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Sound bites 


   Value-based SE:  
–  not even wrong? 
–  Does it change anything? 


   Data drought leading to 
conclusion uncertainty 

–  Seek stability over samples 


  On sampling some systems, we see 
–  Value radically changes the 

conclusions we reach regarding 
project organization 


   What works best THERE may not 
work best HERE 
–  Needs better ways to find local 

best 
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Value-based  
Software Engineering 

The future of SE? 
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Thesis: value changes everything! 


  Q: what is SE 
–  A: The application of science 

and mathematics by which the 
properties of software are made 
useful to people 


  Most SE techniques are  
“value-neutral”   

–  Boehm, ASE 2004 
–  Euphuism for “useless”? 


  Value-based SE makes a 
difference 

–  Yeah? Really? 
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The History of Computing Naturally 
Leads to Value-based SE 
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Risk Exposure (RE)  
= Software Quality Investment RE (REq)  

+ Market Share Erosion RE (REm)‏ 
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Value-based SE 

Not even wrong? 
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Is the value-thesis 
not even wrong? 

  Wolfgang Pauli 

  The "conscience of physics",  

–  the critic to whom his colleagues were accountable.  

  Scathing in his dismissal of poor theories 

–   often labeling it ganz falsch, utterly false. 

  But “ganz falsch”  was not his most severe criticism,  

–  He hated theories so unclearly presented as to be  
•  untestable  
•  unevaluatable 

–  Worse than wrong because they could not be proven 
wrong. 

–  Not properly belonging within the realm of science  
•  even though posing as such.  

–  Famously, he wrote of a such unclear paper: 
•  ”That’s not right. It’s not even wrong." 
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So is the value  
thesis refutable? 


  Find a domain general “value” 
proposition 

–  Menzies, Boehm, Madachy, 
Hihn, et al, [ASE 2007] 

–  Reduce effort, defects, schedule 
–  “energy” 


  Find a local value proposition 
–  A variant of USC Ph.D. thesis 

•  [Huang 2006]: Software Quality 
Analysis: a Value-Based 
Approach 

–  “value” 

  Use them in a what-if scenario 

  Any difference in the 

conclusions? 

(defun energy ()‏ 
  "Calculates energy based on cocomo pm, tdev, coqualmo defects,  
Madachy’s risk." 
  (let* ((npm   (calc-normalized-pm))‏ 
          (ntdev   (calc-normalized-tdev))‏ 
          (ndefects  (calc-normalized-defects))‏ 
          (nrisk   (calc-normalized-risk))‏ 
          (pm-weight 1)‏ 
          (tdev-weight 1)‏ 
          (defects-weight (+ 1 (expt 1.8 (- (xomo-rating? 'rely) 3))))‏ 
          (risk-weight 1))‏ 
    (/ (sqrt (+ (expt (* npm  pm-weight) 2)‏ 
                   (expt (* ntdev tdev-weight) 2)‏ 
                   (expt (* ndefects defects-weight) 2)‏ 
                   (expt (* nrisk risk-weight) 2)))‏ 
        (sqrt (+ pm-weight tdev-weight 
                    defects-weight risk-weight)))))‏ 

(defun risk-exposure ()‏ 
   “Calculates risk exposure based on rely” 
  (let* ((pm (calc-pm))‏ 
           (size-coefficient (calc-size-coefficient '(rely)))‏ 
           (defects (calc-defects))‏ 
           (defects_vl (calc-defects-with-vl-rely))‏ 
           (loss-probability (/ defects defects_vl))‏ 
           (loss-size (* (expt 3 (/ (- (xomo-rating? 'cplx) 3) 2) )‏ 
                              size-coefficient 
                              pm))‏ 
           (software-quality-re (* loss-probability loss-size))‏ 
           (market-coefficient (calc-market-coefficient '(rely)))‏ 
           (market-erosion-re (* market-coefficient pm))‏ 
    (+ software-quality-investment-re  
        market-erosion-re)))‏ 
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Aside 


  Not really [Huang06] 
– But some variant Huang06 


  Had to use some “engineering judgment”  
– a.k.a. guesses 


  Apologies to Dr. Huang 
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Tools 


  Four USC models 
–  COCOMO effort prediction: staff months 
–  COCOMO schedule predictor: calendar months 
–  COQUALMO defect predictor: defects/KLOC 


  Monte Carlo simulator 

  AI search engine 

–  Search for the least number of project changes … 
–  … that most improves the “target” 
–  “Target” is either 

•   [Ase07]’s “energy” function 
•   [Huang06]’s “XPOS” proposition (risk exposure) 
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“Energy” [Ase07] 

   Euclidean Distance to lowest everything 


   Energy = sqrt(   a * square( normalized ( Time     )) + 
                          b * square( normalized( Effort     )) + 
                          c * square( normalized( Defects ))  
                     ) 
                    / sqrt(a+b+c) 
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Xpos [Huang06] 


  Value based evaluation method designed to minimize 
risk exposure based on 'rely' 


  Balances beating everyone to market with more/worse 
bugs and being last to market with few/minor bugs. 


