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Abstract—Many clustering algorithms, including cluster ensembles, rely on a random component. Stability of the results across
different runs is considered to be an asset of the algorithm. The cluster ensembles considered here are based on k-means

clusterers. Each clusterer is assigned a random target number of clusters, k and is started from a random initialization. Here, we
use 10 artificial and 10 real data sets to study ensemble stability with respect to random k, and random initialization. The data sets

were chosen to have a small number of clusters (two to seven) and a moderate number of data points (up to a few hundred).
Pairwise stability is defined as the adjusted Rand index between pairs of clusterers in the ensemble, averaged across all pairs.

Nonpairwise stability is defined as the entropy of the consensus matrix of the ensemble. An experimental comparison with the
stability of the standard k-means algorithm was carried out for k from 2 to 20. The results revealed that ensembles are generally

more stable, markedly so for larger k. To establish whether stability can serve as a cluster validity index, we first looked at the
relationship between stability and accuracy with respect to the number of clusters, k. We found that such a relationship strongly

depends on the data set, varying from almost perfect positive correlation (0.97, for the glass data) to almost perfect negative
correlation (!0:93, for the crabs data). We propose a new combined stability index to be the sum of the pairwise individual and

ensemble stabilities. This index was found to correlate better with the ensemble accuracy. Following the hypothesis that a point of
stability of a clustering algorithm corresponds to a structure found in the data, we used the stability measures to pick the number of

clusters. The combined stability index gave best results.

Index Terms—Clustering, cluster ensembles, stability and diversity, cluster validity.

Ç

1 INTRODUCTION

CLUSTER ensembles have been introduced as a more
accurate alternative to individual clustering algo-

rithms. Many published studies have demonstrated the
advantages of such ensembles over single clusterers in
discovering clusters of arbitrary shape and size [12], [14],
[32]. Two major themes in this literature are combination
methods of the ensemble votes and diversifying heuristics
for building the ensemble.

Here, we are interested in the stability of cluster
ensembles.Thestability of a clusteringalgorithmwith respect
to small perturbations of the data (e.g., data subsampling or
resampling, small variations in the feature values), or the
parameters of the algorithm (e.g., random initialization) is a
desirable quality [29]. On the other hand, ensembles benefit
fromdiverse clusterers [8], [16], [17]. This paper carries out an
experimental study to examine whether cluster ensembles
give more stable results than single clustering methods. In
doing so, we also look for a cluster validity index which can
help us to identify the “best” number of clusters. Not every

clustering algorithm, be it an ensemble or a single clusterer,
will be able to discover the true structure in the data.
Therefore, there might be an optimal number of clusters for
the considered algorithm which is not necessarily the true
number of clusters. High correlation between stability and a
suitable measure of accuracy of the clustering algorithm is
paramount for finding this optimal number of clusters.

In this study, we are looking for answers to the following
questions:

1. Are ensembles more stable than individual
clusterers?

2. Is ensemble stability related to ensemble accuracy?
3. How good is ensemble stability as a cluster validity

measure?

The rest of the paper is organized as follows: Cluster
ensembles arebriefly introduced inSection 2. Section3details
the stability measures evaluated in this study and discusses
their application as cluster validity indices. Section 4
describes the data sets, the experimental protocol, and the
results. Section 5 contains our discussion and conclusions.

2 CLUSTER ENSEMBLES

Let P1; . . . ; PL be a set of partitions of a data set Z, each one
obtained from applying a clustering algorithm. The aim is
to find a resultant partition P " which best represents the
structure of Z. We can think of the L partitions as the
decisions of an ensemble of clusterers with P " being the
combined decision of the ensemble.
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The twomajor issues are how to build diverse yet accurate
individual clusterers and how to combine their decisions.
Various heuristics have been proposed in the literature for
building the ensemble members. Among these are random
initializations of the clustering algorithm, subsampling, or
resampling the data [5], [8], [9], [13], [16], [26], [27], applying
different types of clustering algorithms [1], [16], [18], [37],
using subsets of features [16], [32], “weakening” the cluster-
ing algorithm [16], [34], projecting the data in random affine
subspaces [8], [34], etc. One of the most successful heuristics
has been randomly choosing the number of clusters assigned
to each clusterer in the ensemble [12], [13], [16], [17], [21].

We can construct the resultant partition P " following
several approaches (called “consensus functions”): the direct
approach (relabeling of Pi and finding P " which has the best
matchwith allPi, i ¼ 1; . . . ; L) [9], [32], [37], the feature-based
approach (treating outputs from the clusterers as L catego-
rical features and building a clusterer thereupon) [35], the
hyper-graph approach (constructing a hyper-graph repre-
senting the total output from the clusterers and cutting the
redundant edges) [32], and the pairwise approach [1], [8],
[10], [11], [13], [27]. We implemented the pairwise approach
because it hasbeenapopular choicedespite its comparatively
large computational demand. As cluster ensembles are
relatively new offspring of the multiple classifier systems
area, to facilitate reproducibility of our results, we detail the
generic pairwise cluster ensemble algorithm below:

1. Given is a data set Z with N elements. Pick the
ensemble size L and the number of clusters k.
Usually, k is larger than the suspected number of
clusters so there is “overproduction” of clusters.1

2. Generate L partitions of Z with k clusters in each
partition.

3. Form a coassociation matrix for each partition,
MðsÞ ¼

!
mðsÞ

ij

"
, of size N &N , s ¼ 1; . . . ; L, where

mðsÞ
ij ¼
1; if zi and zj are in the same cluster in partition s

0; if zi and zj are in different clusters in partition s:

#

4. Form a final coassociation matrix M (consensus
matrix) from MðsÞ, s ¼ 1; . . . ; L, and derive the final
clustering using this matrix. A typical choice forM is

M ¼ 1

L
Mð1Þ þMð2Þ þ . . .þMðLÞ

$ %
:

The consensus matrix M can be regarded as a similarity
matrix between the points of Z. Therefore, it can be used
with any clustering algorithm which operates directly upon
a similarity matrix. The output is taken to be the ensemble
partition P ". The name “pairwise” comes from relating
pairs of objects to find P ". Viewed in this context, a cluster
ensemble is a type of stacked clustering whereby we can
generate layers of similarity matrices and apply clustering
algorithms on them. In this study, we use k-means as the
base clusterer and single linkage as the consensus function,
interpreting M as similarity. The target number of clusters

for each clusterer is picked randomly between 2 and a
chosen value Kmax (here, Kmax ¼ 20).

