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Classifier Ensembles with a Random
Linear Oracle

Ludmila I. Kuncheva, Member, IEEE, and Juan J. Rodriguez, Member, IEEE Computer Society

Abstract—We propose a combined fusion-selection approach to classifier ensemble design. Each classifier in the ensemble is
replaced by a miniensemble of a pair of subclassifiers with a random linear oracle to choose between the two. It is argued that this
approach encourages extra diversity in the ensemble while allowing for high accuracy of the individual ensemble members.
Experiments were carried out with 35 data sets from UCI and 11 ensemble models. Each ensemble model was examined with and
without the oracle. The results showed that all ensemble methods benefited from the new approach, most markedly so random
subspace and bagging. A further experiment with seven real medical data sets demonstrates the validity of these findings outside the

UCI data collection.

Index Terms—Classifier ensembles, fusion and selection, random hyperplane, multivariate (oblique) decision trees.

1 INTRODUCTION

CLASSIFIER fusion and classifier selection are two com-
plementary approaches to designing classifier ensem-
bles [18]. The underlying assumption in classifier fusion is
that the classifiers have “expertise” across the whole feature
space and are likely to misclassify different objects. To
derive the class label for a new object x, the decisions of the
classifiers in the ensemble are combined by a consensus-
type rule, for example, majority voting. Conversely, in
classifier selection, the classifiers are assumed to have
complementary expertise. When a new object x is submitted
for classification, a single “most competent” classifier is
chosen and given the authority to assign the class label.
Classifier selection assumes the existence of an oracle that
selects the classifier with the highest competence for x.

In this study, we propose to combine selection and
fusion within a single ensemble. To build each classifier,
first, a random oracle is created in the form of a hyperplane.
The data in each half-space is used to train a classifier
within the chosen ensemble approach. During classification,
the oracle for each classifier is applied, and the respective
subclassifier makes the decision to be fused further at the
ensemble level. The paper is organized as follows: Section 2
explains classifier selection. Section 3 details the proposed
random linear oracle approach and gives a brief reference to
multivariate decision trees. Section 4 explains why the
random oracle idea works. The experimental details and
results with 35 data sets from UCI are given in Section 5.
Further results on seven real medical data sets confirm the
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findings beyond the UCI data collection. Section 7 con-
cludes the study.

2 CLASSIFIER SELECTION

The idea of classifier selection resurfaced several times
under different names in the past 30 years [1], [8], [16], [20],
[31], [36]. The following approaches can be detailed [21]:

e Static classifier selection. The regions of compe-
tence of each classifier are specified during a training
phase, prior to classifying. In the operation phase, an
object x is submitted for classification. The region of
x is first found, and the classifier responsible for this
region is called upon to label x [2], [31], [39].

e Dynamic classifier selection. The choice of a
classifier to label x is made during the classification.
The classifier with the highest competence gives the
label of x. The oracle here consists of estimating the
accuracies (competences) and pronouncing the
winner [9], [10], [13], [31], [34], [35], [37], [42]. The
difference between the first and the second ap-
proaches reduces to whether or not evaluation of
competence is carried out during the classification.
Specifying the regions is, in fact, a prejudged
competence and can be viewed as a faster version
of the dynamic classifier selection approach.

3 RANDOM LINEAR ORACLE

Switching between selection and fusion was proposed in
[21]. If the dominance of the nominated classifier over the
remaining classifiers is not statistically significant, the
whole ensemble is summoned, and the classifier decisions
are fused. Otherwise, the nominated classifier alone makes
the decision. A natural fusion-selection scheme is the so-
called mixture of experts [2], [16], [36]. The classifiers and
the oracle are trained together so that the classifiers are
pushed into specializing in different regions of the feature
space, developed as part of the training. Along with
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RANDOM LINEAR ORACLE

construction heuristic E.
2) Ensemble construction: fori=1,...,L

d) Train a classifier for each side, D:

1) Initialisation: Choose the ensemble size L, the base classifier model D and the ensemble

a) Apply E to the training data to formulate a classification problem P; = {T},(;}.

b) Draw a random hyperplane h; in the feature space of P;.

c) Split the training set 7} into 7;" and T, depending on which side of h; the points lie.

D(T:,;) and D] = D(T,€;). Add the mini-

ensemble of the two classifiers and the oracle, (hi,D'fT , D), to the current ensemble.

