzy” Versus “Nonfuzzy” in Combining Classifiers
Designed by Boosting

Ludmila I. Kuncheva

Abstract—Boosting is recognized as one of the most successful
techniques for generating classifier ensembles. Typically, the
classifier outputs are combined by the weighted majority vote.
The purpose of this study is to demonstrate the advantages of some
fuzzy combination methods for ensembles of classifiers designed
by Boosting. We ran two-fold cross-validation experiments on six
benchmark data sets to compare the fuzzy and nonfuzzy combi-
nation methods. On the “fuzzy side” we used the fuzzy integral
and the decision templates with different similarity measures.
On the “nonfuzzy side” we tried the weighted majority vote as
well as simple combiners such as the majority vote, minimum,
maximum, average, product, and the Naive–Bayes combination.
In our experiments, the fuzzy combination methods performed
consistently better than the nonfuzzy methods. The weighted
majority vote showed a stable performance, though slightly
inferior to the performance of the fuzzy combiners.

Index Terms—Adaboost, classifier combination, decision tem-
plates, ensembles of classifiers created by Boosting, fuzzy integral,
weighted majority vote.

I. INTRODUCTION

BY COMBINING the outputs of a team of classifiers, we
aim at a more accurate decision than that of the single

best member of the team. We look at classifier ensembles gen-
erated by Boosting, which is recognized as one of the most suc-
cessful algorithms for creating classifier ensembles [3], [11],
[16], [36], [37]. The ensemble is constructed incrementally, the
subsequent classifiers focusing on those objects in the data set,
which appeared to be “difficult” for the previous member of the
ensemble. The presumption is that this strategy introduces diver-
sity in the ensemble, and therefore enhances the performance.
The weighted majority vote is the standard combination

method for ensembles generated by boosting. As explained
later in the text, weighted majority vote is optimal for the
special case of two classes and classifiers with independent
outputs. Practice shows, however, that even independently
designed classifiers will hardly have independent outputs [21].
Classifiers designed by Adaboost are dependent because each
subsequent member of the ensemble is built on a training set in-
fluenced by its predecessor. Yet, weighted majority vote works
well regardless of the violations of the optimality assumptions.
Therefore, there is no reason why other combination methods
should not be successful on ensembles generated by boosting.
Many combination methods and algorithms have been de-

veloped, including methods based on fuzzy sets [27]. However,

Manuscript received February 15, 2002; revised August 28, 2002 and Feb-
ruary 24, 2003.
The author is with the School of Informatics, University of Wales, Bangor

LL57 1UT, U.K. (e-mail: l.i.kuncheva@bangor.ac.uk).
Digital Object Identifier 10.1109/TFUZZ.2003.819842

treating combining classifiers as a branch of statistical pattern
recognition sometimes brings about an unwelcome attitude
toward using fuzzy combiners. The purpose of this study is to
examine experimentally how useful fuzzy combiners are for
boosted ensembles by a comparison with popular nonfuzzy
combiners.
The difficulty in choosing a suitable combination method

for the problem at hand has been recognized and highlighted
numerous times in the literature on combining classifiers. So
far, we do not have a sufficient body of theory to explain the
success of ensembles compared to single classifiers and match
combination strategies and methods to a problem. Pieces of
theory developed hitherto rely on simplifications and assump-
tions, and consider mostly special cases [7], [17], [24], [28],
[36], [37], [39]–[41]. However, even a discipline as mature as
pattern recognition itself does not offer strict guidelines about
how to approach a data set and which classifier to select for it.
Along the years, the advantages of various classifier models
have been demonstrated across different data sets so that the
best contestants have been identified amongst thousands of
possibilities [15]. Being a relatively recent offspring of pattern
recognition and machine learning, combining classifiers still
enjoys many heuristic ideas. Establishing even vague priority
among these is, therefore, a matter of importance. Many
experimental studies have been published in the search of such
guidelines, e.g., [25], [26], and [34]. This study also belongs in
the experimental group.
The text is organized as follows. Section II introduces

the formalism of combining classifiers and the nonfuzzy
combination methods: majority vote, weighted majority vote
(the standard choice for the Boosting algorithm), minimum,
maximum, average, product, and the Naive–Bayes (NB)
combiner. The Boosting algorithm for generating an ensemble
is also explained there. The “fuzzy competitors” are presented
in Section III: Fuzzy Integral [4], [8], [9], [18], [42], [43] and
decision templates (DTs) [23], [29]. Section IV contains the
experimental set up and the results. We analyze the results in
Section V and offer some conclusions in Section VI.