By “accuracy” of a clustering algorithm, we shall assume
the similarity of theobtained clustering to aknown labelingof
the data. Such labeling is available in a clear form for
artificially generated data sets. In order to use real data sets
with known class labels, we have to make the convenient
assumption that classes correspond to clusters in data. This
may be true, partly or completely, for some real data sets, but
is by no means guaranteed. Many authors have used real
benchmark data sets with known class labels to evaluate
clustering algorithms and we will follow this tradition here.

3 STABILITY MEASURES AND CLUSTER VALIDITY

The stability of a clustering algorithm with respect to small
perturbations of data and also different initializations is a
desirable quality of the algorithm. Cluster ensembles, on the
other hand, enforce and exploit some instability so that the
ensemble is comprised of diverse clusterers. Although built
upon unstable components, the ensemble is expected to be
more accurate and robust than the individual clustering
method. Here, we look at the stability of the ensemble.

3.1 Pairwise and Nonpairwise Stability
We consider two approaches to measuring the stability of a
set of clusterers, P1; . . . ; PL: pairwise and nonpairwise.2

In the pairwise approach, the match between each of the
LðL! 1Þ=2 pairs of clusterers is calculated and the stability
index is obtained as the averaged degree of match across
the pairs. Let SðPi; PjÞ be the degree of match (agreement or
stability) between partitions Pi and Pj. The pairwise
stability index Sp is

Sp ¼
2

LðL! 1Þ
X

1(i;j(L;
i<j

SðPi; PjÞ: ð1Þ

There are many indices evaluating the match between two
partitions, fromamongwhich we selected the adjusted Rand
index [19], [29]. This index takes value 1 if the partitions are
identical and has an expected value of 0 if they are drawn
independently of one another, regardless of the number of
clusters.

Let A and B be partitions of Z with kA and kB clusters,
respectively. Let ni be the number of objects in cluster i in
partition A and mj be the number of objects in cluster j in
partitionB. Denote by nij the number of objectswhich belong
simultaneously to cluster i in partition A and cluster j in
partition B. The adjusted Rand index is calculated as

ARðA;BÞ ¼
PkA

i¼1

PkB
j¼1

nij

2

& '
! t3

1
2 ðt1 þ t2Þ ! t3

; ð2Þ

where

t1 ¼
XkA

i¼1

ni

2

$ %
; t2 ¼

XkB

j¼1

mj

2

$ %
; and t3 ¼

2t1t2
NðN ! 1Þ

:

We will use the adjusted Rand index (2) to calculate the
pairwise stability, Sp, in (1) and also to evaluate the
accuracy of the clustering algorithm with respect to the
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1. Note that, although k is fixed for all ensemble members in the original
algorithm, in the version which we use later on, k is chosen randomly for
each ensemble member. This induces diversity in the ensemble, and has
been found to be one of the most useful cluster ensemble heuristics [12],
[13], [16], [17], [21].

2. The pairwise approach to measuring stability refers to pairs of
clusterers and should not be confused with the pairwise method for
constructing the ensemble.



known true partition P true as ARðP "; P trueÞ for the ensemble
and ARðPi; P trueÞ for the ith individual clusterer.

In the nonpairwise approach, the consensus matrix M is
analyzed. If all the clusterers agree on joining objects i and j in
the same cluster, then mij ¼ 1. If all clusterers agree that
objects i and j are in different clusters, then mij ¼ 0. Only if
there is disagreement on jointmembership of the two objects,
will mij be between 0 and 1. In the case of the largest
disagreement,where i and j are in the same clusters in exactly
L=2 of the partitions P1; . . . ; PL,mij ¼ 0:5. It seems natural to
measure the disagreement between the clusterers as the
averaged entropy of the cells of M (recall that M is of
sizeN &N ,whereN is thenumberofobjects inthedataset,Z)3

HðMÞ ¼ ! 1

N2

XN

i¼1

XN

j¼1

mij log mij

& '
þ 1!mij

& '
log 1!mij

& '& '
:

ð3Þ

Entropy has been used as a measure of diversity of
cluster ensembles by Greene et al. [16]. In the same vein,
Monti et al. [27] propose looking at the “contrast” of the
distribution of the values mij. We shall use as the
nonpairwise stability index Snp ¼ !HðMÞ.

3.2 Using Stability as a Cluster Validity Index
Finding a suitable number of clusters is an ill-posed
problem of crucial relevance in cluster analysis [15], [20].
Various solution paths being explored can be roughly
grouped into two: approaches based on geometrical
properties of the clusters (compactness, isolation, within
and between-cluster dispersion, etc.) and approaches based
on the concept of stability of the clustering. Within the
first approach, the indices by Calinski-Harabasz and
Krzanowski-Lai have been repeatedly chosen as bench-
marks [7], [25], [28], [33]. The Gap statistic by Tibshirani
et al. [33] has been shown to be very accurate for finding the
true number of clusters, while simultaneously testing for
existence of a structure in data. The stability approach is
based on the idea that the correct number of clusters is a
point of stability for the clustering algorithm. In other
words, the true number of clusters is sought as the value for
which the partitions obtained through data perturbation are
highly similar to one another. Different cross-validation
protocols can be used, the two most widely explored being
2-fold cross-validation [15], [31] and bootstrap resampling
or subsampling [7], [9], [22], [23], [24], [27], [28].

The problem is ill-posed because there is no rigorous
definition ofwhat a cluster is. Validitymeasures are based on
geometrical properties of the clusters. Thus, each validity
measurewill favor a specific shape of clusters andwill not be
useful if clusters are of verydifferent shapes. Ifwe are looking
for the true number of clusters with a particular validity
measure,weneed toassumewhat shape theclusters are likely
tohave. Theremight be clusters of verydifferent shapes in the
same data set and theremight generally be no information on
the shape of the clusters in real data sets.

