
1

Preliminary Investigations

on Intelligent Modeling

of UML Scenarios

Dr. Tim Menzies, WVU, tim@menzies.us

Chet Tobrey, WVU, ctobrey@mix.wvu.edu

Lee Blake, WVU, lblake2@mix.wvu.edu

2

Space is a big place
! NASA explores space

! Software engineers explores

the space within:

! programs (late lifecycle)

! or requirements

(early lifecycle)

! Question:

! how to best explore all

that space?

3

Goal: Better Support for UML

modeling in Juno
! New generation IV&V

! UML-based

! Create a UML reference model

! Conduct model-based IV&V

! Can we improve that work?

! Simulate software activity.

! Identify key decision points.

! Quick feedback.

! Scalable for large systems.

! Possible reuse with other models.

! Minimize work required to assess
the mode

4

Nominal &

Off-Nominal Scenarios
! UML scenarios:

! “a story” about one
sequence of actions

! Undistracted by multiple
options

! To explore options,
write another scenaio

! Nominal scenario: sunny data

! Off-nominal scenario: a rainy-day
variant of a nominal scenario

! Typically, a branch from a nominal scenario

! Nominal : Off-nominal = 1 : 10

! Q: how may scenarios?

! A: depends on the structure of the design

5

Roadmap
! Preliminaries: parsing the XML

! Pairwise sample

! Rank by usage

! Combining pair-wise with usage

! Divide and conqueor

! Goal-based analysis

6

Parsing the XML
! Split XML document into small sub-files.

! Convert each sub-file into an object utilizing SimpleXML and X-

Path in php 5

! Convert each object into a small tree representing the XML in the

sub-file

7

Parsing the XML
! Connect each small tree to create a very large tree (XML Tree)

representing the entire XML document

8

Parsing the XML
! Search XML Tree for required node types (Node, Edge, Guard)

and extract “branch” of XML Tree discarding unneeded “branches”.

9

Grammar Generation
! Extract pertinent attributes from each XML “branch” creating an

array.

! Nodes : Name, ID, Group, Incoming Edges, and Outgoing Edges

! Edges : ID, Group, Source Nodes, Target Nodes

! Guards : Name, ID, Group, Edge

! Match Nodes to Edges

! using Incoming, Outgoing, Source, and Target

! Merge Edges into Nodes.

! Replace Node's Outgoing with the appropriate Edge's Target
! Search Node array for Nodes with no Incoming (Initial Nodes)!

! Trace “tree” from Node to Node extracting entire “diagrams.”

! Convert each Diagram Trace into a Grammar

10

Grammar Generation
! Each Grammar consists of an entire “diagram” extracted from the

Juno XML.

! Each diagram represents a task or group of related tasks that the

Juno software performs.

! Each diagram is represented by a separate grammar to facilitate

easier and faster testing because they can be used independently

! Each Grammar is accompanied by a setup function that relates

the Node IDs used in the grammar to the plain English names

that describes the node.

! Finally, a Guard Grammar and setup function are created to allow

testing of certain initial “conditions” applied to the grammar prior

to analysis.

11

Sample of Grammar

(defparameter *alignspinaxis*

 '((XX -> XY) 1

 (XX -> XJ) 1

 (XX -> KL) 1

 (AB -> X) 1

 (AB -> D) 1

 …)

Sample of Setup Function

(defun setupalignspinaxis()

 (setf *name-list*

 '(A generate_torque_vector

 B get_imu_data

 C fire_thrusters

 D generate_pulse_width_commands

 E set_to_idle_mode

 F calculate_spin_rate_error

 G determine_current_spin_rate

 F warm_up_cat_beds

 G select_spin_rate_control_mode

 H send_adjust_spin_rate_commmands

…

Output: a LISP program

12

Roadmap
! Preliminaries: parsing the XML

! Pairwise sample

! Rank by usage

! Combining pair-wise with usage

! Divide and conqueor

! Goal-based analysis

13

Exploring

the gaurds
! View “warm precession

Cat Beds” as a gaurded

variable with range = 2

! Model that as (2)

! Given 5 binary choices:

! (2 2 2 2 2)

! 25 = 32 scenarios

! 268 guarded nodes in the system

! Usually, range=2 (but sometimes, 10)

! 2268 = 4.7 " 1080 scenarios

[large precession]

Warm precession

Cat Beds

Select idle mode

[small precession]

Reached,
half

the time

14

Sampling guard space
! Assumption:

! the simplest bugs from a single input parameter.

