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Abstract

The situation in which the results of several different classifiers and learning algorithms
are obtainable for a single classification problem is common. In this paper, we propose a
method that takes a collection of existing classifiers and learning algorithms, together with
a set of available data, and creates a combined classifier that takes advantage of all of these
sources of knowledge. The basic idea is that each classifier has a particular subdomain
for which it is most reliable. Therefore, we induce a referee for each classifier, which de-
scribes its area of expertise. Given such a description, we arbitrate between the component
classifiers by using the most reliable classifier for the examples in each subdomain. In
experiments in several domains, we found such arbitration to be significantly more effec-
tive than various voting techniques which do not seek out subdomains of expertise. Our
results further suggest that the more fine-grained the analysis of the areas of expertise of
the competing classifiers, the more effectively they can be combined. In particular, we find
that classification accuracy increases greatly when using intermediate subconcepts from the
classifiers themselves as features for the induction of referees.

Keywords: Integrating multiple models, theory revision, bias selection, decision trees,
stacked generalization, constructive induction



1. Introduction

In this paper, three currently active research programs in machine learning (integrating
multiple classifiers [12] [5, 6] [49] [16] [50],theory revision [20] [36] [40] [2] [44] [51] [35] [28]
[13] [3] and bias selection [33] [32] [23] [7] [45]) are viewed from a single perspective. The
goal of integrating multiple classifiers is to improve the performance and scalability of learn-
ing algorithms by generating multiple classifiers, running them on distributed systems, and
combining their results. Theory revision systems make use of two sources of knowledge: an
existing imperfect model of a domain and a set of available data. Through a combination of
analytical and empirical learning, theory revision systems create a new model of improved
performance, as measured by expected accuracy on unseen data. Bias selection systems,
on the other hand, make use of available data for a domain and several empirical learning
algorithms. The various implicit biases of these algorithms may result in different behavior
(and accuracies) over a domain or portion thereof. The objective of bias selection systems
is either to select a single algorithm or to combine the results of several learning algorithms
in order to maximize the predictive accuracy of empirical learning on unseen instances of
the domain. Both theory revision and bias selection can address the problem of combining
several classifiers with the help of a set of data. Some of the classifiers may be pre-existing
classifiers of the domain (as the imperfect classifier of theory revision systems) while others
may be constructed by different empirical learning algorithms (as in bias selection systems).
We propose a method that takes such a collection of existing classifiers and learning algo-
rithms, together with a set of available data, and creates a combined classifier that takes
advantage of all of these sources of knowledge.

The situation in which the results of many classifiers and learning algorithms are ob-
tainable for a single problem is common. This tends to occur for complex problems of high
importance. As an example, many competing classifiers have been developed for predicting
the glucose levels of diabetic patients. In fact, special journal issues [10] and symposiums
[8] are dedicated to presenting a variety of glucose-level prediction classifiers. Also, several
learning algorithms have been suggested for the same problem [26] !. Similarly, a vari-
ety of mathematical models as well as learning algorithms exist for predicting returns of
financial transactions. Prediction of stock option pricing using the Black-Scholes mathe-
matical model and neural networks are compared and discussed, for example, by Malliaris
and Salchenberger [30]. Although our techniques can be extended to numerical prediction
problems such as those in the diabetes and financial domains, this paper addresses only
classification problems.

1.1 Our approach

The approach of this paper, reported independently by Ortega [38] and Koppel and Engel-
son [27], is to build a referee predictor for each of the component classifiers. As we discuss
later in this section, each referee predictor will tell us whether its corresponding component
classifier can be trusted for particular unseen instances. We assume that each classifier has
a particular subdomain for which it is most reliable, and so we learn a description of this
area of expertise. Given such a description, we arbitrate between the component classifiers

1. A special set of diabetes data provided for this event was also donated to the UCI Machine Learning
Repository [37]



by using the most reliable expert for diagnosis of problems in each subdomain. That is,
the final classification is that returned by the component classifier whose correctness can
be trusted the most, according to a confidence level provided by the referees.

The intuition behind our approach is that every imperfect classifier (whether hand-
crafted or learned by induction over a set of data) is only able to make correct predictions
over a subset of the entire domain space. Consider, for example, a classifier for diagnosing
chronic ulcer disease in which the intermediate concept “intestinal cramps” is too generally
defined, but the theory is otherwise correct. Then, patients whose symptoms do not satisfy
“Intestinal cramps” as defined in the classifier will indeed be correctly diagnosed regarding
chronic ulcer disease. Of the patients that do satisfy “intestinal cramps” some will be
correctly classified while others will not and we could say that the classifier is not reliable
for this group of patients. This illustration suggests that we might use a set of training
examples to determine the areas of a particular classifier’s ‘expertise’, represented in terms
of the classifier’'s own ontology.