Different clustering algorithms may produce differently
shaped clusters. It makes sense to couple a measure of
cluster validity with a particular clustering algorithm. Thus,
if the measure indicates that the data is likely to contain
k hyper-spherical clusters, k-means can be used to find the

labels. In this case, the number of clusters found by such
measures does not have to be the true number of clusters.
Knowing the true number of clusters and trying to enforce it
upon k-means may lead to very poor results. Fig. 1
illustrates this point on a data set called “difficult dough-
nut” (used later in the experiment). There are two clusters in
this data set, the outer ring and the Gaussian within, which
are impossible to find by the standard k-means algorithm.
Any attempt to arrive at k ¼ 2 clusters (Fig. 1a) will give
intuitively worse results than clustering in larger k, where
the outer ring is broken into subclusters (Fig. 1b).

The stability-based validity indices are not bound to the
clustering method used for partitioning the perturbed data.
More importantly, there is no implied guess on the clusters’
shape and size. This makes stability-based indices more
adequate for using with cluster ensembles, knowing that
the main claim of cluster ensembles is exactly that the
obtained clusters can be of any shape and size. The problem
here is that the assumption that stability corresponds to
high accuracy may not always hold.

Here, we take the stability route and assume that
ensemble stability corresponds to high ensemble accuracy.
Note that by ensemble stability we shall mean the stability of
the ensemble decision, not stability among the clusterers
within the ensemble. The ensemble stability will be used as
a validity index and compared to the results obtained
through the stability of single clusterers.

This study differs from the previous works that use
stability for validating clustering results by the chosen source
of variability. We evaluated stability of k-means and
ensembles thereof across different initializations, while the
previous works have used data resampling/subsampling.
For a single k-means algorithm, this choice amounts to
evaluating by Monte Carlo simulations the landscape of the
sum-of-squared-error criterion Je [4] for a given k. A
landscape with a single minimum (leading to the same
partition) will correspond to high stability. The hypothesis is
that this scenario indicates a true cluster structure in the data.
If there are multiple minima but they are such that their
corresponding partitions are similar to one another, again
stability for the respective kwill be large.On theother hand, if
the multiple minima of the criterion function lead to very
different partitions, stabilitywill be lowand, according to our
hypothesis, the plausibility of this structure will be low.
Cluster ensembles optimize a different criterion function, in
most cases not explicitly defined.We note that we do not use
the information about the “depth” of the minima nor do the
other methods based on stability. For the individual
clusterers, this depth is the value of the criterion, albeit not
comparable across different k. For ensembles, defining and
interpreting such a criterion value is not straightforward.
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3. Assume 0 logð0Þ ¼ 0.

Fig. 1. Difficult doughnut data set (contains 10 more noise dimensions)

clustered by k-means in: (a) two clusters and (b) four clusters.



4 THE EXPERIMENT

4.1 The Data Sets
Ten artificial and 10 real data sets were selected for this
study. The artificial data sets are shown in Fig. 2. These are
all created in two dimensions and are meant to present
different degree of challenge to the clustering algorithm.
Ten dimensions of uniform random noise were appended
to each of the first three data sets (easy doughnut, difficult
doughnut, and four gauss), while the other seven data sets
were kept as two-dimensional.

The 10 real data sets are described in Table 1.

4.2 Experimental Protocol
The ensembles studied here consist of L ¼ 25 clusterers,
where each clusterer is assigned a random number of
clusters between two andKmax (Kmax ¼ 20was chosen). The
consensus matrixM is calculated for each ensemble and fed
to the single linkage clustering algorithm. The ensemble
decision is obtained by stopping the single linkage at a
predefined number of clusters, k. For each data set, we built
100 such ensembles. Denote by P "ðk; jÞ the resultant
partition by ensemble j, j ¼ 1; . . . ; 100, for number of
clusters k. The following statistics were calculated for k:

1. Average ensemble accuracy

AeðkÞ ¼ 1

100

X100

j¼1

AR P "ðk; jÞ; P true
& '

;

where ARð:; :Þ is the adjusted Rand index.
2. Total ensemble accuracy

AtðkÞ ¼ ARðP "ðkÞ; P trueÞ;

where P "ðkÞ is the decision of the entire ensemble of

the pooled 2,500 clusterers.
3. Individual accuracy

AiðkÞ ¼ 1

jIkj
X

j2Ik
ARðPjðkÞ; P trueÞ;

where Ik ) f1; 2; . . . ; 2; 500g is the index set of all

clusterers within the set of 2,500 which clustered in

k, and jIkj is the cardinality of Ik (approximately

2; 500=ðKmax ! 1Þ). PjðkÞ denotes the partition pro-

duced by clusterer j.
4. Pairwise ensemble stability4

Se
pðkÞ ¼

2

100& 99

X

1(i;j(100;
i<j

ARðP "ðk; iÞ; P "ðk; jÞÞ:

5. Pairwise individual stability

Si
pðkÞ ¼

2

jIkjðjIkj! 1Þ
X

i;j2jIkj;i<j

ARðPiðkÞ; PjðkÞÞ:

For the adjusted Rand, the maximum value of 1 is

obtained for identical partitions and values around 0

are obtained for independent partitions (negative

values are possible).
The nonpairwise measures based on entropy

should be normalized before calculating correlations

KUNCHEVA AND VETROV: EVALUATION OF STABILITY OF K-MEANS CLUSTER ENSEMBLES WITH RESPECT TO RANDOM INITIALIZATION 1801

Fig. 2. Ten artificial data sets used in this study. The first three data sets were generated with 10 additional noise features. The number of clusters is
given in parentheses.

4. Recall that the pairwise stability index for an ensemble is the
averaged Adjusted Rand index (AR) across all pairs of clusterers
(Section 3). The nonpairwise stability index is based on the entropy of
the consensus matrix M.