3) Classification: For a new object x, find the decision of each ensemble member by choosing D}
or D depending on which side of h; x is. Combine the decisions of all selected classifiers by
the combination rule of the chosen ensemble method.

Fig. 1. The generic algorithm for building a classifier ensemble with a random linear oracle.

enforcing this differentiation, the oracle learns which
classifier to trust most for a given x. The oracle in this case
is able to assign weights of competence to the classifiers
depending on the input x instead of choosing a single most
competent classifier. Thus, the ensemble decision is derived
as a fusion of weighted opinions. Data-dependent fusion
has been advocated as a more accurate alternative of mere
fusion [17], [28]. As usual, the success of flexible and
powerful approaches such as these critically depends upon
the availability of a bespoke training procedure.

This paper proposes a different fusion-selection scheme
based on a random oracle. The idea is to replace each
classifier in the ensemble by a miniensemble of two
classifiers and an oracle, where the oracle is a random
linear function. When a new object comes for classification,
the oracle for the respective classifier decides which
subclassifier to use. The labels issued by the subclassifiers
are then combined through the ensemble combination rule.
During training, the ensemble heuristic is applied first. For
example, prior to the oracle stage, the training set may be
selected by resampling or reweighting the data, feature
subsets may be selected or extracted, or supraclasses may
be formed within the Error Correcting Code (ECOC)
ensemble approach. The random linear oracle approach is
generic because it “encapsulates” only the base classifier
and can fit within any ensemble strategy or base classifier
model. Even more, the random oracle itself may serve as the
ensemble-building heuristic.

Fig. 1 gives a formal description of the random linear
oracle procedure for any chosen ensemble method. In the
notations in the figure, a classification problem P is defined
as a labeled training set 7" and a set of classes 2. A classifier
model (learner) D(T,?) is a training procedure to derive a
classifier from a given labeled training set 7' with labels
from ). An ensemble method is characterized by an
ensemble heuristic £/ and a combination rule. For example,
the Random Subspace ensemble method selects a random
feature subset for each ensemble member. Thus, applying £
to the training data to obtain classification problem P; will
return a set 7; with all the objects in the original training
data but with a random subset of features. The set of
classes ) will be the same as the original set. For an
ensemble using the ECOC method, E will return a training
set T; identical to the original training set, but the set of
labels €2; will represent a two-class problem by a predefined
grouping of the original classes. The ensemble construction
framework with random oracle is laid out in a sequential

way in Fig. 1 so that incremental ensemble methods such as
AdaBoost can be accommodated. Even if £ is the identity
mapping, that is, it reproduces the original classification
problem with training set 7" and class set (2, the Random
Oracle method can generate a viable ensemble.

The proposed model is different from the standard
classifier selection paradigm where one oracle governs the
whole ensemble. Multiple random oracles also make the
proposed approach different from the mixture-of-experts
model and the switching model discussed above.

The linear oracle approach touches upon an area that, at
first glance, appears to be far from classifier selection—
multivariate (or oblique) decision trees. Decision trees are
termed oblique when the split at each node is not necessarily
parallel to the feature axes. In classical decision tree
induction, one feature is selected for each node, and the
optimal split of the node into children nodes is determined
so as to optimize a given criterion. Oblique trees may use
any function of any subsets of features at each node. To gain
from this flexibility, ingenious training algorithms are
required. Oblique trees have been found to be much smaller
and equally accurate compared to standard trees [6], [29].
Linear functions are the traditional choice. Perceptron-like
algorithms have been proposed, whereby the coefficients of
the hyperplane at each node are sequentially updated with
the presentation of each new training example reaching that
node [6]. The approaches vary from randomized hill
climbing [30] to evolutionary algorithms [7], [38], simulated
annealing [14], and tabu search [24]. The criterion being
optimized at each node is usually the minimum classifica-
tion error, but other criteria have also been proposed, for
example, the squared error [6], the minimum message
length [38], the classifiability [25], or impurity [30].

The difference between all these approaches and the
random linear oracle is that the oracle is not supposed to
optimize any criterion; the oracle merely serves as a divider
of the space into two random halves. Any training of this
hyperplane will be harmful because it will take away the
intended diversity. In this line, all linear classifiers such as
the Fisher’s discriminant, Naive Bayes, the logistic classifier,
and others are not suitable as oracles. The most logical choice
here seems to be a random split. It has been observed that
just a few training iterations are sufficient to arrive at a near
optimal hyperplane for a node in the tree [30]. Optimizing
classification accuracy at each internal node is a greedy
strategy whose overall optimality is not guaranteed. Thus,
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Fig. 2. XOR classification problem and its solution using a linear oracle
and two linear subclassifiers.

the random oracle at the root node is not necessarily harmful
with respect to the overall performance of the tree.