II. CLASSIFIER COMBINATION: NON-FUZZY
Let be a set of trained classifiers

(called also ensemble, team, pool, etc.), and
be a set of class labels. Each classifier gets as its input a fea-
ture vector and assigns it to a class label from , i.e.,

or, equivalently, , . Alter-
natively, the classifier output can be formed as a -dimensional
vector

(1)
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Fig. 1. General description of AdaBoost for classifier ensemble design

where is the degree of “support” given by classifier
to the hypothesis that comes from class . Most often
is an estimate of the posterior probability . In fact, the
detailed interpretation of beyond a “degree of support”
is not important for the operation for any of the combination
methods studied here. Except for the decision templates method
(explained later), where similarities between fuzzy sets are cal-
culated, does not even need to be restricted in the interval
[0,1].
It is convenient to organize the output of all classifiers in a

decision profile [29]

(2)

Thus, the output of classifier is the -th row of the deci-
sion profile, and the support for class is the th column.
Without loss of generality we can restrict within the in-
terval [0,1], , , and call the classifier
outputs “soft labels.”Combining classifiersmeans to find a class
label for x based on the classifier outputs. We look for a vector
with final degrees of support for the classes as a soft label for
x, denoted

(3)

If a single (crisp) class label of x is needed, we use themaximum
membership rule: Assign x to class iff

(4)

Ties are resolved arbitrarily. The minimum-error classifier is re-
covered from (4) when . Again, there is no
reason why should be restricted in the interval [0,1].

A. Boosting for Creating Classifier Ensembles

Boosting algorithms are amongst the most popular methods
for constructing classifier ensembles [3], [11], [16], [36]. They
develop the classifier ensemble by adding one classifier at a
time. The classifier that joins the ensemble at step is trained
on a data set selectively sampled from the training data set .
The sampling distribution starts from uniform, and progresses
toward increasing the likelihood of “difficult” data points. Thus,
the distribution is updated at each step, increasing the likelihood
of the objects misclassified by the classifier at step . The
basic algorithm, called AdaBoost [15], [36], implementing this
idea, is shown in Fig. 1.
To train the classifiers and the combiners we have a labeled

data set , , called the training set. The
basic (nonfuzzy) classifier combination methods are described
here.
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Fig. 2. Operation of the simple combiners.

B. Nontrainable Combiners
In this subsection we detail the combiners that are ready to

operate as soon as the classifiers are trained, i.e., they do not
require any further training of the ensemble as a whole.
The Majority vote (MAJ) assigns x to the class label

most represented among the (crisp) classifier outputs. To
derive a formal expression, assume that the label outputs
of the classifiers are given as -dimensional binary vectors

, , where if
labels x in , and 0, otherwise, . The plurality
vote will pick class if

(9)

Ties are resolved arbitrarily. This rule is often called in the liter-
ature the majority vote. It will indeed coincide with the simple
majority (50%of the votes +1) in the case of two classes ( ).
Various studies are devoted to the majority vote for classifier
combination, e.g., [1], [2], [31], [32], and [35].
The remaining simple combination methods require soft la-

bels. The Minimum simple combiner operates by taking the
minimum in each column thereby forming the vector

as
(10)

In a similar way, we calculate the class support from the deci-
sion profile taking Maximum, Average and Product
separately for each column. The way simple combiners work is
illustrated in Fig. 2.

C. Trainable Combiners
The NB combination method assumes that the classifiers

are mutually independent (this is the reason we use the name
“naive”). Denote by the class label assigned to x by classifier
. Let be the number of points in the training

set from class , for which assigned class label . For

example, let the label for x suggested by classifier be .
In calculating the support for, say, , we use
which is the entry (3,2) in the confusion matrix for .1 The
support for is calculated as

(11)

where is the total number of patterns from in Z.
If the classifiers in the ensemble are not of identical accuracy,

then it is reasonable to attempt to endow the more “competent”
classifiers with more power in making the final decision using
theweightedmajority vote (WMAJ). We introduce weights or
coefficients of importance , , and rewrite (9) as:
Choose class label if

(12)

One way to select the weights for the classifiers is formalized
through the following theorem (paraphrased from [38]), which
we state without proof.
Theorem: Consider an ensemble of independent classifiers