TABLE 1
Characteristics of the 10 Real Data Sets Used in This Study

Note: Data sets contractions and respiratory are explained in the
Appendix.



or using these measures to select number of clusters.

The minimum value of 0 is obtained when all

partitions are the same.However, themaximumvalue

of entropy for a given kwill dependon k. For example,

suppose that k2 > k1 and the calculated entropies of

the respective consensus matrices are such that

Hðk2Þ < Hðk1Þ. This could be either because the

clustering method is more stable for k2 or because

the maximum achievable entropy is lower and the

methodismoreunstable fork2. Toeliminate thiseffect,

some form of normalization is needed. For the

asymptotic case where L ! 1 and N ! 1, the

maximum entropy of the consensus matrix for

k clusters will be

HmaxðkÞ ¼ ! 1

k

( )
log

1

k

( )
:

The nonpairwise stability measures are then:
6. Nonpairwise ensemble stability

Se
npðkÞ ¼ !HðMeðkÞÞ=HmaxðkÞ;

where MeðkÞ is the consensus matrix obtained from

the 100 ensemble outputs P "ðk; jÞ, j ¼ 1; . . . ; 100 and
7. Nonpairwise individual stability

Si
npðkÞ ¼ !HðMiðkÞÞ=HmaxðkÞ;

where MiðkÞ is the consensus matrix obtained from

the partitions PjðkÞ, j 2 Ik.

The next three sections seek to answer the questions

formulated in the Introduction:

1. Areensemblesmore stable than individual clusterers?
(CanweclaimthatSe

pðkÞ * Si
pðkÞandSe

npðkÞ * Si
npðkÞ?

For what values of k does this hold?)
2. Is ensemble stability related to ensemble accuracy?

(What is the correlation across k between AeðkÞ on
the one hand and Se

pðkÞ or S
e
npðkÞ on the other hand?)

3. How good is ensemble stability as a cluster validity
measure?

4.3 Are Ensembles More Stable than Individual
Clusterers?

Fig. 3 plots the proportion of the data sets (out of 20) forwhich
Se
pðkÞ * Si

pðkÞ (dotmarker) and also the proportion for which
Se
npðkÞ * Si

npðkÞ (trianglemarker), as a function of the number
of clusters, k.

It appears that single clusterers tend to be slightly more
stable for a small number of clusters, while ensembles are
more stable for larger k. This tendency is more pronounced
for the pairwise stability index. This suggests that if the
number of clusters is decided by the maximum stability,
ensembles will be likely to pick a larger number of clusters
than will single clusterers.

We noticed that the individual stability is usually greater
for a small number of clusters. However, greater stability
does not necessarily mean greater accuracy. Consider for
example the “noisy lines” data set. The individual stability
for two clusters is almost perfect, Si

pð2Þ ¼ 0:9607, but this is
because all partitions agree on the wrong two clusters,
as illustrated in Fig. 4. The low ensemble stability,
Se
pð2Þ ¼ 0:3545, suggests that the two clusters found by the

individual k-means for k ¼ 2 may not be the true clusters.
The fact that ensemble stability was lower than indivi-

dual stability on more than half of the data sets for a small
number of clusters requires further explanation. The reason
for this seemingly anomalous result is that the ensembles
were built using a random assignment of the number of
clusters for each ensemble member. This number was
varied between 2 and 20. Thus, an ensemble with a small
number of target clusters might be composed of diverse and
unstable individual clusterers. The natural ensemble ten-
dency toward stabilization may not be sufficient to raise the
stability of such ensembles to that of the individual
clusterers for small k, as demonstrated by the example.
This suggests that neither of the stability indices should be
lightly ignored and that a combination of the two may be
beneficial.

4.4 Is Ensemble Stability Related to Ensemble
Accuracy?

Table 2 shows the Pearson correlation coefficients between
ensemble accuracyAe and the stability indices for the 20 data
sets. The correlation coefficients are computed from the
vector obtained by collecting the indices for k ¼ 2 . . .Kmax.

Shown in Table 3 are the correlations averaged across the
20 data sets between the two ensemble accuracy measures
on the one hand and the stability indices.

Table 2 shows that, while, for some data sets, the
correlation between ensemble accuracy and ensemble
stability is almost perfect (e.g., difficult doughnut, regular
and glass), for other data sets, strong negative correlation is
observed (e.g., petals, crabs, and noisy-lines). It seems that
both measures “fit” some data sets well and fail on others,
not necessarily in conjunction with one another.
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Fig. 3. Proportion of the data sets for which ensemble stability exceeds
individual stability for the pairwise (Sp) and the nonpairwise (Snp)
measures.

Fig. 4. Clusters found by the overwhelming majority of the k-means

clusterers for k ¼ 2 on the “noisy lines” data set.



The last columns in Tables 2 and 3 present the correlation
with a new stability measure defined as

S"
pðkÞ ¼ Si

pðkÞ þ Se
pðkÞ: ð4Þ

The rationale for this measure comes from the argument
above about the counterintuitive finding that, for a small
number of clusters, single clusterers appear to bemore stable
than cluster ensembles.5 The final goal in devising a
stability measure is to use it to guide the choice of a better
ensemble. Thus, we would like to be able to relate it to the
ensemble accuracy. The example in Fig. 4 shows that
individual clusterers can be stable but incorrect in the case
of a small number of target clusters, k. This means that high
stability indicated by SpiðkÞ for small k may not be trusted to
predict high accuracy of the clustering result. Instead of a
stable single classifier, we can use an ensemble, but,
according to Table 3, it seems that the ensemble stability
alone is not a very good accuracy predictor either. The choice
of the sumasa stabilitymeasurewasbasedon theobservation
that coincidental failures did not happen too often. While
ensemble stability slightly dominates individual stability in
terms of correlation (Table 3), they rather complement one
another, and there could be a benefit in combining the two.
We tried the sum as the simplest way for such combination,
without a theoretical ground as to why we should do so.