In general, for classifiers constructed by induction over a set of data, the portion of
the domain space in which they can correctly predict depends on the specific set of data
available for training (i.e., the more representative it is of the whole domain space, the
better the learning algorithm will perform) and also on the implicit biases of the learning
algorithm used for induction. Given the same data, several learning algorithms will give
different classifiers only due to their different biases. For hand-crafted classifiers, correctness
and coverage also depend, implicitly, on the data originally available to a researcher for
developing the classifier and the researcher’s own biases.

1.2 Other approaches

Our method can be viewed as an application of Wolpert’s stacked generalization [52] to
classification problems where some of the generalizers are not necessarily created through
empirical learning but are instead manually constructed. From a very general perspective,
stacked generalization can be equated to meta-learning, as it refers to the induction of clas-
sifiers (i.e., generalizers) over inputs that are, in turn, the predictions of other classifiers
induced over the original input space. The arbitrating mechanism in our approach can be
viewed as a generalizer. Its inputs, referees and component classifiers, consist of the predic-
tions of classifiers induced from the original input space using either automated induction
techniques, for the referees and the learning component classifiers, or ad-hoc induction by
a human expert, for the hand-crafted component classifiers. The idea of using auxiliary
learners for combining multiple classifiers was also exploited in the parallel meta-learning
methods of Chan and Stolfo [12]. Our method differs from the above in that it is modular,
i.e. areferee is learned for each individual component model allowing new component mod-
els to be added without relearning a combining classifier. By contrast, the approach of Chan
and Stolfo learns a combination classifier based on the inputs and outputs of all the com-
ponent models, and thus adding a new component model necessitates a new meta-learning
episode.

The advantage of combining multiple learned classifiers to obtain more accurate clas-
sification was also demonstrated by Ali and Pazzani [1]. Separating the training data
into subsets where classifiers either succeed or fail to make correct predictions was used



in Schapire’s Boosting algorithm [46]. Experimental evidence by Drucker et al. [17] indi-
cated that boosting was superior to a single learner and to a voting committee of learners.
Our method can also be viewed as multiple model probabilistic evidence combination, an
issue that has been explored both in the decision tree literature (Buntime [9], Kwok and
Carter [29]) and in the neural networks literature (i.e., the “Mixture of Experts” approach
of Jordan et al. [25, 24]). Our approach utilizes a winner-take-all method of evidence com-
bination: each referee assigns a ”confidence”, i.e., a probability of being correct, to its
corresponding classifier. The classifier that is assigned the highest confidence is trusted to
make the final prediction for each specific example. The experiments described below also
examine another evidence combination method (simple voting) with less remarkable results.

Our arbitration approach is also closely related to Merz’s SCANN [33]. Roughly, SCANN
uses a nearest-neighbor method to determine which component classifier to use to classify
each test example. The representation used by SCANN is produced by singular-value
decomposition of the results of applying the component classifiers to the training data.
SCANN can be viewed as a nearest-neighbor equivalent to the symbolic learning approach
given in this paper, and so although it does not construct explicit representations of referees,
SCANN’s final results may be similar to those given by our arbitration method.

We will compare our arbitration method with two simpler methods, SAM (Select All
Majority) and CVM (Cross-Validation Majority), discussed by Merz [32]. In the SAM
approach, the prediction of each component classifier is an equally weighted vote for that
particular prediction. The prediction with most votes is selected. Ties are broken ar-
bitrarily. CVM is a variation of an algorithm suggested by Schaffer [45]. In CVM, the
cross-validation accuracy for each classifier is estimated with the training data, and the
classifier of highest accuracy is selected for use with all of the test data. In the case of ties
(i.e., the same best accuracy is obtained by several classifiers), the majority class predicted
by the set of classifiers of best accuracy is returned. Hence, if all classifiers have the same
estimated accuracy, then CVM’s behavior is the same as SAM’s. Although Schaffer uses
his algorithm to select among learning algorithms, there is no difficulty in extending his
approach to non-learning classifiers: their accuracy is simply evaluated on the training data
and multiple cross-validation runs are unnecessary. (A similar approach, Bagging [5, 6],
generates component classifiers from data much like CVM, except that it uses bootstrap
samples [18] instead of cross-validation runs, and combines their result by majority voting
as in SAM.)

We will show that arbitration often produces better results than these simpler methods,
because it is better able to identify and exploit the strengths of each component classifier.