, with individual accuracies , for solving
a two-class pattern recognition problem by the weighted ma-
jority vote. Then, using (12), the accuracy of the ensemble is
maximized by assigning weights

(13)

This result has been derived independently by several
researchers in different fields of science such as democracy
studies, pattern recognition, and automata theory, leading to
the earliest reference [33] according to [1] and [38]. Curiously,
the optimal weights do not take into account the performance
of other members of the team but only magnify the relevance
1Recall that the confusion matrix is calculated on the training set so that its

( )th entry in the number of objects with true label , labeled by the classifier
as .
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of the individual classifier based on its accuracy. The weighted
majority vote is the standard choice for combining the classi-
fiers in ensembles designed by Boosting.

III. CLASSIFIER COMBINATION: FUZZY

If we restrict into [0,1], we can use numerous aggre-
gation connectives defined for fuzzy sets [5], [13], [19], [46],
[47]. Which connective or rather which class of connectives are
the most appropriate ones could be related to the semantics of
the degree of support, i.e., whether they can compensate one an-
other, etc. It is perhaps more difficult to interpret the classifier
outputs in the semantic frameworks suggested in the literature
[14] than to pick an aggregation connective once the context has
been clarified. The most common aggregation connectives, per-
ceived sometimes as trademarks of fuzzy set theory, are already
in use: minimum, maximum, simple average, and product. We
placed them as the nonfuzzy nontrainable combiners. Variation
of these with different level of “optimism” in the aggregation
are also among the possible choices.
Here we selected two methods to represent this group: fuzzy

integral (reported to give good results) and decision templates
(simple and intuitive).
Fuzzy integral (FI) [19], [20] has been applied to classifier

combination in a number of contexts [4], [8], [9], [18], [42],
[43].
Let be a fuzzy set on expressing the support for class .

We use a fuzzy measure to take into account the importance of
any subset of classifiers from with respect to . Two basic
types of fuzzy integrals have been proposed: Sugeno type and
Choquet type. The Sugeno fuzzy integralwith respect to a fuzzy
measure is obtained by

(14)

where is the -cut of .
Example: Let , and let the fuzzymeasure
be defined as shown in Table I.
Let be a fuzzy set on accounting for

the support for class by , and , respectively (the
th column of ). The -cuts of are

Then

The fuzzy measure can be calculated from a set of values ,
called fuzzy densities,2 representing the individual importance
of . We can find a -fuzzy measure which is consistent with
2The term “fuzzy densities” appears in the literature as a convenient

short-hand for “the point-wise values of the fuzzy measure.”

TABLE I
EXAMPLE OF THE VALUES OF A FUZZY

MEASURE OVER A SET OF THREE CLASSIFIERS

these densities. The value of is obtained as the unique real root
greater than of the polynomial

(15)

The operation of fuzzy integral as a classifier combiner is shown
in Fig. 3.
The support for , , can be thought of as a “compro-

mise” between the competence (represented by the fuzzy mea-
sure ) and the evidence (represented by the -th column of the
decision profile ). Notice that the fuzzy measure vector

might be different for each class, and is also
specific for the current x. Two fuzzy measure vectors will be the
same only if the ordering of the classifier support is the same.
The algorithm in Fig. 3 calculates a Sugeno fuzzy integral. For
the Choquet fuzzy integral with the same -fuzzy measure, the
last formula should be

The idea of the decision templates (DTs) model is to “re-
member” the most typical decision profile for each class, called
the decision template, , for that class, and then compare it
with the current decision profile . The closest match will
label x. Fig. 4 describes the operation of the decision templates
model.
As both and can be regarded as fuzzy sets on

, any measure of similarity between fuzzy sets can be
used [6], [12]. Here, based on our previous experience, we use
the Euclidean distance, three similarity measures and two inclu-
sion indices. The decision template combiners are named in the
experiments as DT(xx), where “xx” stands for the measure or
the index, e.g., DT(S1). Let and be fuzzy sets on some uni-
versal set .
The following measures of similarity were used [12]

(16)

where is the relative cardinality of the fuzzy set on ,
denotes minimum and denotes maximum

(17)
where is the symmetric difference defined by the Ham-
ming distance

(18)
where .
The following indexes of inclusion of (the decision profile

in our case) in (the decision template ) were used
[12]:

(19)

(20)
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Fig. 3. Fuzzy integral for classifier fusion

Fig. 4. Operation of the DTs method.

where is the bounded difference

(21)

Example: Let , , and the decision templates for
and be, respectively

Assume that for an input x, the following decision profile has
been obtained:

The similarities and the class labels using DT(E) to DT(I2)
are shown in Table II.
We note that both fuzzy integral and decision templates are

trainable combiners. For the fuzzy integral, the only quantities
that have to be estimated are the ’s ( parameters) whereas
DTs require decision templates of size each. This
suggests that decision templates might be more prone to
overtraining than fuzzy integral.

