—

Preliminary Investigations
on Intelligent Modeling
of UML Scenarios

Dr. Tim Menzies, WVU, tim@menzies.us
Chet Tobrey, WVU, ctobrey@mix.wvu.edu
Lee Blake, WVU, Iblake2@mix.wvu.edu

Space is a big place

NASA explores space
Software engineers explores
the space within:

programs (late lifecycle)

or requirements
(early lifecycle)

Question:

how to best explore all
that space?

—Goal: Better Support for UML

modeling in Juno

New generation V&V
UML-based
Create a UML reference model
Conduct model-based IV&V

Can we improve that work?
Simulate software activity.
|dentify key decision points.
Quick feedback.

Scalable for large systems.
Possible reuse with other models.

Minimize work required to assess
the mode

_Nominal &
Off-Nominal Scenarios

UML scenarios:

“a story” about one pRor s
sequence of actions s
Undistracted by multiple
options

To explore options,

write another scenaio
Nominal scenario: sunny data

Off-nominal scenario: a rainy-day
variant of a nominal scenario

Typically, a branch from a nominal scenario
Nominal : Off-nominal =1 : 10

Q: how may scenarios?
A: depends on the structure of the design

Roadmap

Preliminaries: parsing the XML

~—Parsing the XML
Split XML document into small sub-files.

Convert each sub-file into an object utilizing SimpleXML and X-
Path in php 5
Convert each object into a small tree representing the XML in the

O A gi\g
: y I

i
~—Parsing the XML

Connect each small tree to create a very large tree (XML Tree)
representing the entire XML document

1%+
Bors

|
~Parsing the XML

Search XML Tree for required node types (Node, Edge, Guard)
and extract “branch” of XML Tree discarding unneeded “branches”.

R

—Grammar Generation

Extract pertinent attributes from each XML “branch” creating an
array.

Nodes : Name, ID, Group, Incoming Edges, and Outgoing Edges

Edges : ID, Group, Source Nodes, Target Nodes

Guards : Name, ID, Group, Edge
Match Nodes to Edges

using Incoming, Outgoing, Source, and Target
Merge Edges into Nodes.

Replace Node's Outgoing with the appropriate Edge's Target
Search Node array for Nodes with no Incoming (Initial Nodes)
Trace “tree” from Node to Node extracting entire “diagrams.”
Convert each Diagram Trace into a Grammar

—Grammar Generation

Each Grammar consists of an entire “diagram” extracted from the
Juno XML.

Each diagram represents a task or group of related tasks that the
Juno software performs.

Each diagram is represented by a separate grammar to facilitate

easier and faster testing because they can be used independently
Each Grammar is accompanied by a setup function that relates
the Node IDs used in the grammar to the plain English names
that describes the node.
Finally, a Guard Grammar and setup function are created to allow
testing of certain initial “conditions” applied to the grammar prior
to analysis.

10

/butput: a LISP program

Sample of Setup Function
Sample of Grammar

(defun setupalignspinaxis()

(defparameter *alignspinaxis® (setf name-list*
(XX ->XY) 1 (A generate_torque_vector
(XX ->XJ) 1 B get_imu_data
(XX ->KL) 1 C fire_thrusters
(AB > X) 1 D generate_pulse_width_commands
(AB -> D) 1 E set_to_idle_mode
) F calculate_spin_rate_error

G determine_current_spin_rate

F warm_up_cat_beds

G select_spin_rate_control_mode

H send_adjust_spin_rate_commmands

11

//

Roadmap

Pairwise sample

12

__Exploring
the gaurds o

View “warm precession
Cat Beds” as a gaurded

variable with range = 2 el [Peesesien
Model that as (2) \
Given 5 binary choices:

Select idle mode

(22222)
2° = 32 scenarios
268 guarded nodes in the system

Usually, range=2 (but sometimes, 10)
2268 = 4.7 x 1080 scenarios Reached,

half
the timee

[large precession]

13

Sampling guard space

Assumption:
the simplest bugs from a single input parameter.
Harder bugs: from pairs
Harder harder bugs: from tripple
N-wise constraints
No two tests can have the same values to N variables

Pair-wise testing

Parameter Sizes AETG ' 10 ¥/ TConfig ~ TS * Jenny * TestCover *’ DDA | AllPairs [McDowell] * PICT exacT”

3 < 9 5 a 11 3 ?| 9| 9 9

3B 15| 17 15| 15 18 15| 18 7| 18 15
4=y 41 34 a0 39 38 29 35 34| 37

b e 28 26 10| 29 28 21 27 26| 27 21

2'% 10 15 14| 10 16| 10 15 14] 15 10

10°Y 180| 212 231, 210 193] 181 201 197| 210 ?