The proposed fusion-selection scheme can be recast as a
classifier ensemble of the so-called “omnivariate trees” [25],
[43]. In omnivariate decision trees, the function to be used at
each node is not specified in advance and can be picked from
a set of functions during the induction of the tree. In our case,
all ensemble members will be omnivariate trees, where there
will be a random linear function at the root node followed by
standard univariate subtrees. In the rest of the paper, we will
use the fusion-selection metaphor because it expresses better
our motivation and results. Note that we do not use any of
the training approaches for omnivariate or multivariate
trees, so the analogy stops here.

4 WHY Does RANDOM ORACLE WORK?

Although empirical studies about classifier ensembles
abound, theoretical results are still limited [18]. The reason
for this is the complexity of ensemble models compared to
single classifiers. Being a more versatile model than single
classifiers, ensembles can learn the training data with a
higher precision, but this is not a guarantee that they will
fare better on new unseen data. Another difficulty in
formalizing classifier ensemble methods comes from the
fact that ensembles rely on the diversity between the
members. Diversity itself is a controversial and difficult to
formulate concept. Besides, its relationship with the
ensemble accuracy is not straightforward [19], [22]. There-
fore, we present two intuitive reasons to explain why
random oracle may work.

The success of the random oracle idea can be attributed
to two factors:

1. By splitting the feature space into two parts, the
classification task may become easier for the chosen
classifier model. Thus, the individual accuracy of
the ensemble members is expected to be higher than
or at least no worse than that of a “monolith”
classifier over the whole feature space. This is
similar in spirit to the divide-and-conquer strategy,
whereby a problem is decomposed into subproblems
that are (supposedly) easier to solve individually.
Although expected, higher individual accuracy is
not guaranteed by any means, as explained later.

2. The classification of a data point x will be made by
one of the two subclassifiers of each ensemble
member. Since the subclassifiers have been trained

NO. 4, APRIL 2007

(a) (b) ()

Fig. 3. (a) The training data set, (b) the testing data set labeled by the
classical bagging ensemble, and (c) the testing data set labeled by the
ensemble bagging + oracle. For reference, the optimal classification
boundary is superimposed with a dashed line.

on very different data subsets (determined by the
random oracle), diversity is expected to be large.

As a simple example illustrating the first factor, consider
the XOR problem in Fig. 2. Suppose that the base classifier is
linear. Clearly, the base classifier cannot provide a perfect
separation of the two classes. However, any split of the data
into two nonempty subsets will result in two linearly
separable classes (one of these may contain a single point).

To demonstrate the diversity factor, we run an experi-
ment with a synthetic data set. The training set of 400 points
is plotted in Fig. 3a. Consider again a linear base classifier.
Eleven ensemble members were built using different
bootstrap samples of the data (standard bagging). Finally,
bagging with linear oracle was applied. For each of the
classifiers, two different random points were chosen from
the training data set, and the perpendicular bisector of the
segment between the two points was taken to be the
hyperplane (the separating line in the 2D case). The two
subclassifiers were trained on the points from the bootstrap
sample falling on the two sides of the separating line. For
testing, a separate data set of 4,000 points was generated
from the distribution of the problem. The averaged
individual error of the (linear) classifiers in the bagging
ensemble was 0.2167, whereas it comes at no surprise that
the averaged individual error for the classifiers with the
oracle was substantially lower, 0.1380. The ensemble errors
were 0.2168 for the classical bagging and 0.1212 for the
ensemble with the oracle. Fig. 3b plots the testing data set as
labeled by the classical bagging ensemble. This was done to
visualize the classification boundary obtained through the
ensemble. Fig. 3c shows the testing data labeled by the
ensemble with the oracle. The shape of the ensemble
boundary is far more adequate, which is also reflected in
the ensemble accuracies.