TABLE II
SIMILARITIES AND THE CLASS LABELS USING THE DECISION TEMPLATES

COMBINATION METHOD

IV. EXPERIMENTS

A. Experimental Setup
We used six data sets as summarized in Table III. Except for

the Cone-torus data, the other data sets have been extensively
used as benchmarks in the recent literature including that on
combining classifiers. It is difficult to establish a good estimate
of the accuracy from past usage because of the difference in
the experimental protocols (two-fold cross-validation, ten-fold
cross-validation, single hold-out results, etc.) Since the aim of
this study is to compare fuzzy and nonfuzzy combiners, both of
which will be examined under the same experimental protocol,
we shall not be overly concerned with the absolute value of the
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TABLE III
SUMMARY OF THE DATA SETS USED

accuracy. The largest class proportion is given in the table as
a lower bound of the classification accuracy, i.e., the accuracy
when labeling any object in the the most probable class.
Cone-torus is a three-class dataset with 400 2-d points gen-

erated from three differently shaped distributions: a cone, half
a torus, and a normal distribution with prior probabilities 0.25,
0.25, and 0.5, respectively. A separate data set for testing with
400 more points generated from the same distribution is also
available as the file Zte.txt. For the Cleveland Heart Disease
data3 there are a few missing values in the data. In our experi-
ments, these were replaced by the average of the column (fea-
ture) regardless of the class labels.
We performed two-fold cross-validation with all data sets,

taking at random one half of the data for training and the other
half for testing, and then swapping the two sets. All the choices
of the parameters and the classifier training was done on the
training sets only.
All data sets were normalized in the following way. A linear

transformation was used, separately for each feature, to bring
its values within the interval [0,1]. The training set was used to
find the minimum and the maximum of the feature values. The
testing set was transformed using these same constants.
The AdaBoost algorithm in Fig. 1 was implemented to build

ensembles of classifiers with each data set. The indi-
vidual classifiers were multilayer perceptron (MLP) neural net-
works with one hidden layer consisting of 15 nodes, trained for
300 epochs by fast backpropagation (Matlab Neural Network
Toolbox). We recorded the training and testing accuracy during
the AdaBoost iterates for all combination methods described in
Sections II and III.

B. Results
Fig. 5 shows the testing accuracies for three selected methods

during the progressive ensemble generation: Weighted majority
vote (best from the nonfuzzy group), fuzzy integral, and deci-
sion templates with Euclidean distance.
Table IV shows the testing accuracies of the combination

methods for the six data sets at the end of the training, i.e.,
when the ensemble consisted of classifiers. The lines
separate the standard combination methods for AdaBoost, the
3Dr. Robert Detrano collected the database; V.A. Medical Center, Long

Beach, and Cleveland Clinic Foundation.

Weighted majority vote (WMAJ), the nonfuzzy combination
methods (MAJ, NB, and simple combiners), and the fuzzy
methods (FI and DTs).
To facilitate the comparison we also calculated the relative

performance of each method with respect to the others. The
columns with the accuracies were sorted individually and each
combination model was assigned a rank with respect to its place
among the others. The highest rank (value 14) was assigned to
the best model and the lowest rank (value 1) was assigned to the
worst model. The ranks are shown in Table V. The six ranks for
each combination model were then added up to give a measure
of the overall dominance among the models. The total ranks are
displayed in the last column of the table.
To find out whether these results are due to chance or reveal a

steady pattern on the preference, we apply a difference-of-pro-
portions test for every pair of combiners at level of significance
0.05. Since the assumption of independence between the two
samples of interest is generally not true (the same data was used
to test both combiners), the results might be on the conservative
side [10]. This means that there might be more true differences
at the same significance level, undetected hereby. Table VI gives
the results from the test. Since we used six data sets, there will be
six comparison results for every pair of combination methods.
The entries in the table should be read as “[better same worse]”
for the six comparisons. Thus, the entry for (MIN,NB), “213,”
means that the minimum combination method has been found
significantly better than Naive Bayes method in two of the six
comparisons, the same in one comparison, and worse in three
comparisons.