Table 4 gives the list of the data sets sorted byCorrðSi
p;A

iÞ
and also CorrðS"

p;A
tÞ. The maximum achievable accuracy

(obtained in the experiment) for each data set is also shown.
The sorted lists show that stability, both individual and
combined, relates almost perfectly with the respective
accuracy for some data sets and completely fails for other
data sets. An interesting example in this table is the “regular”
data set. It contains 16 clusters which could be identified by
k-means for k = 16. Thus, themaximumaccuracy is high, both
for individual clusterers (0.846) and for the ensemble (1.000).

However,while the individualSi
p doesnot correlate verywell

withAi, the correlationbetweenS"
p andA

t is veryhigh (0.902).
Thismeans that the ensemblewill bemuchmore likely to find
the 16 clusters if k is picked by the maximum stability. Not
only is the accuracy better but the chance of achieving it is
better too, which demonstrates the advantage of using a
cluster ensemble together with a stability measure.

To enable visual evaluation of the relationship between
accuracy and stability, Fig. 5 plots Si

p, Se
p, and

S"
p

2 , and
ensemble accuracy At as functions of k for the thyroid and
petal data sets. For the thyroid data, Se

p matches the shape of
At very well, whereas Si

p does not. The combined measure
exhibits a stronger correlation with At than either of the two
measures does individually. The petal data set has a poor
match between ensemble stability and accuracy, but a good
match between Si

p andAt. The combined stability measure is
inferior to the individual measure, but reaches its maximum
at the right number of clusters (k ¼ 4). Thus, if we use one of
Si
p or S

e
p, we would have a good predictor of accuracy on one

of the data sets and a poor predictor on the other. Ifwe useS"
p,

we would have a reasonable predictor on both data sets.
As argued earlier, stability wouldmeasure the quality of a

particular clustering method rather than a general property
of the data set. According to Tables 2 and 3, the combined
stability index, S"

p fares better than both the individual and
the ensemble stability indices. An interesting question here is
whether stability-accuracy correlation is betterwhen the data
set is easy or difficult to cluster. To answer this question,
Fig. 6 displays a scatterplot of 20 points corresponding to the
data sets in the plane spanned by the maximum possible
accuracy for eachdata set, i.e.,maxk AtðkÞ, and the correlation
between At and S"

p calculated across k.
With the exception of the petals data set, there is no point

in the zone where maxk AtðkÞ > 0:6 and Correlation ðAt;S"
pÞ

< 0:5. This suggests that if high accuracy is possible, the
correlation will be reasonably strong. The exception is the
petal data set where high accuracy is possible but the
combined index S"

p may not pick it up because it is not well
related to accuracy. However, Fig. 5 shows that, even for this
worst-case scenario, a good ensemble will be selected if we
pick the ensemble with the maximum S"

p. In fact, this will be
theensemblealsopickedbythe individualmeasure,Si

p,which
exhibits much stronger correlation with accuracy for this
data set.

On the other hand, high correlation does not guarantee
high accuracy as the contractions data set demonstrates. We
also note that there are no data sets for which maxk AtðkÞ <
0:25 and Correlation ðAt;S"

pÞ > 0:5.
In other words, if high accuracy is possible, it is likely that

the stability index might work well for choosing a good
ensemble. If high accuracy is not possible, applying the index
will do no harm as the result will not be useful anyway.

4.5 How Good Is Ensemble Stability as a Cluster
Validity Measure?

To answer this question, we consider the following ways for
determining the number of clusters:

1. True k. We assume that there is an oracle to give the
true number of clusters for each data set. With the
reservations explained above, we assume that the
number of clusters for the real data sets is equal to the
number of classes.
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5. We also tried a combined stability index between Si
np and Se

np but the
results were worse and we do not show them here.

TABLE 2
Correlation between Stability Indices and

Ensemble Accuracy Ae



2. k-total. Consider the whole ensemble of 2,500 clus-

terers. The consensus matrix for the ensemble is

submitted as the similaritymatrix to the single linkage

procedure acting as consensus function. k-total is the

number of clusters corresponding to the largest jump

of the distance criterion function. This is a traditional

way of choosing the number of clusters when using

single linkage.

3. k-majority. Consider now the 100 ensembles of
25 clusterers each. The consensus matrix of each
ensemble was submitted to single linkage in order
to get the ensemble partition. The stopping k is
again the number of clusters corresponding to the
largest jump in the criterion for a particular
ensemble. k-majority is the value most often
selected among the 100 suggested ks.

4-8. The numbers of clusters obtained through the
maxima of the five stability indices explored in this
study.

9. Best k. The maximum of the ensemble accuracy is
identified together with the corresponding k. This
is again a type of oracle solution which will gauge
the maximum achievable accuracy for a particular
data set.

The number of clusters produced by an ensemble was
further compared to an empirically set threshold. If the
suggested number of clusters exceeded 80 percent of the
number of points in the data, the number was reassigned to 1
and no cluster structure was reported. Also, since we limited
the study to Kmax ¼ 20 clusters, all numbers obtained for
k-total and k-majority greater than 20 were reassigned to 20.

Table 5 shows the suggested number of clusters, k",
and the corresponding ensemble accuracies, Aeðk"Þ, for
the 20 data sets.

For comparison, Table 6 displays the averaged percentage
achievement ofAi,Ae, andAt for the suggested k, as in Table 5.
The percentage achievement of method X is the achieved
accuracyA divided by the maximumpossibleA for this data
set across all kmultiplied by 100. Shown also are the average
ranks of the eight methods for suggesting k. The best k was
excluded fromthis comparisonbecause itwill alwaysgive the
best solution and occupy the winning place anyway. The
ranks were calculated so that, for each data set, the most
accurate method received rank 1, the next best received
rank 2, etc. Thus, the worst method will receive rank 8 for a
particular data set. If there was a tie, the ranks were
recalculated so that the tied methods altogether received
the sum of the ranks for the places they would have if there
was no tie. For example, ifmethods B, C, andDhave the same
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TABLE 3
Correlation between Stability Indices and Accuracy Averaged Across the 20 Data Sets

TABLE 4
Sorted Correlations and Maximum Achievable Accuracy

Fig. 5. Stability Si
p, S

e
p, and

S"
p

2 , and ensemble accuracyAt as functions of

k for the thyroid and petal data sets.