Margineantu and Dietterich [26] devised the so-called
“kappa-error” diagrams to show the relationship between
the diversity and the individual accuracy of the classifiers.
Plotted in a kappa-error diagram are L(L —1)/2 points,
where L is the ensemble size. Each point corresponds to a
pair of classifiers, say, D; and D,. On the z-axis is a measure
of diversity between the pair, kappa. Kappa evaluates the
level of agreement between two classifier outputs while
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Fig. 4. A kappa-error diagram for the two ensembles: classical bagging
and bagging with a random linear oracle.

correcting for chance [11]. For two classes, as in the above
example, kappa is calculated as

Kij = 2(m11maes — myamay)/
((mag +ma2)(mig +may) (1)

+ (mag + ma2)(ma1 + may2)),

where my, ; is the proportion of the data set used for testing,
which D, labels as wy and D, labels as w,. Low values of s
signify high disagreement and, hence, high diversity. If the
classifiers produce identical class labels, x =1. Alterna-
tively, if the classifiers are independent, x = 0. Indepen-
dence is not necessarily the best scenario in multiple
classifier systems [23]. Even more desirable is “negative
dependence,” k < 0, whereby classifiers commit related
errors so that when one classifier is wrong, the other has a
more than random chance of being correct.

On the y-axis of a kappa-error diagram is the averaged
individual error of classifiers D, and D;, E;» = % As
small values of x indicate better diversity and small values
of E » indicate better accuracy, the most desirable pairs of
classifiers will lie in the bottom-left corner. Fig. 4 shows the
kappa-error diagram for the two ensembles. The cluster of
55 points corresponding to all pairs in the bagging ensemble
is higher than the cluster corresponding to the ensemble
with the oracle. The individual accuracy of the members is
markedly better for the ensemble with the oracle. Also, as
expected, the cluster for the ensemble with the oracle is
more to the left, showing lower kappa, hence, better
diversity. It is worth mentioning that bagging is known to
produce ensembles with relatively low diversity; this is why
the values of kappa are close to 1. The situation is further
aggravated by choosing a linear classifier as the base
classifier. Being a stable classifier that does not vary much
with small changes in the training data, the linear classifier
is not well suited for bagging. We chose it here for
illustration purposes only. The averaged diversity kappa
across all pairs of classifiers for the bagging ensemble was
0.9376, whereas, for the ensemble with the oracle, it was
0.8153. Even though this difference between diversities
might look insignificant at a first glance, it is likely to fetch
noticeable improvement on the ensemble performance

when combined with the high individual accuracy of the
ensemble members.

The choice of points that determine the position of the
hyperplane is random. In the worst case, there will be one
point or a very small number of points on one side of the
hyperplane, and all the other points will lie together on the
other side. In this case, the benefit from the oracle vanishes,
as practically one classifier is responsible for the whole
training data. Thus, the ensemble member with oracle is
reduced to an ordinary ensemble member, which is not
going to cause a big drop on the overall ensemble accuracy.
The small cutoff of points may not be adequate for training
the corresponding classifier well. However, assuming that
the training set represents the population of interest well,
only a negligible number of points will have to be labeled
by that classifier. Thus, the overall number of errors will not
increase dramatically.

The sacrifice made by the oracle-based ensemble
approach is that the training data is split into two, so one
of the subclassifiers in the pair is always trained on less than
half of the training data. This will add instability to the
trained classifier that, however, transfers into extra diver-
sity in the ensemble. On the other hand, as only a part of the
feature space is presented to the classifier, the problem may
be easier to solve, therefore requiring a smaller training
sample anyway.

5 EXPERIMENTS

The goal of this experiment is to find out whether the
Random Linear Oracle makes any difference to the accuracy
of standard ensemble methods.

A summary of the 35 data sets from UCI [3] used in this
study is given in Table 1. To calculate the hyperplane, each
categorical feature for each data set was replaced by
C binary features, where C is the number of possible
categories. For example, a feature with three categories, “a,”
“b,” and “c” is represented by three binary features z,, xs,
and z., respectively. If the value for a particular object is
“c,” then for this object, , =0, ;, =0, and z,=1. All
numerical features were linearly scaled within the interval
[0, 1] using the minimum and maximum value in the
training data.

Decision trees have been used as the base classifier. They
are invariant with respect to scaling the features and also
handle categorical features by multivariate splits. Thus, the
transformation of the categorical features into binary and
the scaling of the numerical features were needed only for
the hyperplane and for determining on which side of it a
given point lies. The only exception here is the Rotation
Forest ensemble that relies on extracting linear features and
hence needs all the data in a numerical format.