V. ANALYSIS AND DISCUSSION

A. General Remarks
At a first sight, the results favor the fuzzy combination

methods. We note that the overall accuracy of the ensembles
is not particularly high, compared to the results reported else-
where. This could be due to a poor selection of the parameters
of the individual classifiers, i.e., the MLP configuration and
training protocol. Another reason is that we used a two-fold
cross-validation, so only 50% of the data was used for training.
With a ten-fold cross-validation, the classifiers are trained on
90% of the data, hence a higher accuracy could be expected. In
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Testing accuracy of the combination methods during the incremental design of the ensemble by AdaBoost. All methods are displayed with the same lines
as explained in subplot (a).

any case, the purpose of this study was to explore the potential
of some fuzzy combination methods compared to the standard
choice and some popular nonfuzzy methods.
The overall rank score in Table V also places fuzzy methods

before the nonfuzzy ones. The best combiner in our experiments
appeared to be the DTs method based on Euclidean distance
(DT(E)) followed by the fuzzy integral (FI). Average was the

best from the nontrainable group, confirming the findings from
other studies [24].
Table VI identifies the decision templates with (DT(S3))

as the only nondominated combination method. The first digit
of all the entries in its column is 0, indicating that in none of
the comparisons another method has been found significantly
better. This suggests that although DT(E) and fuzzy integral
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TABLE IV
TESTING ACCURACIES FOR THE COMBINATION METHODS AND THE SIX DATA SETS

TABLE V
TESTING RANKS FOR THE COMBINATION METHODS AND THE SIX DATA SETS (THE HIGHER THE RANK, THE BETTER THE METHOD)

TABLE VI
RESULTS FROM A PAIRWISE STATISTICAL COMPARISON OF COMBINATION METHODS. THE ENTRIES MEAN “[BETTER,SAME,WORSE]” OUT OF SIX COMPARISONS

(FI) had higher ranks, the differences where they outperformed
DT(S3) were not found to be significant.

B. Effects of the Individual Accuracies, Their Variability, and
Ensemble Diversity

Can we decide which fuzzy or nonfuzzy combiner to use on
a given data set? A closer look into the characteristics of the

final ensembles designed by Boosting reveals the difficulty in
doing so. Looking for clues, we summarized in Table VII some
characteristics of the final ensembles of 15 classifiers (averaged
over two cross-validation runs) for the six data sets.
The single best classifier was identified as the one with the

highest training accuracy. Column 1 shows the testing accura-
cies of the best classifiers in the ensembles. Next to it, we show
in brackets the iteration number in the boosting algorithmwhere
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TABLE VII
CHARACTERISTICS OF THE FINAL ENSEMBLES OF 15 CLASSIFIERS DESIGNED BY BOOSTING

this classifier was found. It is not surprising that the best overall
accuracy is achieved by the first or the second classifier in the
ensemble where we draw a training sample almost uniformly
from the training set at hand. Later classifiers are more special-
ized on difficult part of the training data rendering low overall
accuracy.
We calculated the averaged accuracy of the ensemble looking

for a pattern on the improvement. The most pronounced im-
provement of fuzzy combiners over the nonfuzzy ones was
found on the least accurate ensemble, the Satimage data. Using
36 features and accounting for six classes, makes the training
of an MLP a difficult task. Judging by the best accuracy of
64.70%, the training has been trapped in local optima for all
ensemble members.4 By resulting in low-accuracy classifiers,
however, this experiment highlights an interesting finding:
Fuzzy combiners are particularly useful when the classifiers
forming the ensemble are poorly trained or calibrated.
Fumera and Roli [17] suggest that the imbalance of the en-

semble plays a role in its success. To account for this, we show
in Table VII the standard deviations within the 15 classifiers.
The highest variation in accuracy is exhibited by the Satimage
data where the best improvement happens to be as well. How-
ever, this pattern is not consistent with the other data sets. Higher
variance is not a guarantee that fuzzy combiners will be better
than nonfuzzy combiners. Fig. 6(a) shows the scatter of the in-
dividual classification accuracies of the ensembles for the six
data sets and Fig. 6(b) gives the sequence of individual accu-
racies across the AdaBoost iterations. Not surprisingly, the per-
formances deteriorate. However, there is no principal difference
between the deterioration pattern for the Phoneme data from the
others which can explain the failure of DTs on this data set.
Diversity is another characteristic that is perceived to be of

primary importance for the success of the ensemble. Based on
our previous research [30] we chose to show the measure of
diversity of the final ensembles. The lower the value of ,
the higher the diversity. Although best improvement was fonud
at the lowest (greatest diversity), no consistent pattern can
be observed which can indicate where fuzzy methods should be
preferred.