2. Referees

In this section, we will consider how to use a set of classified examples in order to find the
strengths and weaknesses of a given classifier. The idea is to determine for what subsets
of examples the classifier’s result can be taken to be reliable, and to what extent. This
procedure constitutes the first stage in the arbitration mechanism for multiple classifiers,
to be described in the next section.



2.1 Referee induction

To be precise, an ezample E is an assignment of values to a set of primitive attributes {a;}.
The task is to assign each example to one of a set of classes {¢;}. A classifier I is a function
from examples to classes. Given a training set £ of examples together with their correct
classifications, we want to determine I'’s probable accuracy for different subsets of possible
new examples.

The basic idea is to use a decision tree induction algorithm (such as C4.5 [43]) to induce
a decision tree for distinguishing between cases where the classifier is correct and those
where it is incorrect. Such a decision tree divides the example space up into a number
of disjoint subsets, each corresponding to a leaf of the tree. For examples in each subset
we can estimate the accuracy of I' based on the fraction of examples in that subset that
I' classified correctly. In order that these estimates be useful, the decision tree must be
pruned sufficiently to ensure that the subsets at the leaves are large enough to give us good
estimates of the classifier’s reliability. For example, given a large set of training examples,
a leaf for which 80 out of 100 training examples are correct for the classifier gives a better
estimate of the classifier’s reliability than one for which 8 out of 10 are correct. Reliability
estimates should therefore take into account the sample size over which they are computed.

A further point is the choice of features for induction. It is not always the case that
those regions of the example space where I' is reliable can be simply described in terms of
primitive attributes; more complicated derived attributes may need to be used to attain
efficient and effective induction. We discuss this issue in more detail below, here we just
assume that some set of features is provided for inducing referees.

The algorithm for inducing a referee is therefore as follows:

LearnReferee(I',€):

1. Partition &€ into &¢ and &;, the subsets of £ correctly and incorrectly classified by I,
respectively;

2. Select a set of features as a basis for concept induction including computed features
(these should always include the primitive attributes defining the examples and the
example’s class in I');

3. Build a pruned decision tree T' (we use C4.5 for this purpose) using the features
selected in the previous step;

4. For each leaf L in T':



(a) Compute the reliability ? of L based on C and I, the numbers of examples in ¢
and in &7, respectively, classified to L; we use the formula?

max(C, I)
C+I+1

(b) If C > I then set L’s correctness is ‘correct’, otherwise to ‘incorrect’.

5. Return T.

In other words, we use induction to distinguish between those examples the classifier
classifies correctly and those it classifies incorrectly, also estimating the decisiveness of such
determinations.

2.2 Choosing features for referee induction

As mentioned above, the nature of the referees that are learned depends on which features
are used for induction. In particular, it may not be the case that those regions of the
example space where I is reliable can be simply described in terms of primitive attributes.
Therefore, it may be preferable to use intermediate subconcepts in the classifier I' itself as
features for induction. In a logical theory, for example, these subconcepts are the various
propositions and clauses in the theory, in a decision tree these subconcepts are the conditions
at the various decision nodes in the tree, and in a neural net these might be the activation
values of internal nodes. These features are computed for each training example and added
to its description when performing the induction.

As we will see, much of the power of our method comes from the use of internal propo-
sitions of a flawed theory as features for induction. The use of such internal propositions as
features for use in induction is not new, going back to the work on constructive induction of
Drastal and Raatz [15], and more recently to the work of Ortega and Fisher [39] and Donoho
and Rendell [14]. Our approach differs, however, in that rather than learn a decision tree
directly for the target concept, we learn a decision tree which distinguishes when the given
theory is correct and when it is incorrect. Due to the differences in the target concept,
the trees learned for the correct/incorrect concept may differ greatly from those learned
directly for the target concept. In particular, when flaws are focused in one subconcept of
the theory, the tree constructed for the correct/incorrect concept may be more natural, in
that it will simply rule out classifying on the basis of that subconcept.

The fact that we learn decision trees for the ‘theory correct/incorrect’ concept also sheds
some light on the utility of using internal nodes. As we will see below, internal propositions
are particularly useful in diagnosing examples for which the theory is unreliable. This is
because it is precisely truth or falsehood of internal nodes in the flawed theory which will
predict well whether particular flaws affect the classification of the given example, and so

2. Note that in this paper, we use the term reliable or reliability to refer to the estimates provided by referee
predictors as to how often a component classifier will make correct predictions. This usage of the term
may not correspond with its meaning in the statistics or COLT literature.