With each data set, 10 tenfold cross validations were
carried out using Weka [41]. The ensemble methods
selected for the experiment are listed in alphabetical order
in Table 2. All ensemble methods were run on the same
training-testing splits with and without the Random Linear
Oracle. The testing accuracy was recorded for each method
on each data set. In this way, 100 estimates of the testing
accuracy were available for each method and each data set,
suitable for paired tests as well.
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TABLE 1
Summary of the 35 UCI Data Sets Used in the Experiment

Data set Classes | Objects | D | C Data set Classes | Objects | D | C
anneal 6 808 | 32 6 letter 26 20000 | O | 16
audiology 24 226 [ 69 | O lymphography 4 148 | 15 | 3
autos 7 205 | 10 | 16 mushroom 2 8124 | 22 0
balance-scale 3 625 | 0| 4 pima-diabetes 2 768 | 0 8
breast-cancer 2 286 | 10 0 primary-tumor 22 339 | 17 0
cleveland- 14-heart 2 303( 7] 6 segment 7 2310 | 0] 19
credit-rating 2 690 9 6 sick 2 3772 | 22 7
german-credit 2 1000 | 13 7 sonar 2 208 | 0|60
glass 7 214 1 0| 9 soybean 19 683 [ 35| 0
heart-statlog 2 270 0] 13 splice 3 3190 | 60 0
hepatitis 2 155 | 13| 6 vehicle 4 846 | 0| 18
horse-colic 2 368 | 16 7 vote 2 435 | 16 0
hungarian-14-heart 2 204 71| 6 vowel-context 11 90 | 2|10
hypothyroid 4 3772 | 22 7 vowel-nocontext 11 990 | 0 | 10
ionosphere 2 351 0] 34 waveform 3 5000 0| 40
iris 3 150 0] 4 wisconsin-bc 2 699 | 0| 9
kr-vs-kp 2 3196 | 36 | O Z00 7 101 | 16 | 2
labor 2 57 8 8

“D” stands for the number of discrete features and “C” for the number of continuous-valued features.

TABLE 2

Ensemble Methods
Name Source  Details
AdaBoost.M1 (S) [12]  Re-sampling version
AdaBoostM1 (W) [12] Re-weighting version
Bagging [4]  Bootstrap samples
Decorate [27] Incremental method with artificially constructed examples to enhance diversity
Ensemble” —  The only ensemble heuristic is the Random Linear Oracle
Multiboost (S) [40] Re-sampling version
Multiboost (W) [40] Re-weighting version
Random Subspace (50%) [15] Random subsets of features, 50% selected for each classifier
Random Subspace (75%) [15] Random subsets of features, 75% selected for each classifier
Random Forest” [5] Ensemble of randomised decision trees
Rotation Forest [32] Random PCA-based sparse rotation of the feature space

1) All methods except “ and * appear in four versions in the experiment: with pruned trees (notation ““P-” is used in the sequel), with unpruned trees
(“-U-"), with oracle (“H” for hyperplane), and without oracle (“N”). 2) * The Ensemble method does not have a nonoracle version, so two versions are
considered: H-P-Ensemble and H-U-Ensemble. 3) * Random Forest uses a special unpruned randomized decision tree; therefore, the two versions
used here are H-U-Random Forest and N-U-Random Forest. 4) There are 40 ensemble methods altogether.

The base classifier model D in all experiments was a
standard decision tree (J48), except for Random Forest,
which uses bespoke randomized trees. Both pruned and
unpruned trees were considered, as there is no consensus as
to which strategy is better for ensembles.

The hyperplane h; was generated by taking a random
pair of points from the training set 7; and calculating the
hyperplane perpendicular to the line segment between the
points and running through the middle point. In this way,
we made sure that there were points on both sides of h;.

A summary of the experimental results is given in
Table 3. The ensemble methods are sorted by their overall
ranks. To calculate the rank of a method, the mean
classification accuracies of all methods are sorted for each
data set. The method with the best accuracy receives rank 1,
the second best receives rank 2, and so on. If there is a tie,
the ranks are shared. For example, if the second, third, and
fourth best accuracies are the same, all three methods
receive rank 3. For each method, there are 35 rank values,
one for each data set. The overall rank of a method is the
averaged rank of this method across the 35 data sets. The

smaller the rank, the better the method. The overall ranks
are also shown in the table.