  Based on NASA/USC Inspector SCRover project 
described in [Huang06] 
–   XPOS 
–  Risk Exposure (RE)  

= Software Quality Investment RE (REq)  
+ Market Share Erosion RE (REm)‏ 



Software Quality Investment = 
Pq(L) * Sq(L) 
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   Pq(L): 
–  [Huang06] calculated from COQUALMO estimates of delivered 

defect density 
–  To incorporate COQUALMO model: defects/defects-with-vl-rely 


   Sq(L) 
–  [Huang06] used based values from a Pareto distribution and 

modified it with a coefficient based on a factor depending if a 
project was for early startup (1/3) commercial (1), high finance(3) 

–  We used the same values for the distribution but instead of defining 
3 different functions, we used a function base don cplx to determine 
the coefficient 3^((cplx-3)/2)) (range is [0.3333 .. 5.196]   
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Market Share Erosion  
Risk Exposure (REm)‏ 


  [Huang06]  
– used a simple exponential distribution for 

Rem 
–  REm was normalized 


  We weight it with PM  
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The details 

Using AI to find stable conclusions  
in a space of options 
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Problem: local tuning 


  Problem 
–  Models need calibration 
–  Calibration needs data 
–  Usually, data incomplete (the 

“data drought”) 


  Our thesis : 
–  Precise tunings not required 
–  Space of possible tunings is 

well-defined 
–  Find and set the collars 

•  Reveal policies that reduce 
effort/ defects months 

•  That are stable across the 
entire space  
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Experts disagree 


  Target application picked 
–  A mission critical,  

real-time system;  
–  Built by contractors  

(not in-house)  
–  That has an operational life of 5 

to 10 years (since have invested 
much effort into a mission critical 
system, an organization is most 
likely to use it for many years to 
come).  
  For each COCOMO input 

variable 
–  Boehm defines each variable 
–  5 minutes “open comments” 
–  Vote. Record majority view No majority 

view 



The tuning instability problem 
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If some method DOUBLED productivity, you might miss it 
if tunings randomly jumps 9 to 4.5. 



Dodging tuning instability 


  Estimate = model( project, tunings) 

  Twiddle project 

  Let tunings roam free 

  Can still control the estimate (if project 

dominates estimate) 

  Project details are the dominate influence on 

estimate for the USC models. 
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Sampling 


   E.g. effort = mx + b 

   Two kinds of unknowns 

•  Unknowns in project ranges 

   E.g. range of “x” 

•  Unknowns in internal ranges 

   E.g. range of {“m”, “b”} 


   Standard practice: 
–  Use historical data  

to constrain {“m”,”b”} 

   Here: Monte Carlo over  

range of { “x” , “m”, “b” } 
–  Learn values for “x” that reduce 

effort  
–  As a side-effect, reduce variance 
–  Not need for tuning data 

X 

effort 

1       2        3       4     5     6  

1.3 

1.2 

1.1 

1.0 

0.9 

0.8 

0.7 

vl l n h vh xh 
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Search for stable conclusions 


  Using simulated annealing, Monte 
Carlo simulated annealing across 
intersection of 

–  A particular project type 
–  Space of possible tunings 


  Rank options by frequency in 
good, not bad 


  For r options 
–  Try setting the 1 ≤ x ≤ R top ranked 

options  
–  Simulate (100 times) to check the 

effect of options 1 .. x  

  Smile if 

–  Reduced median and variance in 
defects/ efforts/ time/ threats 

Bad 

Good  

Sample run 
(after 10,000 runs, little improvement)‏ 



Other search methods 


  A-star 

  MaxWalkSat 

  Isamp 

  Etc  
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What works best? 


  A little domain knowledge goes a long way 

  Standard methods not best 

  Best methods very effective 
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Results 

And the winner is… 
…. no one in particular 



tea 
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aa      1  
aexp  1 
cplx   1 
data   2 
docu  1  
etat    1 
flex    1 
pmat  1 
Pr      2 
pvol  1  
ruse  1 
rely   2  
resl   2 
sced 1 
site   1  

MIA: prec, team, 
acap,  ltex, pcap, 
pcon,stor, time,tool  
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Conclusion 

So what? 
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Conclusion 


   Is value-based SE “ganz falsch”?  (not even wrong)  
–  Hard to tell, if we have a data drought 
–  So seek stability in samples of the possibilities 


   On sample, using 4 case studies and 2 value 
functions: 

–  Many seemingly important factors weren’t (important) 
–  The most important ones change from project to project 
–  For any project, changes to value changes everything 



Conclusions 
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  On sampling some systems, 
we see 
–  Value radically changes the 

conclusions we reach 
regarding project 
organization 


   What works best THERE may 
not work best HERE 
–  Needs better ways to find 

local best 


   Value-based SE:  
–  Not “not even wrong” 
–  Value  change 

everything 


   Data drought leading to 
conclusion uncertainty 

–  Seek stability over 
samples 


