Can Organizations Really Use Predictions? Discussion paper: PROMISE '08

Tim Menzies

tim@menzies.us

Lane Department of Computer Science and Electrical Engineering

West Virginia University

http://menzies.us

May 5, 2008

We're Learning. Who's Listenning?

Examples

Conclusion

- This talk:
 - Data Mining for SE really works
 - ♦ 5 success stories with NASA data
- Still, main problem is organizational, not technological
 - lack Despite clear success, $\frac{4}{5}$ of those data sources have vanished
- What to do?
- How to insure that all our good work is not wasted?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP

Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

Questions? Comments?

Examples

Eg1: Text Mining NASA

We're Learning. Who's Listenning?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

Questions? Comments?

■ 901 NASA records, PITS issue tracker: {severity, free text}

severity	frequency	
1 (panic)	0	
2	311	
3	356	
4	208	
5 (yawn)	26 ■	

- Top 100 unique words (selected by Tf*IDF); sorted by InfoGain
- Rules learned from N best (RIP-PER Cohen [1995a]

Severity 2 predictors: $10*\{(train, test) = (90,10)\%\}$

N	a=recall	b=precision	$F = \frac{2*a*b}{a+b}$
100	0.81	0.93	0.87
50	0.80	0.90	0.85
25	0.79	0.93	0.85
12	0.74	0.92	0.82
6	0.71	0.94	0.81
3	0.74	0.82	0.78

Rules (from N=3 words):

if (rvm
$$\leq$$
 0) & (srs $=$ 3) \rightarrow sev=4 else if (srs \geq 2) \rightarrow sev=2 else \rightarrow sev=3

- Diamonds in the dust
 - Not 9414 words total
 - or 1662 unique words
 - but 3 highly predictive words

Top 3 words

We're Learning. Who's Listenning?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

Questions? Comments?

■ In issue reports from four other projects:

- $10*{(train,test)} = (90,10)%}$
- ◆ yields probability of detection of highest severity class of 93% to 99.8%.
- (Note: ignoring real rare classes.)

Project "b": 984 records

Project "d": 180 records

Project "c": 317 records

Project "e": 832 records

Eg2: Effort estimation

We're Learning. Who's Listenning?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

Questions? Comments?

- NASA COCOMO data (Boehm et al. [2000])
- Results from IEEE TSE (Menzies et al. [2006]).
- learners for continuous classes
- A study of 160 effort estimation methods
- 20 * { pick any 10, train on remaining, test on 10 }

100*(pred-actual)/actual

	50% percentile	65% percentile	75% percentile
mode= embedded	-9	26	60
project = X	-6	16	46
all	-4	12	31
year= 1975	-3	19	39
mode= semi-detached	-3	10	22
ground systems	-3	11	29
center= 5	-3	20	50
mission planning	-1	25	50
project= gro	-1	9	19
center= 2	0	11	21
year= 1980	4	29	58
avionics monitoring	6	32	56
median	-3	19	39

■ i.e. usually, very accurate estimates

Eg3: SILAP: Early Life cycle Severity Detection

We're Learning. Who's Listenning?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP

Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

- NASA defect data: 5 projects, (Menzies et.al 2007)
- SILAP: predict error {potential, consequence} from project description

Derived	Raw features		
co = Consequence	am =Artifact Maturity		
dv = Development	as =Asset Safety		
ep = Error Potential	cl =CMM Level		
pr = Process	cx = Complexity		
sc = Software Characteristic	di =Degree of Innovation		
	do =Development Organization		
	dt =Use of Defect Tracking System		
	ex =Experience		
	fr =Use of Formal Reviews		
	hs =Human Safety		
	pf =Performance		
	ra =Re-use Approach		
	rm =Use of Risk Management System		
	ss = Size of System		
	uc =Use of Configuration Management		
	us $=$ Use of Standards		

```
function CO( tmp) { tmp=0.35*AS + 0.65 *PF; return (round((HS) < tmp) ? HS : tmp)
function EP() { return round(0.579*DV() + 0.249*PR() + 0.172*SC())}
function SC() { return 0.547*CX + 0.351*DI + 0.102*SS }
function DV() { return 0.828*EX + 0.172*DO }
function PR() { return 0.226*RA + 0.242*AM + formality() }
function formality() { return 0.0955*US+ 0.0962*UC+ 0.0764*CL + 0.1119*FR +0.0873*DT + 0.0647*RM}</pre>
```