Differences between the averaged ranks may be due not
only to the random oracle but also to the advantages of the
ensemble methods over one another. We want to find out
whether the random oracle has the desired effect. The Win-
Tie-Loss column in Table 3 gives the number of data sets for
which the method with the Random Linear Oracle has been
better-same-worse compared to the method without the
oracle. To find out the statistical significance of the
difference, we carry out a sign test on wins, losses, and
ties as explained in [33]. If the oracle and the nonoracle
versions of the ensemble methods are equivalent, each
method will be expected to win on approximately half of
the data sets. For a relatively large number of data sets n,
the number of wins follows a normal distribution with
mean j 4 The critical value is
Ne = [% + 24 4-‘, where z, is the z-value for the specified
level of significance «, and [-] denotes “ceiling.” Any result
where the number of “wins” plus half of the number of the

n

and standard deviation
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TABLE 3
UCI Data: Ensemble Methods with and without the Random Linear Oracle Sorted by Their Average Ranks

Total Win-tie Total Win-tie
Method Rank -loss  Benefit Method Rank -loss  Benefit
H-P-Rotation Forest 10.83 15-2-18 1 N-U-Rand. Subs. (50%) | 20.74 ==
H-U-Rotation Forest 11.01 15-3-17 1 N-P-AdaBoostM1 (W) 21.07 -
N-P-Rotation Forest 11.16 - N-P-AdaBoostM1 (S) 21.20 -
N-U-Rotation Forest 11.70 - N-U-MultiBoost (S) 21.30 -
H-U-Rand. Subs. (50%) | 15.40 e 26-2-7 N H-U-Bagging 2141 | » 28-1-6 N
H-U-Rand. Subs. (75%) | 16.47 e 32-1-2 I N-U-Random Forest 21.44 -
H-P-MultiBoost (W) 16.49 21-0-14 = H-U-AdaBoostM1 (W) 21.47 20-0-15 n
H-P-MultiBoost (S) 1687 | @ 24-1-10 mm N-U-AdaBoostM1 (W) | 22.13 -
N-P-MultiBoost (W) 17.74 - N-U-AdaBoostM1 (S) 22.79 -
H-P-Rand. Subs. (75%) | 17.83 e 32-1-2 N-P-Rand. Subs. (50%) | 23.29 -
H-U-Random Forest 18.26 21-1-13 = H-P-Decorate 23.30 19-1-15 1
H-P-Rand. Subs. (50%) | 18.63 e 25-1-9 N-P-Decorate 23.80 -
H-U-MultiBoost (W) 18.63 | »23-2-10 m H-P-Ensemble 24.66 N/A
H-U-MultiBoost (S) 1880 | #24-0-11 mm H-U-Decorate 25.10 | » 25-2-8 mm
H-P-AdaBoostM1 (S) 19.20 22-2-11 W H-U-Ensemble 26.63 N/A
N-P-MultiBoost (S) 19.31 - N-P-Bagging 26.96 -
H-P-Bagging 20.36 | e 30-1-4 |- N-P-Rand. Subs. (75%) | 27.69 -
H-U-AdaBoostM1 (S) 20.46 23-0-12 mm N-U-Bagging 28.04 -
H-P-AdaBoostM1 (W) 20.54 20-0-15 1 N-U-Decorate 28.06 -
N-U-MultiBoost (W) 20.61 - N-U-Rand. Subs. (75%) | 28.63 -

“H” (for hyperplane) indicates that the oracle is present, “N” indicates the standard version without the oracle, “-P-" is for ensemble with pruned trees,

and “-U-” is for ensembles with unpruned trees.

ties is greater than or equal to n. indicates a statistically
significant difference. For o =0.05 and n = 35 data sets,
ne = [17.5 4+ 1.96 x /35/2] = 24. The methods for which
the random oracle approach leads to a statistically sig-
nificant improvement are marked with a bullet in Table 3.
There is no method where the random oracle led to
significantly worse results.

The results in Table 3 show a consistent tendency. With
no exception, the ensemble method with the Random
Linear Oracle has a total rank better than the total rank
without the oracle.

Of the 19 ensemble methods in total, only Rotation Forest
has the number of wins with oracle lower than the number
of losses. Nevertheless, the oracle improves the general
performance so that Rotation Forest with the oracle is
ranked higher than without the oracle. This finding,
illogical at first glance, can be explained by the following
argument. The 15 wins have been achieved by a larger
margin in the ranks compared to the 18 (17) losses. The sum
of ranks therefore slightly favors the oracle version of the
method.