3. The addition of % to the denominator is a quick-and-dirty application of the m-estimate method [11] of
smoothing to compensate for small sample sizes, with m = % and prior probability 0. Other approaches
are possible.



will give a better estimate of the theory’s reliability. Hence we expect the internal features
of a theory, in combination with the root of that theory, to be better features for induction
of referees than either the primitive attributes or other kinds of synthetic features.

2.3 Referees for classifiers learned from data

The LearnReferee algorithm can build referees for classifiers learned from data with ma-
chine learning algorithms as well as for pre-existing classifiers. All that is required is that
the examples in the training data be divided into two subsets: a subset where the classifier
is expected to make correct classifications and a subset where the classifier is expected to
make incorrect classifications.

Using a learning algorithm as a component classifier is particularly useful if all pre-
existing classifiers are unreliable for some examples. In such a case, we can train a new
classifier on these examples, incorporating a learning classifier into our ensemble. Arbitra-
tion will then automatically classify according to the learned classifier whenever no pre-
existing classifier is considered sufficiently reliable. This should result in overall accuracies
higher than those of any of the component classifiers alone.

2.4 Example: Chess endgame

To illustrate the operation of LearnReferee, consider the flawed chess endgame theory
(from the UCI Machine Learning Repository [37]) depicted in Table 1. It should be noted
that examples are of the form (a = 1,b = 4,...), and that propositions such as a=b are
defined explicitly in the actual theory, (although the definitions are not shown). The errors
introduced here are that a new clause is added for king-attack-king, that the antecedent
adj-bf was moved from king-attack-king to the first illegal clause, and one of the
clauses for rook-attack-king is deleted.

Our goal is to find a referee which characterizes the set of examples for which the flawed
theory classifies incorrectly, that is, those examples whose classifications are affected by the
flawed literals and clauses. This goal can only be realized, however, when the representation
of the data is adequate for learning with a given learning algorithm, i.e., when it is possible
to learn referees that correctly predict whether each of the component classifiers should be
trusted with probability better than random. As noted above (Section 2.2), internal features
of the theory are likely to be useful for this purpose. (In any event, for the endgame domain,
effective learning is not even possible with the original representation of the data, where
the primitives are the numerical positions of the pieces on the board [41].) Therefore, we
include internal features for learning, so that we can learn a useful referee.

To evaluate LearnReferee, we used C4.5 with pruning, using internal features of the
theory for performing the induction. We used a set of 1000 examples, 315 of which were
positive and 685 of which were negative, where 749 were correctly classified by the theory.
We ran LearnReferee on all 1000 examples in the training set; Table 1 shows the referee
thus constructed.

The critical point is that when the flawed clauses and literals in the theory are not used
in classifying an example, its classification by the theory will be reliable, and when they are
used, the example’s classification will be unreliable. To properly appreciate this point, let
us consider in detail two of the leaves of the tree.



Table 1: A flawed version of the endgame theory, shown in propositional form. For sim-
plicity we do not show the computation of low-level nodes such as between-cae.
Added antecedents and added clauses are shown in boldface, while deleted com-
ponents (not in the flawed theory) are shown in italics.

illegal :- same-loc-ab-cd, adj-bf
illegal :- same-loc-ab-ef
illegal :- same-loc-cd-ef
illegal :- king-attack-king
illegal :- rook-attack-king
king-attack-king :- adj-ae, adj-bf
king-attack-king :- adj-ae, b=f
king-attack-king :- a=e, adj-bf
king-attack-king :- knight-move-ab-ef
rook-attack-king -  c=e, king-not-b-file
rook-attack-king :- d=f, king-not-b-rank
king-not-b-rank :- —b=d
king-not-b-rank :- b=d, —between-cae

kni ght - nove- ab- ef

T F
rook-att ack- ki ng a=e
g F /\
same-| oc- ab-cd adj ~bf sanme-| oc- ab-cd
T F F T F
T
[C0.80] [I 0.92 sane- | ac- ab- ef i1l egal
2
F T g (D)
rook- att ack- ki ng [C 0.80] [ 0.93]
T F
[C0.95] [T70.92]

Figure 1: Referee for the flawed theory shown in Table 1, learned from 1000 training ex-
amples. Leaves are labeled with correctness (C = correct, I = incorrect) and
reliability.
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Figure 2: Using the referee for selective classification with the endgame theory for reliability
thresholds of (a) 0.8 and (b) 0.9. Plotted are average fraction of known examples
(those assigned a class) and classification accuracy for known examples, over ten
disjoint 100-example test sets.