! Harder bugs: from pairs

! Harder harder bugs: from tripple

! N-wise constraints

! No two tests can have the same values to N variables

! Pair-wise testing

15

Pair-wise testing on JUNO
> (pairwise '(2 2 2 2 2))

 ((2 2 1 1 1)
 (2 1 2 2 2)
 (1 2 2 1 2)
 (1 1 1 2 1)
 (0 2 2 2 1)
 (0 1 1 1 2))

> (pair-wise ‘(2 2 2 2 2 2 2 2 2 2 2 2….))
 58 outputs

! 58 much less than 1080

! Formally, these tests are equidistant samples
across the space of all tests

! Yes, there are gaps in-betweem the samples

! But at least the space is covered

“0”=

don’t

care

Sort by test

 effort:

Favor “0”

tests

16

Roadmap
! Preliminaries: parsing the XML

! Pairwise sample

! Rank by usage

! Combining pair-wise with usage

! Divide and conqueor

! Goal-based analysis

17

[IMU stable]

TURN ON IMU

Estimate principle

axis vector

Not reached if not
“IMU stable”,

[large precession]

Warm precession

Cat Beds

Select idle mode

[small precession]

Reached,
half

the time

18

[large precession]

Warm precession

Cat Beds

Select idle mode

[small precession]

Reached,
At probability

1 - P(a)

a b

Let P(a) + P(b) =1

19

Frequency of reaching nodes
! State charts read from NASA-built UML models

! Dumped to XMI

! Converted into LISP program

! Run, making random choices

So, space has

Some structure

20

Roadmap
! Preliminaries: parsing the XML

! Pairwise sample

! Rank by usage

! Combining pair-wise with usage

! Divide and conqueor

! Goal-based analysis

21

Reduce and sort
! Represent space of all scenarios as combinations of

gaurds

! Reduce that space with pairwise

! Study the frequency of reaching a node

! Random walks

! Sort the reduced space by frequency of access

! Expected case testing: sort most-frequent first

! Rare case testing: sort least-frequent first

! Seconday sort:

! Least effort (favor tests with more “don’t cares”)

22

Roadmap
! Preliminaries: parsing the XML

! Pairwise sample

! Rank by usage

! Combining pair-wise with usage

! Divide and conqueor

! Goal-based analysis

23

Model Structure:

JUNO XMI (July ‘08)
! Edges:1430

! Nodes: 1229

! Guards: 267

! Terminals (no outs): 103

! Start nodes (“initial node 20”): 67

! Loops:

! 291 nodes In loops size > 1

! 35 nodes in loops size = 1 (e.g.”record
telemetry”)

! 75 Clusters (groups of connected
nodes: ignoring self-loops)

! 75% have one initial, one final node

! Sizes: 4 .. 81

! Note: those clusters will change as the
models evolve

 Repeat the above on a

per-cluster basis

24

Roadmap
! Preliminaries: parsing the XML

! Pairwise sample

! Rank by usage

! Combining pair-wise with usage

! Divide and conqueor

! Goal-based analysis

25

Goal-based analysis
! Given some assertions

! Find the combinations of

gaurds that most select for

! Most assertions satisfied

! Auto-generate the

operations manual

! E.g. always close the

door before re-entry

! Most assertions violated

! Disover the worst-case

scenario

! Repeated result:

! Core decisions small subset of
all decisions

! So, another scenario
minimization technique:

! just explore the “key” gaurds

! Different to model-checking:

! Don’t just explore the space

! Learn biases that change
behaviour in the space

! Technically: reinforcement
learning

26

Method
Our goal is to automate assertion testing on a model

view of the Juno software system (in xmi format).

Ultimately a user will be able to add and test new
assertions against the software model on the fly.

XMI -> Grammar Generation -> Simulations->
Score Assertions -> Identify Key Decision Points

27

Example
• Rule b is the key decision point.

• When b -> bc the assertion test1

is met.

• When b -> ba the assertion fails.

• We need to quickly identify these

critical junctions.

• Easy to see in small graphs

• But in larger ones..

• Also, the minimization issue

(defparameter *test-graph*

 '((a -> (b c d e f g))

 (b -> ba).5

 (b -> bc).5

(bc -> test1)1

(ba -> (bd be))1

(bd -> fail)1
(be -> fail 1)

(test1 -> t2)1
(t2 -> t3)1
(t3 -> t4)1

(t4 -> t5)1
(t5 -> t6)1
(t6 -> t7)1

(t7 -> t8)1

 (t8 -> t9)1
(t9 -> testend)1
(testend -> goal)1

…

))

28

Example Output
CL-USER> (3demo)

===== Binary Simulation=====

found 1000 egs with median 11.0 [100.%] (min=1.0 spread= 0.0 max=11.0). recommend 29 = 0

found 517 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 27 = 1

found 237 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 19 = 0

found 122 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 23 = 0

found 69 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 11 = 0

found 37 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 17 = 0

found 19 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 28 = 1

found 19 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 26 = 0

found 19 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 1 = 0

found 7 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 15 = 1

Of 1000 simluations, the test assertions were met

when rule 29 (b -> ba) was set to 0.

29

Praticalities
! Some issues with accessing the right kind of

assertions

! Matching assertions to nodes in the XMI

! Find assertions that use qualitative time

! Some issues with scale-up

! Perhaps just implementation trivia

! Solvable: using the clusters

30

Goal: Better Support for UML

modeling in Juno
! New generation IV&V

! UML-based

! Create a UML reference model

! Conduct model-based IV&V

! Can we improve that work?

! Simulate software activity.

! Identify key decision points.

! Quick feedback.

! Scalable for large systems.

! Possible reuse with other models.

! Minimize work required to assess
the mode

31

Proposed support for UML
! Pairwise sample

! Rank by usage

! Combining pair-wise with usage

! Divide and conqueor

! Goal-based analysis