Fig. 6. Correlation between At and S"
p versus maxk AtðkÞ for the 20 data

sets.



score,which is the secondbest aftermethodA, thenAwill get
rank 1 and each of B, C, andDwill get rank 3. The rankswere
averaged across the 20 data sets. Marked in boldface are the
best results in each row.

The tables show that the combined stability index is the
best cluster validity index among the eight compared ones,
including the true number of clusters. As mentioned before,
the true number of clusters may not be the optimal number
for which a particular clustering algorithm will disclose, to
its best potential, the structure in the data. Cluster ensembles
often produce better results for a number of clusters different
from true k. The combined stability index appeared to be
able to identify, if not the optimal k, then a close rival. It
should be noted, however, that, given this number of
experiments the differences between the eight methods were
not found to be statistically significant according to the
Friedman Two-Way ANOVA.

One possible explanation for the lack of statistical
significance of the differences is that the only parameter that
is altered is thenumberof clusters,k. The clusteringmethod is
the same in all experiments, an ensemble of 25 clusterers.
Because of this, multiple ties can be expected, as seen in
Table 5, corresponding to the same ensemble accuracy. Thus,
the total rankings of the methods are likely to be similar.

Note that, while the real data sets were chosen randomly,
the artificial sets were designed with specific difficulties in
mind. They do not represent a random sample from data

sets which may occur in practice; they are, rather, special
cases, some of them intentionally created to be impossible to
solve with k-means. Hence, a statistical conclusion based on
the current selection of data sets is not necessarily valid in
the general case.

Finally, to show how close the decision by kðS"
pÞ is to the

maximumpossible accuracy, Fig. 7 plots a bar graphwith the
maximum At for the data sets (gray), and the corresponding
accuracy obtained for kðS"

pÞ clusters. The combined stability
index S"

p gives close to optimal performance on a large
majority of the data sets.
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TABLE 5
Suggested Number of Clusters, k", and the Corresponding Ensemble Accuracies, Aeðk"Þ

TABLE 6
Overall Accuracies and Ranks for the Chosen Number of Clusters

Fig. 7. Maximum possible accuracy (gray) and obtained accuracy using

k S"
p

$ %
(black).



5 SUMMARY AND CONCLUSIONS

The stability of clustering algorithms relying on a random
component is an important issue. High stability across
different runs is considered to be an asset. We examined the
stability of cluster ensembles consisting of k-means clus-
terers, each clusterer run with a random initialization and
with a random assignment of k. The stability of the
ensemble was evaluated and compared to the stability of
the individual k-means for values of k from 2 to 20. The
questions addressed by the experiment and the answers
found are summarized below:

1. Are ensembles more stable than individual clusterers?
Generally, yes. This is more clearly expressed for
larger k (Fig. 3). We note, however, that the true
number of clusters for the data sets in this study is
relatively small, which means that the dominance
between individual stability and ensemble stability
around the true number of clusters is not clear-cut.

2. Is ensemble stability related to ensemble accuracy? We
discovered an interesting phenomenon about the
stability-accuracy relationship. While, for some data
sets, SeðkÞ andAeðkÞ exhibited almost perfect positive
correlation (0.97, for the glassdata), for other data sets,
almost perfect negative correlation was observed
(!0:93, for the crabs data). Thus, we introduced a
combined stability index, S"

p, aimed at preserving the
chance of finding a suitable k. If we use only the
ensemble stability index for cluster validity, wemight
miss a peak of stability around the true number of
clusters detected by the individual stability index. An
example of this phenomenon is the result for the boat
data set in Table 5. The ensemble on its own suggests
kðSe

pÞ ¼ 20 clusters (accuracy 0.28). The combined
index agreeswith the individual index on two clusters
(accuracy 0.34). An example of the opposite case is the
ionosphere data set, where the initial peak of the
individual stability at k ¼ 2 (the true number) is not
sufficient to pull up the combined index to reach
maximum at k ¼ 2. Even though the true number of
clusters is not recovered by the combined index, the
accuracy of the ensemble is better for k ¼ 20 as chosen
by the ensemble and, subsequently, by the combined
index. In general, S"ðkÞ correlated reasonably with
AeðkÞ and AtðkÞ although, again, strongly varying
across data sets (Tables 2, 3, and 4). In reality, we will
not have true labels and will not know which of the
two situationswe are in. The best option is to useS"ðkÞ
as it has the fewer number of negative correlations
compared to the other four stability indices.

We looked further to single out the data sets with
negative correlations. The scatterplot in Fig. 6
suggests that if high accuracy is possible, it is likely
that the stability index might correlate well with the
accuracy (points in the top right corner).

3. How good is ensemble stability as a cluster validity
measure? Here, we followed a hypothesis strongly
motivated and used for cluster validity in the relevant
literature. This hypothesis states that a point of
stability of a clustering algorithm corresponds to a
structure found in the data. Therefore, we used the
maximum stability measures to pick the number of
clusters.Without an oracle, the nextmostwidely used

heuristic for selecting number of clusters is cutting the
dendrogram of a hierarchical clustering algorithm at
the largest jump of the distance criterion. We used
this method in two variants: With an ensemble of
2,500 clusterers, andas themajority kof 100 ensembles
of 25 clusterers each. The combined stability proposed
here gave the best results compared to pairwise and
nonpairwise individual and ensemble stabilities
(Table 5). Curiously, a small improvement of the
clustering accuracy was also observed when cluster
ensembles were assigned k found through the
combined stability index, S"

pðkÞ, compared to the
known (assumed true) number of clusters.