The Random Linear Oracle by itself is not a sufficiently
viable ensemble heuristic. The two ensembles based solely
on the oracle H-P-Ensemble and H-U-Ensemble (with
pruned and unpruned trees, respectively) have low total
ranks. To evaluate which ensemble methods benefit the
most from the oracle, the column “Benefit” in Table 3
displays the gain in rank scores for the 19 ensemble
methods. The length of the bar corresponds to the rank
difference between the version with oracle (“H-") and the
standard method (without oracle, “N-"). The two ensemble
approaches that benefit the most are random subspace and
bagging. Both are simple nonincremental approaches to
which the random oracle induces some welcome additional
diversity. The results indicate that ensemble approaches

that are based on engineered diversity, for example,
boosting, benefit less, regardless of their rating with respect
to other ensembles. One possible reason for this is that
introducing the oracle upsets the well-measured ensemble
construction procedure, and the extra randomization
renders itself redundant. Finally, there is no clear pattern
as to whether the oracle favors pruned or unpruned trees.

The random linear oracle approach does not increase
substantially the computational complexity of the ensemble
methods. In the training stage, two subclassifiers need to be
trained instead of one classifier for each ensemble member.
However, each subclassifier only uses part of the training
data 7;. If the data size is a factor in the training complexity,
then the random oracle may, in fact, be faster to train. In the
classification stage, calculation of each classifier’s decision
is preceded by a linear calculation of the score on the
hyperplane h;, which will not cause a great delay. The
ensemble size is the same as the ensemble without the
oracle, only, instead of univariate trees, the ensemble
consists of a fixed type of omnivariate trees as discussed
above.

6 FURTHER EXPERIMENTS WITH SEVEN MEDICAL
DATA SETS

Finally, to verify the above results outside the UCI data
collection, we repeated the experiment, with the same
protocol, on seven real medical data sets explained in
Table 4.! This selection is intended as a sample from a
specific class of data sets characterized by 1) a small number
of true classes, which may or may not correspond to
coherent clusters; 2) a moderate number of observations (up
to a few hundreds); and 3) a moderate number of features

1. Available for download at http://www.informatics.bangor.ac.uk/
~kuncheva/activities/patrecl.html.
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TABLE 4
Summary of the Seven Real Medical Data Sets
Data set Classes | Objects | D | C | Comment
Weaning 2 302 | 0 | 17 | Courtesy of Dr. A.Temelkov, M.D.
Centre of Acute Respiratory Insufficiency,
Alexandrov’s University Hospital, Sofia, Bulgaria
Respiratory 2 85 | 5[ 12 | Courtesy of Dr. N. Jekova, M.D.
Neonatal Clinic, University Hospital “Maichin Dom”, Sofia, Bulgaria
Laryngeal-1 2 213 | 0 | 16 | Courtesy of Dr. D. Doskov, M.D.
Phoniatrics Department, University Hospital “Queen Joanna”,
Sofia, Bulgaria
Laryngeal-2 2 692 | 0 | 16 | Courtesy of Dr. Stefan Hadjitodorov
Central Laboratory of Biomedical Engineering
Bulgarian Academy of Sciences, Sofia, Bulgaria
Laryngeal-3 3 353 | 0| 16 | (as Laryngeal 2)
Voice-3 3 238 1 9 | (as Laryngeal 1)
Voice-9 9 428 | 1 9 | (as Laryngeal 1)

“D” stands for the number of discrete features and “C” for the number of continuous-valued features.

TABLE 5
Medical Data: Ensemble Methods with and without the Random Linear Oracle Sorted by Their Average Ranks