Consider first the leaf marked (1), where knightmove-ab-ef is false, a=e is false, and
same-loc-ab-cd is false, to which 766 of the examples are classified. For examples classified
to this leaf, three of the theory’s flaws have no effect: the clauses affected by the change of
adj-bf are false regardless of the value of adj-bf, and when knight-move-ab-ef is false.
The theory thus classifies examples at this leaf correctly with high reliability. This shows
how using a classifier’s internal features in the referee affords easy characterization of the
examples for which the classifier is reliable.

Consider now the leaf marked (2), where knightmove-ab-ef is true, but rook-attack-king
and same-loc—ab-cd are false. For examples classified to this leaf, the theory is considered
tncorrect with high reliability. This demonstrates how inductive methods can find useful
information about a theory; we can discover both when the theory is reliably correct, and
when it is reliably incorrect. In the latter case, for theories such as this one where the
root is two-valued, the right thing to do is to classify opposite to the theory [19] (perhaps
requiring higher reliability for determining incorrectness than for determining correctness).

Figure 2 shows the results of using the theory to classify only those examples whose
reliability score is above a certain threshold, marking all others as “unknown” (assigning
the class opposite to that given by the theory when it is reliably incorrect for an example).
We used 10-fold cross-validation, withholding varying amounts of nested training data in
order to create a learning curve.

As can be seen, the number of examples assigned a class by this procedure tends to
increase with the amount of training, as the leaves become more decisive. At the same
time, classification accuracy increases, and becomes considerably higher than classification
by the theory alone (74.9%). This is due to reversing reliably incorrect classifications by
the theory, as well as rejecting unreliably classified examples.

3. Arbitration

Now consider the case where we are given several possibly flawed classifiers for a particular
domain. Rather than try to combine the results of the different classifiers, we seek to choose
the right classifier to use to classify each new input example. By using each classifier just
on that subdomain for which it is most reliable, our overall results should be considerably
better than those of the best individual classifier. If different classifiers are experts in
different subdomains, then the more experts we have, the greater the area that is covered
reliably [1].

Given a set of classifiers I'y,...,I';, for a binary concept and a set of classified examples
&, we use the following arbitration algorithm to classify new input examples by using the
most reliable expert for each one.

Arbitrate(T'y,...,I,,E,E):
1. Construct a referee for each input classifier I';, 7; = LearnReferee(T';, £);
2. For the new input example E:

(a) Evaluate the correctness ¢; and reliability r; of each classifier T'; for F, using T;;

(b) Let I';, be the classifier with highest reliability r;_;
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(c) If ¢;, =‘correct’, assign E the class I'; (E);
(d) Else if ¢;, =‘incorrect’, assign E the class —I';, (E);

Put simply, the algorithm classifies each new example F according to the classifier that
has proven most reliable in classifying examples in the training set similar to E. Of course,
this classification may be the opposite of that given by one of the given classifiers, if that
classifier is incorrect with higher reliability than that of any other classifier being correct
(or incorrect). If the concept being learned is not binary, we extend the algorithm to simply
use the most reliably correct (or least reliably incorrect) classifier on each example.

4. Results

Experiments were conducted using both pre-existing classifiers and several variations of the
C4.5 learning algorithm as component classifiers. Besides the endgame theory described
previously, we also used OQurston’s [40] version of Michalski and Chilausky’s soybean expert
theory [34]. In addition, we constructed a set of artificial classifiers of different quality
based on the audiology dataset from the UCI (University of California at Irvine) Machine
Learning repository [37], named audio, audiol, audio2, audio3, and audioj. These classifiers
were created following Mooney’s approach [36] for generating classifiers of varying degrees
of imperfection. A perfect classifier, named audio, was constructed by running C4.5 with
all pruning disabled on the complete data set of 226 audiology examples. The result is a
classifier that contains 86 rules with an average of 7.79 conditions per rule. The audiol,
audio?2, audio3, and audioj classifiers were each created by randomly adding and then
randomly deleting a percentage (respectively 5, 10, 25, 50) of all conditions from the rules
of the perfect classifier, resulting in some overly specific rules and some overly general rules.
The respective accuracies of these distorted theories are 91%, 65%, 47%, 22%. As learning
classifiers we use the standard C4.5 learning algorithm in default mode and C4.5 with all
pruning disabled.

For the experiments of sections 4.1 and 4.2, 30 trials were conducted using approxi-
mately 2/3 of the available data for training and the remaining 1/3 for testing. The figures
and tables in these two sections show the average accuracy, computed on the test data, over
the 30 trials. In sections 4.3 and 4.4, accuracy is computed by 10-fold cross-validation, or
as specifically indicated in each one of the figures.