There are many open questions here. First, the
findings of this study suggest a methodology for
measuring cluster validity. As a large number of
clusterers will be produced and previous studies
suggest that large ensembles fare better [16], [26], we
may use a large ensemble anyway. In this paper, we
considered both AeðkÞ (averaged across the 100 en-
sembles of 25 clusterers) and AtðkÞ (for the whole
ensemble of 2,500 clusterers). The overall results with
the whole ensemble were slightly better, although, to
verify this statistically, a number of large ensembles
have to be constructed. The clustering procedure is
then the following:

a. Choose Kmax, the ensemble size L, and number
of ensembles T .

b. Generate L& T k-means clusterers with random
k from 2 to Kmax.

c. Group the clusterers randomly into T ensem-
bles of L and evaluate S"

pðkÞ using (1), for
k ¼ 2; . . . ; Kmax.

d. Find k" ¼ argmaxkfS"
pðkÞg.

e. Pool the L& T clusterers together, calculate the
consensus matrix M, and feed it as a similarity
matrix to a single linkage clusterer. Cut the
dendrogram at k" clusters and return the
labeling P ".

It is interesting to find out how stable and consistent the
results would be for smaller L and T than considered here
and probably for larger Kmax.

Another open question is whether findings similar to ours
will hold for different types of base clusterers and consensus
functions. We chose k-means as the base clusterer and single
linkageas theconsensus functionbecause theyare simpleand
efficient as foundbymanyauthors.Clearly, for somedata sets
used here, k-means and ensembles thereof (with the chosen
number Kmax) were inadequate, e.g., crab, saturn, boat,
respiratory, and two-spirals. Path-based clustering would
have been a suitable alternative [9].Without prior knowledge
or at least a hypothesis about the type of clusters, we cannot
predict which method will be more suitable. Therefore,
experiments with k-means ensembles and path-based en-
sembles should be carried out on the whole variety of data
sets, not only the ones which are known to have benefited
from a particular clustering method. It will be interesting to
keep the collection of data sets and extend the study to other
clustering methods and ensembles as well.

In this paper, we only evaluated stability with respect to
the intrinsic randomness of k-means and k-means ensem-
bles. Many previous studies use resampling or subsampling
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of the data set. A parallel can be drawn with stability
estimation in supervised learning based on small alterations
of the training data [3], [6]. Theoretical results for clustering
methods and ensembles can be sought following this
pattern. The stability indices considered here can be applied
without change to ensembles of different structures,
diversied approaches, and consensus functions. However,
the answers to the three main questions offered here may
not be valid for other ensemble methods. In other words,
there may be ensemble types for which stability is a much
better predictor of ensemble accuracy.

Finally, stability and the stability-plasticity dilemma for
online clustering and online cluster-validity presents a
challenging extension of this study.

APPENDIX

Below is a brief explanation of the two real data sets
contractions and respiratory. The data can be down-
loaded from http://www.informatics.bangor.ac.uk/
~kuncheva/patrec1.html.

Contractions. This data set comes from wireless capsule
endoscopy [36]. The problem is to detect intestinal contrac-
tions in video images sent by a small capsule traveling
along the intestinal tract. Contractions which are of interest
to the physician constitute about 1 percent of the video time,
therefore automatic labeling in preparation for further
inspection is necessary. In a video sequence of nine frames,
a contraction is represented as the lumen progressively
closing and reopening. Twenty-seven features were ex-
tracted using basic image descriptors: mean intensity of
each frame (nine features), hole size of each frame (nine
features), and global contrast of each frame (nine features).
Two classes are considered: contractions and noncontrac-
tions. The 98 objects (49 in each class) were manually
selected to represent the most clear examples of the classes.
Note that the prior probabilities for the two classes cannot
be evaluated as the sample proportions.

Respiratory. The respiratory data set consists of the
clinical records (17 features) for 85 newborn children with
two types of respiratory distress syndrome (RDS): Hyaline
Membrane Disease (HMD) and non-HMD. The two classes
need urgent and completely different treatments, therefore
an accurate RDS classification is crucial within the first few
hours after delivery.

ACKNOWLEDGMENTS

This study was carried out as a part of INTAS project
#YS04-83-2942.

REFERENCES

[1] H. Ayad and M. Kamel, “Finding Natural Clusters Using
Multiclusterer Combiner Based on Shared Nearest Neighbors,”
Proc. Fourth Int’l Workshop Multiple Classifier Systems, 2003.

[2] C.L. Blake and C.J. Merz, “UCI Repository of Machine
Learning Databases,” 1998, http://www.ics.uci.edu/
~mlearn/MLRepository.html.

[3] O. Bousquet and A. Elisseeff, “Stability and Generalization,”
J. Machine Learning Research, vol. 2, no. 3, pp. 499-526, 2002.

[4] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
John Wiley and Sons, 1973.

[5] S. Dudoit and J. Fridlyand, “Bagging to Improve the Accuracy of a
Clustering Procedure,” Bioinformatics, vol. 19, no. 9, pp. 1090-1099,
2003.

[6] A. Elisseeff, T. Evgeniou, and M. Pontil, “Stability of Randomized
Learning Algorithms,” J. Machine Learning Research, vol. 6, no. 1,
pp. 55-79, 2005.

[7] A. Ben-Hur, A. Elisseeff, and I. Guyon, “A Stability Based Method
for Discovering Structure in Clustered Data,” Proc. Pacific Symp.
Biocomputing, pp. 6-17, 2002.

[8] X.Z. Fern and C.E. Brodley, “Random Projection for High
Dimensional Data Clustering: A Cluster Ensemble Approach,”
Proc. 20th Int’l Conf. Machine Learning, pp. 186-193, 2003.

[9] B. Fischer and J.M. Buhmann, “Bagging for Path-Based Cluster-
ing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 25,
no. 11, pp. 1411-1415, Nov. 2003.

[10] A. Fred, “Finding Consistent Clusters in Data Partitions,” Proc.
Second Int’l Workshop Multiple Classifier Systems, 2001.

[11] A. Fred and A.K. Jain, “Data Clustering Using Evidence
Accumulation,” Proc. 16th Int’l Conf. Pattern Recognition, pp. 276-
280, 2002.

[12] A. Fred and A.K. Jain, “Combining Multiple Clusterungs Using
Evidence Accumulation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 6, pp. 835-850, June 2005.

[13] A. Fred and A.K. Jain, “Robust Data Clustering,” Proc. IEEE CS
Conf. Computer Vision and Pattern Recognition, 2003.