Eg3: 2^F FSS + RIPPER + SILAP data (211 components on 5 projects)

We're Learning. Who's Listenning?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP

Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

Questions? Comments?

	sevently predictions				
	a=pd, b=prec				
			x = 2ab/(a+b)		
	features	F	_12 _3 _4 _5	$X = \left(\sum x\right)/4$	
Α	all - L1 - L2 - group(6)	8	0.97 0.95 0.97 0.99	0.97	
В	all - L1 - L2 - $group(5+6)$	7	0.95 0.94 0.97 0.96	0.96	
C	all - L1 - L2 - $group(4 + 5 + 6)$	6	0.93 0.95 0.98 0.93	0.95	
D	all - L1 - L2	16	0.94 0.94 0.93 0.96	0.94	
Е	all - L1 - L2 - group $(3 + 4 + 5 + 6)$	4	0.93 0.97 0.90 0.87	0.92	
F	{co*ep, co, ep}	3	0.94 0.84 0.55 0.70	0.76	
G	L1	1	0.67 0.69 0.00 0.46	0.45	
Н	just "us"	1	0.64 0.60 0.00 0.00	0.31	
- 1	L2	1	0.57 0.00 0.32 0.00	0.22	

Rules from "E":

rule 1	if	$uc \ge 2 \land us = 1$	then	severity $= 5$
rule 2	else if	am = 3	then	severity $= 5$
rule 3	else if	$uc \ge 2 \land am = 1 \land us \le 2$	2 then	severity $= 5$
rule 4	else if	$am = 1 \land us = 2$	then	severity $= 4$
rule 5	else if	$us = 3 \wedge ra \ge 4$	then	severity $= 4$
rule 6	else if	us = 1	then	severity $= 3$
rule 7	else if	ra = 3	then	severity $= 3$
rule 8	else if	true	then	severity $= 1$ or 2

severity predictions

Eg4: Defect predictors from Static code measures

We're Learning. Who's Listenning?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

- IEEE TSE (Menzies et al. [2006])
- Modules from eight NASA projects, MDP, described using LOC, McCabe, Halstead metrics
- New methods
 - Shoot-out between :
 - Bayesian;
 - simple rule learners; e.g. $v(g) \ge 10$
 - complex tree learners; C4.5
 - ♦ Simple pre-processor on the exponential numerics
 - num = log(num < 0.000001?0.000001:num)
- Prior state(s)-of-the-art, percentage of defects found:
 - lacktriangle IEEE Metrics 2002 panel: manual software reviews finds pprox 60%
 - ◆ Raffo: industrial reviews finds TR(min,mod,max) = TR(35, 50, 65)%
 - My old data mining experiments: prob {detection, false alarm}= $\{36,17\}\%$

Eg5: Yet more detect prediction

We're Learning. Who's Listenning?

Examples

Eg1: Text Mining NASA

Eg1 (more)

Eg2: Effort estimation

Eg3: SILAP Eg3 (more)

Eg4: static code

Eg5: defect prediction

Conclusion

- (Song et al. [2006])
- NASA SEL defect data: than 200 projects over 15 years.
- Predicting defects accuracy is very high (over 95%),
- false-negative rate is very low (under 3%).
- Wow.

Examples

Conclusion

In summary...

Why?

What to do?

Questions? Comments?

Conclusion

In summary...

We're Learning. Who's Listenning?

Examples

Conclusion

In summary...

Why?

What to do?