4.1 Arbitration versus voting and cross-validation methods

Figure 3 illustrates the different behavior of SAM, CVM, and Arbitrate using the audio2,
audio3, and audioj as components. Since the component classifiers in this experiment
are simply given, SAM’s accuracy is independent of the number of examples available for
training. SAM’s accuracy (53%) is higher than that of the two worst component classifiers,
audiol (47%) and audio4 (22%), but lower than that of the best component classifier,
audio? (65%). SAM’s accuracy appears to be an average of the accuracy of the non-
learning component classifiers. With only a few component classifiers of very different
quality, as is the case in this experiment, SAM’s majority voting strategy results in values
lower than those of the best component classifier, although some papers [1, 22, 31] have
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reported experiments in which SAM achieves better accuracy than even the best component
classifier.

CVM, on the other hand, always chooses the best single classifier, as determined by the
accuracy obtained by each component classifier on the training data. With non-learning
classifiers, the optimal choice for CVM is the best available component classifier, audio2
in this experiment. As a result, the accuracy of the best component classifier is an upper-
bound on the accuracy that CVM can obtain. In the experiment corresponding to Figure 3,
the upper-bound on CVM’s accuracy is 65%, the accuracy of the audio2 classifier. However,
this optimal choice is made consistently by CVM only when the training set is large enough
to permit reliable estimates of the accuracy of the component classifiers. In our experiment,
this occurs with training sets containing 55 or more examples. With training sets containing
fewer examples, CVM’s accuracy is lower than that of the best classifier.

In contrast to CVM and SAM, the accuracy of Arbitrate in this experiment is not
bounded by that of the best component classifier. As shown in Figure 3 Arbitrate’s accu-
racy is 71%, higher than the 65% accuracy of audio2, the best of the component classifiers.

Figure 4 shows the average accuracies obtained with SAM, CVM, and Arbitrate when
their component classifiers include three non-learning classifiers (audio2, audio8, and au-
dio4) and two learning classifiers (C4.5 with default pruning and C4.5 with no pruning).
As before, CVM’s accuracy tracks closely that of the best component classifier for each
given training set size, and SAM’s accuracy appears to be an average of the accuracy of
the component classifiers. For training sets larger than 10 examples, Arbitrate obtains
better accuracies than SAM, CVM, or any of the component classifiers. With 150 exam-
ples, Arbitrate obtains mean accuracies of 84%, larger than the accuracy of both the best
non-learning classifier, 65% of audio2, and the best learning classifier, 77% of C4.5 with
no pruning. As before, the accuracy results are an average over 30 trials. In each trial,
1/3 of the data (76 examples) is reserved for testing and is not presented to the learning
algorithms. Progressively larger samples of the remaining 2/3 of the data (150 examples)
are used to obtain the different points of the learning curves shown in the experiments.

The behavior of SAM, CVM, and Arbitrate using the soybean expert theory and C4.5,
illustrated by the learning curves of Figure 5, is similar to that observed with the audio2
artificial audiology classifier described in the previous section. SAM’s accuracy is always
between that of the hand-crafted classifier and that of C4.5. CVM’s accuracy is never too
different from that of the best accuracy of either the hand-crafted classifier or C4.5. With
training sets of 40 and 100 examples, Arbitrate’s accuracy is higher than that of the best
of both the hand-crafted classifier and C4.5. However, with 150 examples, Arbitrate’s
accuracy is the same as that of CVM and C4.5 alone. Apparently, in this domain 150
examples are sufficient to overwhelm the effect of the prior knowledge given in the form
of the expert classifier. More generally, Ting et al [48] have observed that the benefits of
model combination for a specific problem diminish as the steepness of the learning curve
decreases, something that typically occurs with larger number of training examples.

4.2 Arbitration versus theory and induction

Knowledge about the quality of the hand-crafted classifier can help determine the most
appropriate approach for combining such a classifier with induction from data. Table 2
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Figure 3: Average accuracy of SAM, CVM, and Arbitrate using audio2, audio3, and audio4
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shows the difference between the average accuracy obtained by CVM, using an artificial
audiology classifier and C4.5 with the audiology data set, and the best of the average
accuracies obtained by either the classifier alone or C4.5 alone. These results are based on
training sets containing 150 examples. Table 3 does the same for our Arbitrate method.
From these tables one can conclude that if no knowledge about the quality of the hand-
crafted classifier exists, Arbitrate may be a better choice, since it obtains positive accuracy
improvements for more than half of the combination of classifiers and training set sizes we
examine. In contrast, CVM never produces any accuracy increase over that of the best
component classifier. With training sets of less than 150 examples the same conclusions
become even more evident.

Even though Arbitrate’s potential for improving accuracy is better than CVM’s, so
are the risks. With a good quality classifier such as audiol, the potential loss in accuracy
with respect to the best component classifier is higher in Arbitrate (5%) than in CVM
(2%).