14

Pair-wise testing on JUNO

> (pairwise (2222 2))
(22111)

o
ea
ey
.....
......
ey
.
........
......
"y
ey

> (pair-wise (222222222222....))
.............................. 58 OUtpUtS

58 much less than 108°
Formally, these tests are equidistant samples
across the space of all tests
Yes, there are gaps in-betweem the samples
But at least the space is covered

15

//

Roadmap

Rank by usage

16

TURN ON IMU

/

[IMU stable]

Warm precession
Cat Beds

Estimate principle
axis vector

Not reached Lf not
“IMU stable’,

\

[small precession]

[large precession]

Select idle mode

Rzaéhed,
half
the time

17

Warm precession
Cat Beds

[small precession]

p— \

Select idle mode

[large precession]

éﬂached,
At probability
1-7(a)

18

|

—Frequency of reaching nodes

State charts read from NASA-built UML models
Dumped to XMl|
Converted into LISP program
Run, making random choices

So, space has
Some structure

19

|
//

Roadmap

Combining pair-wise with usage

20

| —

Reduce and sort

Represent space of all scenarios as combinations of
gaurds

Reduce that space with pairwise

Study the frequency of reaching a node
Random walks

Sort the reduced space by frequency of access
Expected case testing: sort most-frequent first
Rare case testing: sort least-frequent first

Seconday sort:
Least effort (favor tests with more “don’t cares™)

21

|
o

Roadmap

Divide and conqueor

22

—Model Structure: —

JUNO XMI (July ‘08)

Edges:1430
Nodes: 1229

Guards: 267

Terminals (no outs): 103

Start nodes (“initial node 20”): 67
Loops:

291 nodes In loops size > 1

35 nodes in loops size = 1 (e.g.”record
telemetry”)

75 Clusters (groups of connected Repeat the above on a
. . per-cluster basis
nodes: ignoring self-loops)

75% have one initial, one final node
Sizes: 4 .. 81

Note: those clusters will change as the
models evolve

23

Roadmap

Goal-based analysis

24

| —

Goal-based analysis

Given some assertions Repeated result:
Find the combinations of Core decisions small subset of

all decisions
gaurds that most select for .
So, another scenario

Most assertions satisfied minimization technique:
Auto-generate the just explore the “key” gaurds
operations manual
E.g. always close the Different to model-checking:
door before re-entry Don't just explore the space

Most assertions violated Learn biases that change

: behaviour in the space
Disover the worst-case) .
S Technically: reinforcement

learning

25

|-

Method

Our goal is to automate assertion testing on a model
view of the Juno software system (in xmi format).

Ultimately a user will be able to add and test new
assertions against the software model on the fly.

XMI -> Grammar Generation -> Simulations->
Score Assertions -> Identify Key Decision Points

26

| —

Example

Rule b is the key decision point.

When b -> bc the assertion test1
IS met.

When b -> ba the assertion fails.

We need to quickly identify these
critical junctions.

Easy to see in small graphs
But in larger ones..
Also, the minimization issue

(defparameter *test-graph*
((@->(bcdefq))
(b ->ba).5
(b ->bc).5
(bc -> test1)1
(ba -> (bd be))1
(bd -> fail)1
(be -> fail 1)
(test1 -> t2)1
(t2 -> t3)1
(t3 > t4)1
(t4 ->t5)1
(t5 ->t6)1
(t6 -> t7)1
(t7 -> 18)1
(t8 -> 19)1
(t9 -> testend)1
(testend -> goal)1

27

| —

Example Output

CL-USER> (3demo)

===== Binary Simulation=====

found 1000 egs with median 11.0 [100.%] (min=1.0 spread= 0.0 max=11.0
found 517 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0
found 237 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 19 = 0
found 122 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 23 = 0
found 69 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 11 =0
found 37 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 17 =0
found 19 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 28 = 1
found 19 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 26 =0
found 19 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 1 =0
found 7 egs with median 11.0 [100.%] (min=11.0 spread= 0.0 max=11.0). recommend 15 = 1

recommend 29 =0
. recommend 27 = 1

N N N’ N

Of 1000 simluations, the test assertions were met
when rule 29 (b -> ba) was set to 0.

28

| —

Praticalities

Some issues with accessing the right kind of
assertions

Matching assertions to nodes in the XMl

Find assertions that use qualitative time
Some issues with scale-up

Perhaps just implementation trivia

Solvable: using the clusters

29

—Goal: Better Support for UML

modeling in Juno

New generation V&V
UML-based
Create a UML reference model
Conduct model-based V&V

Can we improve that work?
Simulate software activity.
|dentify key decision points.
Quick feedback.
Scalable for large systems.
Possible reuse with other models.

Minimize work required to assess
the mode

30

|-

Proposed support for UML

Pairwise sample

Rank by usage

Combining pair-wise with usage
Divide and conqueor
Goal-based analysis

31

