
1

Value Changes Everything

Tim Menzies (tim@menzies.us)‏
Phillip Green II,
Steve Williams
Oussama Elwaras

Wednesday, May 19, 2009

 2 of 35

Sound bites

   Value-based SE:
–  not even wrong?
–  Does it change anything?

   Data drought leading to
conclusion uncertainty

–  Seek stability over samples

  On sampling some systems, we see
–  Value radically changes the

conclusions we reach regarding
project organization

   What works best THERE may not
work best HERE
–  Needs better ways to find local

best

3

Value-based
Software Engineering

The future of SE?

 4 of 35

Thesis: value changes everything!

  Q: what is SE
–  A: The application of science

and mathematics by which the
properties of software are made
useful to people

  Most SE techniques are
“value-neutral”

–  Boehm, ASE 2004
–  Euphuism for “useless”?

  Value-based SE makes a
difference

–  Yeah? Really?

 5 of 35

The History of Computing Naturally
Leads to Value-based SE

 6 of 35

Risk Exposure (RE)
= Software Quality Investment RE (REq)

+ Market Share Erosion RE (REm)‏

Time to Ship (amount of testing)‏

Few rivals and/or
Weak rivals

Many rivals and/or
Strong rivals

Sweet
Spot

Many defects and/or
Critical defects

Few defects and/or
minor defects

R
E

=R
Eq

 +
 R

Em

Software Quality
Investment RE

Market Share
Erosion RE

7

Value-based SE

Not even wrong?

 8 of 35

Is the value-thesis
not even wrong?

  Wolfgang Pauli

  The "conscience of physics",

–  the critic to whom his colleagues were accountable.

  Scathing in his dismissal of poor theories

–  often labeling it ganz falsch, utterly false.

  But “ganz falsch” was not his most severe criticism,

–  He hated theories so unclearly presented as to be
•  untestable
•  unevaluatable

–  Worse than wrong because they could not be proven
wrong.

–  Not properly belonging within the realm of science
•  even though posing as such.

–  Famously, he wrote of a such unclear paper:
•  ”That’s not right. It’s not even wrong."

 9 of 35

So is the value
thesis refutable?

  Find a domain general “value”
proposition

–  Menzies, Boehm, Madachy,
Hihn, et al, [ASE 2007]

–  Reduce effort, defects, schedule
–  “energy”

  Find a local value proposition
–  A variant of USC Ph.D. thesis

•  [Huang 2006]: Software Quality
Analysis: a Value-Based
Approach

–  “value”

  Use them in a what-if scenario

  Any difference in the

conclusions?

(defun energy ()‏
 "Calculates energy based on cocomo pm, tdev, coqualmo defects,
Madachy’s risk."
 (let* ((npm (calc-normalized-pm))‏
 (ntdev (calc-normalized-tdev))‏
 (ndefects (calc-normalized-defects))‏
 (nrisk (calc-normalized-risk))‏
 (pm-weight 1)‏
 (tdev-weight 1)‏
 (defects-weight (+ 1 (expt 1.8 (- (xomo-rating? 'rely) 3))))‏
 (risk-weight 1))‏
 (/ (sqrt (+ (expt (* npm pm-weight) 2)‏
 (expt (* ntdev tdev-weight) 2)‏
 (expt (* ndefects defects-weight) 2)‏
 (expt (* nrisk risk-weight) 2)))‏
 (sqrt (+ pm-weight tdev-weight
 defects-weight risk-weight)))))‏

(defun risk-exposure ()‏
 “Calculates risk exposure based on rely”
 (let* ((pm (calc-pm))‏
 (size-coefficient (calc-size-coefficient '(rely)))‏
 (defects (calc-defects))‏
 (defects_vl (calc-defects-with-vl-rely))‏
 (loss-probability (/ defects defects_vl))‏
 (loss-size (* (expt 3 (/ (- (xomo-rating? 'cplx) 3) 2))‏
 size-coefficient
 pm))‏
 (software-quality-re (* loss-probability loss-size))‏
 (market-coefficient (calc-market-coefficient '(rely)))‏
 (market-erosion-re (* market-coefficient pm))‏
 (+ software-quality-investment-re
 market-erosion-re)))‏

