
Editorial, special issue, repeatable experiments in

software engineering

Tim Menzies,
Lane Department of Computer Science and Electrical Engineering,

West Virginia University, WV, USA
tim@menzies.us

August 2, 2008

Welcome to the special issue of Empirical Software Engineering on repeatable
experiments in software engineering. Earlier and shorter versions of the papers
presented here first appeared at the PROMISE 2007 workshop in Minneapolis.

The PROMISE project has been running for 4 years now and aims to create
large libraries of repeatable experiments in software engineering. PROMISE is
somewhat different to other workshops that deal with learning from software
data1 in two ways. First, PROMISE emphasizes the data mining approach to
generalization and, as such, is very concerned with the experimental methods
used to generate the results. Second, PROMISE is more than just a workshop
series. The project actually has three parts:

1. The PROMISE repository http://promisedata.org/?cat=11: Currently,
the repository holds 76 data sets and is growing rapidly (around 40% more
data sets each year). Where applicable, each data set is linked to papers
describing current best results from that data (in many cases, those pa-
pers are PROMISE publications). All the data sets are stored in a content
management system that allows registered users to add comments to the
data. In this way, the community’s experience with that data (tips, traps
for beginners , etc) can be stored in a central web-accessible location.

2. The annual PROMISE conference: Each year, the PROMISE community
meets to reflect on old results and examine new ones. Starting as a small
workshop in ICSE 2005, PROMISE has now become a conference and
PROMISE 2009 is a co-located event at ICSE 2009 (Vancouver, British
Columbia).

1e.g. the Mining Software Repositories series co-located with ICSE (http://www.msrconf.
org/) and the new DEFECTS series co-located at ISSTA (http://pages.cpsc.ucalgary.ca/
~zimmerth/defects-2008/).

1



3. Journal special issues: Each year, the authors of the best PROMISE pa-
pers are invited to revise and extend their papers, then submit them to a
peer-reviewed journal.

This special issue contains four such papers. Each paper generalizes some
specific project experience to build general models. The range of models are
quite diverse and the conclusions they draw from those models are fascinating.

For example, a widely-held view in the software engineering community is
that module size is linear to defects; i.e. larger modules have more faults.
According to this view, it makes sense to inspect larger modules before exploring
smaller ones. In “Theory of Relative Defect Proneness: Replicated Studies on
the Functional Form of the Size-Defect Relationship for Software Modules”,
Koru et.al. argues convincingly that this view is 100find a power-law relationship
between module size and defects where smaller modules are proportionally more
fault prone. Therefore, it is far more effective to focus verification efforts on
smaller modules before moving to the larger modules. In their paper, Koru
et.al. offers some speculations on why this power-law relationship holds and in
this editorial, I offer one more. Perhaps in this modern era of refactoring and
separation of concerns and auto-generated code, programmers must split their
ideas into tiny pieces all across the code base. Once divided in this way it is
hard to understand the interactions of all these tiny pieces.

Another widely-held view is that the best way to build defect models is by
data mining. According to this view, since human experts do not understand
all the nuances of their code, we must use automatic data mining to reveal the
land mines buried in our systems. In this view, the construction of defect model
is a 3-step process:

1. collecting domain knowledge (previous results, expert knowledge);

2. building a skeleton of the model based on step 1 including as yet unknown
parameters;

3. estimating the model parameters using historical data.

Any practitioner in this area will report that step #3 can be extremely difficult:
it often quite hard to obtain reliable data of the required granularity, or of
the required volume with which we could later generalize our conclusions. In
On the effectiveness of early life cycle defect prediction with Bayesian Nets,
Fenton et al. offer an alternative approach that avoids step #3. Working with
domain experts, Fenton et al. built a causal model (Bayesian net) for predicting
the number of residual defects that are likely to be found during independent
testing or operational usage. Note that this approach supports step #1 and #2,
but does not require step #3. In two respects, their results are most impressive.
Firstly, their Bayes nets makes very accurate defect predictions (an R2 of 0.93
between predicted and actual defects). Secondly, since their method does not
require detailed domain knowledge it can be applied very early in the process
life cycle.

2



Yet another widely-held view is that “too many cooks spoil the broth”;
i.e.. code units will be less fault-prone if they are written and maintained by
only a few, or even just one, programmer. Another common belief is that a
developer who works for the first time on a file that has previously been written
or maintained by others is more likely to introduce faults into the software than
programmers who have prior experience with the code. In Do Too Many Cooks
Spoil the Broth? Using the Number of Developers to Enhance Defect Prediction
Models, Weyuker & Ostrand explored the value of adding development team size
and experience with specific code units to an existing defect prediction model.
They found this information improved defect prediction, but only by a negligible
amount.

Our final paper is concerned with the assessment of models, once they are
built. There exists a large number of competing data mining methods for gener-
ating software defect models and deciding which model is “best” is a non-trivial
task. In Techniques for Evaluating Fault Prediction Models, Jiang et al. com-
ment that the comparison of fault-prone models is a multi dimensional problem.
Rarely will one model or the modeling technique prove to be the “best” for all
possible uses in software quality assessment. Overall model classification per-
formance is not the ultimate goal in itself. Rather, optimizing the project cost
and maximizing the efficiency of software verification procedures typically tops
the agenda. This paper describes a methodological generalization of cost sen-
sitive numerical performance indices called “cost curves” that offer a succinct
graphical comparison of model performance across a wide range of module mis-
classification costs.

This special issue is the result of much work by a large group of people:

• First and foremost, I gratefully acknowledge the dedication of the review-
ers of these papers. These reviewers were kind enough to review multiple
versions of these papers, and to do so in record time.

• Also, special thanks are due to my fellow members of the PROMISE steer-
ing committee: Gary Boetticher (general chair), Tom Ostrand, and Gun-
ther Ruhe.

• Last but not least, this issue would not have been possible without the
support of the team at the Empirical Software Engineering Journal: Lionel
Briand was kind enough to support this issue and Racquel Anievas was
exceptionally helpful during the review and production process.

For more information on the PROMISE project, see http://promisedata.
org. I hope that, soon, I will read your papers at a forthcoming PROMISE con-
ference; or that other researchers use the data you contribute to the PROMISE
repository.

3