[14] J. Ghosh, “Multiclassifier Systems: Back to the Future,” Proc. Third
Int’l Workshop Multiple Classifier Systems, 2002.

[15] A.D. Gordon, Classification. Boca Raton, Fla.: Chapman and Hall/
CRC, 1999.

[16] D. Greene, A. Tsymbal, N. Bolshakova, and P. Cunningham,
“Ensemble Clustering in Medical Diagnostics,” Technical Report
TCD-CS-2004-12, Dept. of Computer Science, Trinity College,
Dublin, Ireland, 2004.

[17] S.T. Hadjitodorov, L.I. Kuncheva, and L.P. Todorova, “Moderate
Diversity for Better Cluster Ensembles,” Information Fusion, 2005.

[18] X. Hu and I. Yoo, “Cluster Ensemble and Its Applications in Gene
Expression Analysis,” Proc. Second Asia-Pacific Bioinformatics Conf.,
2004.

[19] L. Hubert and P. Arabie, “Comparing Partitions,” J. Classification,
vol. 2, pp. 193-218, 1985.

[20] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data. Prentice
Hall, 1988.

[21] L.I. Kuncheva and S.T. Hadjitodorov, “Using Diversity in Cluster
Ensembles,” Proc. IEEE Int’l Conf. Systems, Man, and Cybernetics,
2004.

[22] T. Lange, V. Roth, M.L. Braun, and J.M. Buhmann, “Stability-
Based Validation of Clustering Solutions,” Neural Computation,
vol. 16, pp. 1299-1323, 2004.

[23] M.H. Law and A.K. Jain, “Cluster Validity by Boostrapping
Partitions,” Technical Report MSU-CSE-03-5, Michigan State
Univ., 2003.

[24] E. Levine and E. Domany, “Resampling Method for Unsupervised
Estimation of Cluster Validity,” Neural Computation, vol. 13,
pp. 2573-2593, 2001.

[25] U. Maulik and S. Bandyopadhyay, “Performance Evaluation of
Some Clustering Algorithms and Validity Indices,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 24, no. 12, pp. 1650-
1654, Dec. 2002.

[26] B. Minaei, A. Topchy, and W. Punch, “Ensembles of Partitions via
Data Resampling,” Proc. Int’l Conf. Information Technology: Coding
and Computing, 2004.

[27] S. Monti, P. Tamayo, J. Mesirov, and T. Golub, “Consensus
Clustering: A Resampling Based Method for Class Discovery and
Visualization of Gene Expression Microarray Data,” Machine
Learning, vol. 52, pp. 91-118, 2003.

[28] G. BelMufti, P. Bertrand, and L. ElMoubarki, “Determining the
Number of Groups from Measures of Cluster Validity,” Proc. Int’l
Symp. Applied Stochastic Models and Data Analysis, pp. 404-414,
2005.

[29] W.M. Rand, “Objective Criteria for the Evaluation of Clustering
Methods,” J. Am. Statistical Assoc., vol. 66, pp. 846-850, 1971.

[30] B.D. Ripley, Pattern Recognition and Neural Networks. Cambridge:
Univ. Press, 1996.

[31] V. Roth, T. Lange, M. Braun, and J. Buhmann, “A Resampling
Approach to Cluster Validation,” Proc. Conf. Computational
Statistics, pp. 123-128, 2002.

KUNCHEVA AND VETROV: EVALUATION OF STABILITY OF K-MEANS CLUSTER ENSEMBLES WITH RESPECT TO RANDOM INITIALIZATION 1807



[32] A. Strehl and J. Ghosh, “Cluster Ensembles—A Knowledge Reuse
Framework for Combining Multiple Partitions,” J. Machine
Learning Research, vol. 3, pp. 583-618, 2002.

[33] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the Number
of Clusters in a Data Set via Gap Statistic,” J. Royal Statistical Soc. B,
vol. 63, pp. 411-423, 2001.

[34] A. Topchy, A.K. Jain, and W. Punch, “Combining Multiple Weak
Clusterings,” Proc. IEEE Int’l Conf. Data Mining, pp. 331-338, 2003.

[35] A. Topchy, A.K. Jain, and W. Punch, “A Mixture Model for
Clustering Ensembles,” Proc. SIAM Conf. Data Mining, pp. 379-390,
2004.

[36] F. Vilarino, L.I. Kuncheva, and P.I. Radeva, “ROC Curves in Video
Analysis Optimization in Intestinal Capsule Endoscopy,” Pattern
Recognition Letters, 2005.

[37] A. Weingessel, E. Dimitriadou, and K. Hornik, “An Ensemble
Method for Clustering,” 2003, working paper, http://
www.ci.tuwien.ac.at/Conferences/DSC-2003.

Ludmila I. Kuncheva received the MSc degree
from the Technical University, Sofia, in 1982 and
the PhD degree from the Bulgarian Academy of
Sciences in 1987. Until 1997, she worked at the
Central Laboratory of Biomedical Engineering,
Bulgarian Academy of Sciences, as a senior
research associate. Dr. Kuncheva is currently a
reader at the School of Informatics, University of
Wales, Bangor, United Kingdom. Her interests
include pattern recognition, classifier combina-

tion, diversity measures, and nearest neighbor classifiers. She has
published more than 100 research papers and two books. She won the
best paper award for 2006 in the IEEE Transactions on Fuzzy Systems
and the Sage best Transaction paper award for 2003 across the IEEE
Transactions on Systems, Man, and Cybernetics A, B, and C. She has
served as an associate editor for IEEE Transactions on Fuzzy Systems
and is currently an associate editor for the IEEE Transactions on Pattern
Analysis and Machine Intelligence. She is a member of the IEEE.

Dmitry P. Vetrov received the MSc degree from
Moscow State University in 2003 and is currently
a PhD student there. He also works as a
mathematician at the Dorodnicyn Computing
Center of the Russian Academy of Sciences.
His areas of interests include machine learning,
data-mining, and artificial intelligence. He is the
author of 27 papers. In 2005, he won the scholar-
ship of the President of Russian Federation.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1808 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 11, NOVEMBER 2006


