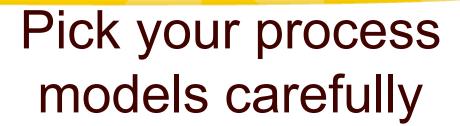
Crystal Ball: Understanding Trends in Future Software

Tim Menzies (WVU)
Barry Bohem (USC)

8/1/08

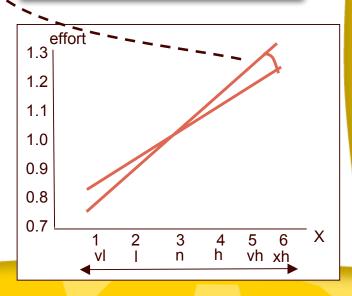
Problem



- How to plan for the future?
- How are we to assess the benefits vs cost trade-offs of different software methods?
- How are we to make future plans for the agency, given some much change in current practices?

- Using traditional methods, there are no answers to these questions.
- The local tuning problem.
 - Software process models most accurate after local tuning
 - But, data required for local tuning is hard to obtain
 - Due to business sensitivity associated with the data
 - And differences in how the metrics are defined, collected and archived.
- New method
 - Find models that can make stable predictions
 - Despite unstable tunings

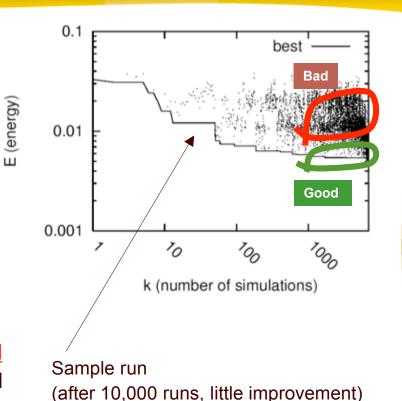
- There exists a class of models M of the form
 - Output= M(input,tunings)
- Such that
 - the variance in the tunings ...
 - ... is dominated by variance in the inputs
- For those models,
 - can make stable predictions
 - despite tuning varaince


- E.g. the USC family of
 - Effort predictors
 - Time predictors
 - Defect predictors

What to vary

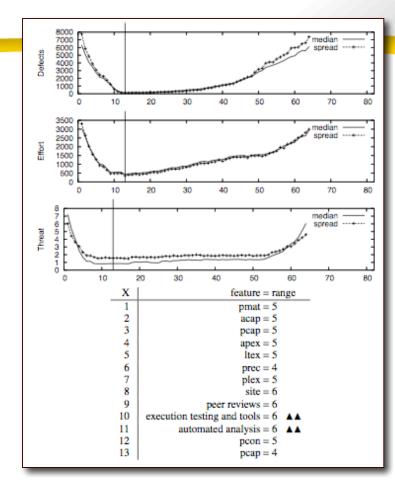
_	_				
	_ ~	offort	- mv	\perp h	
	=.u.	effort	— IIIX	TU	
_	9-	• • • • • • • • • • • • • • • • • • • •			

- Two kinds of unknowns
 - Unknowns in project ranges
 - E.g. range of "x"
 - Unknowns in internal ranges
 - E.g. range of {"m", "b"}
- Standard practice:
 - Use historical data to constrain {"m","b"}
- Here: Monte carlo over range of { "x", "m", "b" }
 - Learn values for "x" that reduce effort
 - As a side-effect, reduce variance
 - Not need for tuning data


		ranges		val	
project	feature	low	high	feature	setting
	rely	3	5	tool	2
Flight:	data	2	3	seed	3
	cplx	3	6		
	time	3	4		
	stor	3	4		
	pvol	2 3 2 3	4		
	acap	3	5 5 5		
	apex	2	5		
	pcap				
	plex	1	4		
	ltex	1	4		
	pmat	2	3		
	Ksloc	7	418		
	rely	1	4	tool	2
Ground:	data	2	3	seed	3
	cplx	1	4		
	time	3	4		
	stor	3	4		
	pvol	3 2 3	4		
	acap	3	5		
	apex	3	5		
	pcap	3	5		
	plex	1	4		
	ltex	1	4		
	pmat	2	3		
	Ksloc	11	392		

SAS_08_Crystall_Ball_Menzies: page 5 of 15

Approach (details)


- Implement USC software process models
 - COCOMO time / effort estimation,
 - COQUALMO defect prediction
 - MADACHY threats model
- Using
 - historical data, define space of past tunings
 - NASA experts, define standard project types
- Using simualted annealing, Monte Carlo simulation/optionation across intersection of
 - A particular project type
 - Space of possible tunings
- Rank options by frequency in good, not bad
- Test top ranked options for their median and variance effect. Smile if
 - Reduced median and variance in defects/ efforts/ time/ threats

SAS_08_Crystall_Ball_Menzies: page 6 of 15

Accomplishments

- After extensive interviews with...
 - SE research gurus
 - Experienced NASA developers/managers
- clear evidence of variance in NASA software processes
- In numerous case studies...
- ... massic reduction in
 - Defects/ effort/ time/ threats
 - Both median and variance
- options required to reach minimum defects/ effort /time /threats
 - Are a small subset of all options