C. Why are DTs Different From the Rest of the Combiners?
Below we try to give more insight into why DTs are expected

to work. The combiners which treat the individual outputs sepa-

4Woods et al. report in [45] an MLP with accuracy 83.98% using 5 features
from the Satimage data but since no training protocol was specified we were not
able to match this result.

(a)

(b)

Fig. 6. (a) Scatter of the individual accuracies of the 15 classifiers for the six
data sets. (b) Plot of the individual accuracies versus AdaBoost step.

rately, (one class at a time) are named in [29] “class-conscious.”
Such are all basic combination methods, e.g., minimum, max-
imum, average, product, etc., and the fuzzy integral. Conversely,
DTs are a “class-indifferent” approach because they treat the
classifier outputs as a context-free set of features, much as the
stacked generalization approach [44]. Thus, by design, all class-
conscious combiners are idempotent, i.e., if the ensemble con-
sists of copies of a classifier , the ensemble itself will be
no different from . Indeed, the decision profile will contain
identical rows and any of the operations discussed above will
lead to the same overall class label as . Decision templates,
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however, will not be necessarily identical to ; they might be
better or worse.
To illustrate this point, we consider a classifier for a two-

class data set. Denote the outputs for the two classes as
and .5 Taking copies of

as our ensemble, the decision profile for x contains rows of
. It is not difficult to verify that all combination methods

explained above except decision templates will copy the deci-
sion of as their final decision. However, this is not the case
with DTs. Assume that we have obtained the following DTs:

and the decision of for x is and . All com-
bination methods except DTs will assign x to class . Using,
say DT(E), we have the two Euclidean distances

(22)

(23)

Since x will be classed in . Is this good or bad?
The fact that a different classification is possible only supports
the thesis that DTs are not an idempotent combiner. Hence, it is
possible that the true label of x was , in which case DTs are
correct where all other combiners, including itself are wrong.
The question is in what experimental scenario should we expect
DTs to be more correct than other methods?
Let be a linear classifier which we ran on the Cleveland

data set, using a randomly selected half for training and the re-
maining half for testing. Every point can be character-
ized by its output values and . Being a probabilistic label,
( ) can be plotted as a point on the diagonal line of the unit
square. A fuzzy label therefore will be a point within the unit
square. Let us construct an ensemble taking distorted copies
of , with output ( ). Now the label points are off the

diagonal line as shown in Fig. 7. All combination methods ex-
cept DTs will label the points according to the bisecting line:
The points whose label fall in the shaded area will be labeled in
because for these points , and so the combined result

from any idempotent combiner will be (matching that
of ). The accuracy of the individual classifier in this example
is 81.47%. Next, we apply DT(E). The two decision templates
consist of identical rows, therefore, they also can be charac-
terized by points in . The two templates are depicted as
crosses in Fig. 7. Since the support for the classes is now calcu-
lated by the distance to the template, a new decision boundary
is found, shown by the dashed line. Four points from the orig-
inal training set, previously mislabeled as are now correctly
labeled as (encircled in the figure). Thus in this example, the
training accuracy of DT(E) is 84.11%, exceeding that of the in-
dividual classifier and the other combination methods.

5The probabilistic semantic is used for illustration purposes. The example
generalizes to any other semantic of the classifier outputs.

Fig. 7. Illustration of the decision templates operating on an ensemble of
identical classifiers using Cleveland data set. Shaded area is the decision region
for class using the original classifier and any combination method other
than DTs. The points in the training set are depicted using their labels from the
“cloned” classifier. The two decision templates are shown with crosses and the
respective new classification boundary is shown by the dashed line. Previously
mislabeled points which are correctly labeled by the DT(E) are encircled.