Total | Win-tie Total | Win-tie
Method Rank -loss  Benefit Method Rank -loss  Benefit
H-U-Rand. Subs. (50%) 6.14 6-0-1 I N-U-Decorate 20.29 -
H-P-Rand. Subs. (50%) 8.29 7-0-0 H-U-AdaBoostM1 (S) 20.43 4-0-3 m
H-P-Rotation Forest 8.50 4-0-3 mm H-P-Bagging 21.93 6-0-1
H-U-Rotation Forest 8.57 6-0-1 . N-U-AdaBoostM1 (S) 22.14 -
H-U-Random Forest 9.36 3-1-3 m N-U-MultiBoost (S) 22.36 -
N-U-Random Forest 11.29 - N-P-AdaBoostM1 (W) 2243 -
N-P-Rotation Forest 12.21 - N-P-MultiBoost (W) 22.86 -
H-U-MultiBoost (W) 12.93 5-0-2 . H-U-Rand. Subs. (75%) | 23.36 7-0-0
N-U-Rotation Forest 13.36 - N-U-AdaBoostM1 (W) 23.86 -
N-U-Rand. Subs. (50%) | 15.00 - H-P-Rand. Subs. (75%) | 24.50 7-0-0
H-P-MultiBoost (S) 16.14 5-0-2 = H-P-AdaBoostM1 (W) 2543 3-0-4  negative
H-P-MultiBoost (W) 16.43 6-0-1 I H-P-Decorate 26.43 3-0-4  zero
H-U-AdaBoostM1 (W) 16.86 6-0-1 N-P-Decorate 26.43 -
H-P-AdaBoostM1 (S) 17.14 5-0-2 NN  N-U-Bagging 27.64 -
N-U-MultiBoost (W) 18.14 - N-P-AdaBoostM1 (S) 28.29 -
N-P-Rand. Subs. (50%) | 18.29 - N-P-Bagging 28.71 -
H-U-Decorate 19.43 502 0 N-P-Rand. Subs. (75%) | 34.71 -
H-U-MultiBoost (S) 19.57 304 mm H-P-Ensemble 36.29 -
N-P-MultiBoost (S) 20.14 - H-U-Ensemble 37.00 -
H-U-Bagging 20.14 6-0-1 I N-U-Rand. Subs. (75%) | 37.00 -

“H” (for hyperplane) indicates that the oracle is present, “N” indicates the standard version without the oracle, *

and “U-" is for ensembles with unpruned trees.

(typically 5 to 30). Such data sets are often collected, for
example, in clinical medicine for pilot research studies.

The results are displayed in Table 5. There are statistically
significant differences between all the ensemble methods
(p = 0) by the Friedman's analysis of variance (ANOVA) for
the ranks. Since the number of data sets in this verification
experiment is small, consistency of the results may be
expected to drop. All 7-0-0 patterns of Win-Draw-Loss in
Table 5 indicate a statistically significant improvement at
p < 0.05 of the oracle ensemble over the same ensemble
model without the oracle. Patterns of 6-0-1 indicate sig-
nificance at p < 0.1. Even for this small number of data sets,
most ensembles will show better performance with oracle
than without oracle. In many cases, the benefit from the
oracle (represented by the length of the black box) is even
larger compared to that with the 35 UCI data sets.

With the exception of H-P-AdaboostM1 (W) and H-P-
Decorate, in all other 17 cases, the hyperplane oracle
improves on the ensemble without the oracle.

-” js for ensemble with pruned trees,

7 CONCLUSION

We propose a combined fusion-selection approach to
classifier ensemble design, which we call the Random
Linear Oracle. Each classifier in the ensemble is replaced by
a miniensemble of a pair of subclassifiers with an oracle to
choose between them. The oracle is in the form of a
hyperplane, randomly drawn and fixed for each ensemble
member. The results with 35 data sets and 20 ensemble
models, each one with and without the oracle, show that all
ensemble methods benefited from the new approach, albeit
in different degrees. The oracle was most useful for the
random subspace and bagging ensembles. The results were
further verified, and the findings were confirmed on seven
real medical data sets.

In this study, we chose the simplest random oracle: the
linear one. There is no reason why we should stop here.
Different split functions may work better for some ensemble
models or data types. It is also interesting to try a different
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model of the base classifier, for example, Naive Bayes or a
neural network, again with all ensemble models, with and
without the oracle. The explanation in Section 4 on why
random oracle works is not tied up with either the choice of
the split function or the base classifier model. Hence, the
proposed fusion-selection approach is expected to work
regardless of the specific choices.

However, we are cautious to extend our claim to all
types of problems. There are interesting and complex
problems out there that are still a challenge to pattern
recognition and machine learning communities. For exam-
ple, Knowledge Discovery and Data Mining (KDD) compe-
titions have set a high standard over the years by putting up
such thought-provoking problems. Bespoke methods have
been developed to address large data sizes, the subtleties of
text mining and Internet retrieval, heavily imbalanced
classes, and so forth. These methods may not work well
for more standard data. Our proposed ensemble method is
not meant to address all types of challenges, and we
recognize that it might not be superior to the same
competitors in a different scenario.
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