Workshops (1 of 3): ICSE'08

SAS_08_Crystall_Ball_Menzies: page 8 of 15

Method 1 (at Workshop 1)

- Target application picked
 - A mission critical, real-time system;
 - Built by contractors (not in-house)
 - That has an operational life of 5 to 10 years (since have invested much effort into a mission critical system, an organization is most likely to use it for many years to come).
- For each COCOMO input variable
 - Boehm defines each variable
 - 5 minutes "open comments"
 - Vote. Record majoirty view

No Consensus :

- data (database size per LOC)
- ett (execution-based testing and tools)
- reuse (level of design of the current product for future reuse)
- time (% CPU requirements)

No Change:

- docu (required levels of documentation)
- Itex (language and tools experience)
- pcap (programmer capability)
- plex (platform experience)
- team (team cohesion)

Increasing :

- aa (automated analysis):
 i.e. use of more
 automated analysis;
- acap (analyst capability): due to better SE education, broader international talent pool;
- cplx (product complexity): i.e. due to more ambitious projects;
- flex (development flexibility): due to more agile-style development;
- peer (peer reviews).
- pmat (process maturity)
- pvol (platform volatility)
- rely (reliability)
- resl (architecture and risk analysis)
- tool (use of software tools)

Decreasing :

- apex (analyst experience):
 due to a wider variety of new
 tools and an increasing
 number of novel application
 areas
- pcon (personnel continuity):
 i.e. the panel expects more
 turn over in the industry1.
- sced (time to deliver product): i.e. more products expected to be delivered faster.
- site (single site development): i.e. less work at one location, more development at multiple distributed locations;

- Uncertainties on
 - prec (have we built this kind of thing before?)
 - stor (%CPU RAM)
 - time (%CPU cycles)
- 3 binary options (increase decrease)
 - -2*2*2 = 8 studies,
 - repeated 3 times for
 - KLOC= small, medium, or large

In 8 studies, for small, medium, large, very stable conclusions:

_				
	small	medium	large	
Γ	8	8	8	acap=4,4.5
	8	8	8	apex=4, 4.55.5
	8	8	8	site=4.5
	8	8	8	pmat=4.5,5
	8	8	5	prec=4,5
	8	8	6	pcon=2,3
	1	2	3	peer=6
	0	3	3	aa=5.5,6
	0	2	3	ett = 5.5,6
1				4

Good news:
stable
conclusions

But is this result NASA relevant?

SAS_08_Crystall_Ball_Menzies: page 11 of 15

Workshops (2 of 3): JPL

- Acknowledge:
 - Much help from
 Dr. Jairus Hihn, JPL
- Preliminaries:
 - For two days,one-on-one interviews * 5
- Final day:
 - Morning session: everyone reviews results from preliminary sessions

Not a recommended method

- Issue found with model
 - Need an extra feedback loop
- Little consensus on
 - Future of JPL
 - Development house?
 - Managers of external development
 - Future JPL missions
 - Much uncertainty there
- Also, ability to explicate local consensus
 - Requires elaborate domain knowledge

In future: recommend single focused panel session

Workshop (3 of 3)

- Where?
 - Headquarters?
 - JPL?
- Next time:
 - More focused panel
 - Better initial choice
 - Better range of future policies

Drastic change	Effects on Figure 4
1 Improve personnel	acap = 5; $pcap = 5$; $pcon = 5$
	apex = 5; $plex = 5$; $ltex = 5$
2 Improve tools, techniques, or devel-	time = 3 ; stor = 3
opment platform	pvol = 2; $tool = 5$
	site = 6
3 Improve precedentness / develop-	prec = 5; $flex = 5$
ment flexibility	1 <i>E</i>
4 Increase architectural analysis / risk resolution	resl = 5
5 Relax schedule	sced = 5
6 Improve process maturity	pmat = 5
7 Reduce	data = 2; kloc * 0.5
functionality	
8 Improve the team	team = 5
9 Reduce quality	rely = 1; $docu = 1$
	time = 3 ; cplx = 1

	Defects / KLOC
Change	(normalized 0100, minmax)
SEESAW	•
Improve pcap	l o l I
Improve tool/tech/plat	l o ⊢ l
Reduce functionality	lol l
Improve pmat	⊢ • !
Improve prec/flex	⊢ •
Improve team	├● ──
Relax schedule	I ⊢ ● ──
Arch/risk resolution	¹ ├──● ──
Do nothing	l
Reduce quality	l Hel
	50%

- NASA's software methods are rapidly evolving
 - NASA IV&V is the use of early lifecycle model-based validation.
 - Agile process,
 - Assertion-based analysis,
 - Eclipse-based programming,
 - Matlab-based automatic code generation,
 - Simulation-oriented development cycles,
 - etc.
- Any stability in all that chaos?
 - Can we make any plans for the future?

- Required: more NASA software gurus
 - Wanted: volunteers from SAS
- More simulation studies
 - To confirm / refute <u>stability hypothesis</u>
- Generation of recommendations
 - For different NASA project types