- Five NASA data sources
 - lacktriangle Eg #1: text mining a NASA issue database (PITS)
 - ◆ Eg #2: effort estimation from NASA data (COCOMO)
 - ◆ Eg #3: early life cycle severity prediction (SILAP)
 - ◆ Eg #4: defect prediction from NASA static code data (MDP)
 - ◆ Eg #5: defect prediction (NASA SEL)
- All of which yield strong predictors for quality (effort, defects)
- Only <u>one</u> of which is still active (PITS)
- What went wrong?
- What to do?

Why is this Data Being Ignored?

We're Learning. Who's Listenning?

Examples

Conclusion

In summary...

Why?

What to do?

- Group 1 : easy to explain
 - ◆ NASA SEL : Technology used in case study #5 very new
 - PITS:
 - Accessing PITS data was hard- required much civil servant support
 - No one was crazy enough to try text mining on unstructured PITS issue reports.
 - ♦ SILAP :
 - Newest data set of all the above
 - Never explored before since not available before
 - Data collection stopped since IV&V business model changed (now focused on model-based early lifecycle validation).
- Group 2 : harder to explain
 - ◆ MDP : Much interest across the agency (at GRC, JSC) in MDP (and associated tools).
 - ◆ COCOMO: well-documented, cheap to collect, many tools available
 - Maybe the answer lies in NASA culture:
 - NASA's centers compete for resources.
 - Reluctance to critically evaluate and share process information.

What to do?

We're Learning. Who's Listenning?

Examples

Conclusion

In summary...

Why?

What to do?

- Stop debating what data to collect
 - ◆ Many loosely-defined sources will do: COCOMO, SILAP, defect reports
- Stop debating how to store data
 - ◆ Comma-separated or ARFF format or XML, one per component, is fine
- Stop hiding data
 - ◆ Create a central register for all NASA's software components
 - Register = component name and "part-of" (super-component)
 - ◆ Features extracted from all components, stored at a central location
 - ◆ All reports have anonymous join key to the central register
 - Make the anonymous data open source (lever the data mining community)
- Stop ignoring institutional data
 - Active repository, not data tomb
 - ♦ Success measure: not data in, but conclusions out
- Stop publishing vague generalities
 - Rather, publish *general methods* for building *specific models*
 - Open research question: how much data is enough to learn local model?

Examples

Conclusion

Questions? Comments?

References

References

We're Learning. Who's Listenning?

Examples

Conclusion

Questions? Comments?

References

- Eg1: text mining
 - SEVERIS: T. Menzies and A. Marcus. Automated severity assessment of software defect reports. In *Submitted to ICMS'08*, 2008. Available from http://menzies.us/pdf/08severis.pdf
 - RIPPER: W.W. Cohen. Fast effective rule induction. In *ICML'95*, pages 115–123, 1995b. Available on-line from http://www.cs.cmu.edu/~wcohen/postscript/ml-95-ripper.ps
- Eg2: effort estimation
 - Barry Boehm, Ellis Horowitz, Ray Madachy, Donald Reifer, Bradford K. Clark, Bert Steece, A. Winsor Brown, Sunita Chulani, and Chris Abts. Software Cost Estimation with Cocomo II. Prentice Hall, 2000
 - Tim Menzies, Zhihao Chen, Jairus Hihn, and Karen Lum. Selecting best practices for effort estimation. *IEEE Transactions on Software Engineering*, November 2006. Available from http://menzies.us/pdf/06coseekmo.pdf
- **E**g3: issue prediction
 - ◆ SILAP: T. Menzies, M. Benson, K. Costello, C. Moats, M. Northey, and J. Richarson. Learning better ivv practices. *Innovations in Systems and Software Engineering*, March 2008. Available from http://menzies.us/pdf/07ivv.pdf
- Eg4: static code
 - Tim Menzies, Jeremy Greenwald, and Art Frank. Data mining static code attributes to learn defect predictors. *IEEE Transactions on Software Engineering*, January 2007. Available from http://menzies.us/pdf/06learnPredict.pdf
- Eg5: SEL
 - ◆ Qinbao Song, Martin Shepperd, Michelle Cartwright, and Carolyn Mair. Software defect association mining and defect correction effort prediction. *IEEE Trans. Softw. Eng.*, 32(2):69–82, 2006. ISSN 0098-5589