D. Fewer Classifiers (Early Stopping of Adaboost)

In all previous experiments, we chose the number of classi-
fiers ( ) arbitrarily. Fig. 5 suggests that reasonable accu-
racy of the combination is achieved by fuzzy combiners at the
early stages of AdaBoost, with only a few classifiers. It could
be argued that further increment in the number of classifiers di-
lutes the differences which are exploited well by the trainable
fuzzy combiners such as DTs. To examine this hypothesis we
analyzed a “slice” of AdaBoost stopped after the third classifier
was built. Tables VIII–X mirror Tables IV–VI, respectively, for

classifiers.
Again, the fuzzy methods dominate the nonfuzzy methods

examined. Two interesting observations can be made from the
rank score Table IX. First, the average combiner was ranked
very high, almost catching up with its best rivals in the com-
parison. This shows once again its robustness and universality.
Second, the total rank scores of fuzzy integral and weighted ma-
jority dropped while the rank scores for all the decision template
models went up. This indicates that DTs are more beneficial for
small number of classifiers. The reason for that could be that,
having to estimate parameters from the training set, DTs
are prone to overtraining. Therefore, for larger , it is advisable
to have a separate validation set for calculating the decision
templates. Note that (Table X) now both DT(S3) and DT(E) are
nondominated.
Fig. 8 offers an overall picture of the statistical comparisons.

We grouped the fuzzy and the nonfuzzy methods and found a
total of the number of times fuzzy methods dominated non-
fuzzy methods, the number of times they were indistinguish-
able, and the number of times fuzzy methods were worse than
nonfuzzy methods. Since there are seven fuzzy and seven non-
fuzzy methods and six data sets, the total number of “fuzzy
versus nonfuzzy” comparisons is . Plotted
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TABLE VIII
TESTING ACCURACY FOR ENSEMBLES OF CLASSIFIERS

TABLE IX
TESTING RANKS FOR ENSEMBLES OF CLASSIFIERS

TABLE X
RESULTS FOR ENSEMBLES OF CLASSIFIERS FROM A PAIRWISE STATISTICAL COMPARISON OF COMBINATION METHODS. THE ENTRIES MEAN “[BETTER,

SAME, WORSE]” OUT OF 6 COMPARISONS

in Fig. 8(a) is a bar graph for the early stopping of AdaBoost
( classifiers), and in Fig. 8(b), the bar graph for
classifiers. In both experiments, fuzzy combiners were found
better. Part of the large number of insignificant differences for

(207) was “redistributed” for , again favoring
fuzzy combiners.

The results in the plots should be taken cautiously because of
the nature of the methods grouped together. We chose for the
nonfuzzy group the basic and most popular combiners. How-
ever, we could have included in this group other successful train-
able combiners from the literature. One such candidate would be
the so called behavior knowledge space method [22] which was
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(a)

(b)

Fig. 8. Overall picture of the statistical comparisons.

found to be better than DTs in an identity verification study [23].
BKS is a multinomial classifier on the class label outputs which
requires a look-up table of size which makes it inappropriate
for even moderate size ensembles. Apart from the danger of se-
vere overtraining, the computational time would be substantial.

VI. CONCLUSION

We studied the potential of fuzzy combination methods for
ensembles of classifiers designed by AdaBoost. The results in-
volving sums of ranks and statistical comparisons showed that
in general, fuzzy methods fared better than nonfuzzy methods.
However, the study also highlighted the difficulties in choosing
a particular method for a given problem.
Decision templates were found to be the best from the group

of the fuzzy combiners, particularly the variants with Euclidean
distance (DT(E)) and the similarity measure (DT(S3)). The
capability of DTs to achieve higher accuracy can be attributed to
the fact that they are not an idempotent combiner. Fuzzy integral
also showed consistently good performance, working success-
fully on the data sets where DTs were inferior to the nonfuzzy
methods. DT models were more prone to overtraining than the
other trainable combiners studied here, i.e., fizzy integral and

weighted majority vote. Thus, for ensembles of three classifiers,
DT’s performance was superior to the other two, whereas for 15
classifiers the performances were similar.
From the nonfuzzy group, the weighted majority vote was

the best combiner. This is not a surprise as this combiner is the
standard one used with AdaBoost. Average combination was
also among the best, especially for small number of classifiers.
Thus, the claim here is not that the fuzzy combiners are better.

A well known postulate in pattern recognition says that there is
no “best” classifier or “best” combination method. What this
study suggests is to keep fuzzy combiners high on the list of
options.
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