Tables for SAM are not included because its accuracy for this data set always stays
below that of CVM and Arbitration. SAM’s accuracy appears to be an average of the
accuracies of the component classifiers. As with SAM, CVM’s accuracy is always a value
between the accuracy of the component classifiers, but is usually very close to that obtained
by the best of the component classifiers.

In contrast to CVM, Arbitrate can obtain accuracies that are higher than those of its
component classifiers. The increase in accuracy can be attributed to the use of referees to
indicate which classifier can be trusted the most in specific instances.

4.3 Arbitration with internal features

As noted earlier, the benefits of Arbitrate can only be realized when the representation of
the data is adequate for learning with a given learning algorithm, i.e., when it is possible
to learn referees that correctly predict whether each of the component classifiers should be
trusted with probability better than random. In the above experiments with the audiology
and soybeans domains the concept representation appeared adequate. However, as noted,
learning is not possible with the original representation of the data in the endgame domain,
so we must include internal features.

We now consider the use of arbitration with internal features, using three flawed versions
of the endgame theory, each with six random flaws (each the insertion or deletion of an
antecedent or a clause). We used a set of 1000 preclassified examples in 10-fold cross-
validation experiments.

We compare accuracy against a voting approach (SAM) as well as C4.5 learning with
different feature sets. ‘Primitive’ features are the lowest level logical propositions of the
endgame theory (shown in Table 1), for example adj-ae (which is actually defined arith-
metically as numerical features a and e being adjacent). Using these primitive features
gives C4.5 a chance to learn a good classifier. We also use a feature set including all prim-
itive features as well as the classes given by each of the three component classifiers. This
strategy, which is equivalent to Chan and Stolfo’s class-attribute-combiner [12]|, amounts
to treating each component classifier as a black box, whose internal structure cannot be
accessed. Finally, we examine C4.5 learning using all the internal features of all the com-
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Figure 5: Average accuracy of SAM, CVM, and Arbitrate on the soybean domain.

Table 2: Difference between the accuracy obtained by CVM and the best of the accuracies
obtained by either the classifier alone or C4.5 alone.

Training Accuracy Improvement

Set with Classifier ...

Sizes audio audiol audio2 audiod audio4
0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 -.01 -.01 -.06
20 0.0 -.02 -.03 -.02 -.03
35 0.0 0.0 -.01 -.01 -.01
55 0.0 0.0 -.02 -.01 0.0
80 0.0 0.0 -.04 -.01 0.0
110 0.0 0.0 -.02 0.0 0.0
150 0.0 0.0 0.0 0.0 0.0
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ponent classifiers. Arbitration can be thought of as a restricted version of this approach in
which learning is performed separately for the internal features of each component classifier.
This restriction has the primary advantage of modularity, as depicted in Figure 6. By learn-
ing a referee for each component classifier separately, component classifiers can be added
and removed from the system without requiring learning to start from scratch. Second,
C4.5 with all internal features is more likely to suffer from the problem of overfitting, due
to the abundance of features. In the endgame domain, we find arbitration to perform as
well as C4.5 with all internals, despite the restriction to learning only from each classifier
individually. This brand of modularity, in turn, is conducive to efficient implementations
in distributed computers.

The accuracies of the three theories over all 1000 examples were all near 70%, as shown
in Figure 7. Using C4.5 to learn the target concept directly on primitive attributes gives
similarly low accuracy. By including the classifications given by all three theories as a
feature for building C4.5’s decision tree, however, accuracy improves noticeably. The best
results shown are obtained by using C4.5 with all internal features, with an accuracy of
93.2% and by the Arbitrate algorithm, with an accuracy of 93.4% (both using 10-fold
cross-validation). This shows how by properly combining the information in the theories
with the information in the training set, high classification accuracy can be obtained.

It is still possible, however, that the gain in accuracy actually arises from the building
of the referees for each theory, and that arbitration itself contributes little. To test the
hypothesis that selecting the correct theory is important, we generated the learning curves
shown in Figure 8. Five learning curves are compared: C4.5 using primitives and theories’
classifications (as above), for each of the three theories, classifying according to the theory’s
referee (either using or reversing the theory’s classification), and arbitrating between the
three theories. As is clear from the figure, arbitration performs substantially better than
each of the three individual theories, even with their associated decision trees. This reflects
the fact that Arbitrate uses different theories for different types of examples.

4.4 Increasing the number of component classifiers

We now give results for a more extensive experiment testing the hypothesis that arbitration
is capable of exploiting the reliable portion of each component theory. To do this we consider
arbitration among different numbers of component theories. If the different theories are
being properly exploited, we expect classification error to decrease geometrically as we
increase the number of component theories, as noted by Ali and Pazzani [1].

For each experimental trial we generated five flawed theories, each by inserting twelve
random errors into the base theory. We randomly ordered the theories and recorded the
average accuracy produced by running Arbitrate on the first theory, the first two theories,
and so forth, doing 10-fold cross-validation on 1000 examples. We ran 8 such trials and
averaged the results for each number of theories used in arbitration.

The results of this experiment are summarized in Figure 9. As is apparent, the error rate
decreases greatly with the number of theories used. In fact, the error appears to decrease
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Table 3: Difference between the accuracy obtained by Arbitrate and the best of the accu-
racies obtained by either the classifier alone or induction alone.

Training Accuracy Improvement
Set with Classifier ...
Sizes audio audiol audio2 audiod audio4
0 0.0 0.0 0.0 0.0 0.0
10 0.0 -.05 -.02 +.01 -.02
20 0.0 -.05 +.01 +.08 +.05
35 0.0 -.05 +.06 +.06 +.04
55 0.0 -.03 +.09 +.05 +.03
80 0.0 -.01 +.08 +.04 +.03
110 0.0 +.01 +.08 +.04 +.07
150 0.0 +.02 +.07 +.04 +.03
Features Reliakility

Classifier = = =| Referee ————=

| Assigned class |

>
Features Reliahility] =- |Fina class
Classifier = = = Referee $ g é
| &2
| Assigned class S
... |Features
Classifier = = =

Referce Rella_lglhty

| Assigned class

Figure 6: The modular architecture of the arbitration scheme. Each referee depends only
on a single component classifier.
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Figure 7: The accuracy of the three flawed endgame theories on 1000 training examples;
the accuracy of C4.5 with primitive attributes (C4.5 (p)), C4.5 using primitive
features and theory classifications (C4.5 (pc)), C4.5 using all internal features
(C4.5 (pci)), and arbitration between the theories, all learning results using 10-
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geometrically?, which is what we would expect from nearly optimally taking advantage of
differently flawed theories [1].

5. Conclusions

We have seen how different classifiers can be usefully combined by exploiting a set of training
examples to discover for which subdomain each classifier is most reliable. In particular, we
have seen that such methods are more effective than various voting techniques which do not
seek subdomains of expertise. Moreover, our results suggest the general rule that the more
fine-grained the analysis of the areas of expertise of the competing classifiers’, the more
effectively they can be combined. In particular, we have seen that we can classify far more
effectively by using intermediate subconcepts which appear in the classifiers themselves
as features for induction. This sort of constructive induction is effective in general for
bolstering learning algorithms like C4.5. It is, however, particularly useful for arbitration
because it is precisely the intermediate concepts of a given flawed classifier which can be
used to isolate the subdomains of expertise of that classifier.

We have also seen that for arbitration to be effective, the component classifiers must
cover different portions of the data descriptions space and the representation of the data
must contain features that are relevant to the task of distinguishing between those different
portions of the data description space. If these favorable conditions are met, arbitration can
produce results considerably superior to those of any individual component classifier. If not,
however, a performance penalty may result. In such cases, a more conservative approach
may be indicated.

We believe that the approach described in this paper can be extended to address the
problem of theory revision when two or more pre-existing classifiers or learning algorithms
exist for a domain. Our Arbitrate approach results in a collection of decision trees, each
starting at the root of a referee’s decision tree. The leaves of a referee’s decision tree
predicting Correct will contain the corresponding model (either an existing propositional
classifier, or a learned decision tree). Using the techniques like those described by Quinlan in
[42], this collection of trees could be pruned and refined into a single propositional classifier.
This classifier could be presented to human experts for review and could also become a pre-
existing theory with which to start a new iteration of theory revision when a new batch of
fresh data is obtained. The theory in such an iterated theory revision process can become
the memory that allows transfer of expertise in a lifelong-learning setting [47].

Although in this paper we only address classification problems, the ideas we have dis-
cussed can also be applied to numerical prediction problems for which multiple competing
models exist, such as predicting glucose levels in diabetic patients [10]. In general, C4.5 or
a numerical prediction method similar to C4.5 (such as CART [4] and MARS [21]) could
be used, analogously to C4.5’s use described in this paper, to estimate the reliability and
likely error of each component predictor.

4. When very low error rates are reached, though, it seems the decrease is reduced. In our experiment, the
error rates for four theories and five theories are both 0.4%, corresponding to classifying just 4 examples
out of 1000 incorrectly.
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