 10 of 35

Aside

  Not really [Huang06]
– But some variant Huang06

  Had to use some “engineering judgment”
– a.k.a. guesses

  Apologies to Dr. Huang

 11 of 35

Tools

  Four USC models
–  COCOMO effort prediction: staff months
–  COCOMO schedule predictor: calendar months
–  COQUALMO defect predictor: defects/KLOC

  Monte Carlo simulator

  AI search engine

–  Search for the least number of project changes …
–  … that most improves the “target”
–  “Target” is either

•  [Ase07]’s “energy” function
•  [Huang06]’s “XPOS” proposition (risk exposure)

 12 of 35

“Energy” [Ase07]

   Euclidean Distance to lowest everything

   Energy = sqrt(a * square(normalized (Time)) +
 b * square(normalized(Effort)) +
 c * square(normalized(Defects))
)
 / sqrt(a+b+c)

 13 of 35

Xpos [Huang06]

  Value based evaluation method designed to minimize
risk exposure based on 'rely'

  Balances beating everyone to market with more/worse
bugs and being last to market with few/minor bugs.

  Based on NASA/USC Inspector SCRover project
described in [Huang06]
–  XPOS
–  Risk Exposure (RE)

= Software Quality Investment RE (REq)
+ Market Share Erosion RE (REm)‏

Software Quality Investment =
Pq(L) * Sq(L)

 14 of 35

   Pq(L):
–  [Huang06] calculated from COQUALMO estimates of delivered

defect density
–  To incorporate COQUALMO model: defects/defects-with-vl-rely

   Sq(L)
–  [Huang06] used based values from a Pareto distribution and

modified it with a coefficient based on a factor depending if a
project was for early startup (1/3) commercial (1), high finance(3)

–  We used the same values for the distribution but instead of defining
3 different functions, we used a function base don cplx to determine
the coefficient 3^((cplx-3)/2)) (range is [0.3333 .. 5.196]

 15 of 35

Market Share Erosion
Risk Exposure (REm)‏

  [Huang06]
– used a simple exponential distribution for

Rem
–  REm was normalized

  We weight it with PM

16

The details

Using AI to find stable conclusions
in a space of options

 17 of 35

Problem: local tuning

  Problem
–  Models need calibration
–  Calibration needs data
–  Usually, data incomplete (the

“data drought”)

  Our thesis :
–  Precise tunings not required
–  Space of possible tunings is

well-defined
–  Find and set the collars

•  Reveal policies that reduce
effort/ defects months

•  That are stable across the
entire space

 18 of 35

Experts disagree

  Target application picked
–  A mission critical,

real-time system;
–  Built by contractors

(not in-house)
–  That has an operational life of 5

to 10 years (since have invested
much effort into a mission critical
system, an organization is most
likely to use it for many years to
come).
  For each COCOMO input

variable
–  Boehm defines each variable
–  5 minutes “open comments”
–  Vote. Record majority view No majority

view

The tuning instability problem

 19 of 35

If some method DOUBLED productivity, you might miss it
if tunings randomly jumps 9 to 4.5.

Dodging tuning instability

  Estimate = model(project, tunings)

  Twiddle project

  Let tunings roam free

  Can still control the estimate (if project

dominates estimate)

  Project details are the dominate influence on

estimate for the USC models.

 20 of 35

 21 of 35

Sampling

   E.g. effort = mx + b

   Two kinds of unknowns

• Unknowns in project ranges

   E.g. range of “x”

• Unknowns in internal ranges

   E.g. range of {“m”, “b”}

   Standard practice:
–  Use historical data

to constrain {“m”,”b”}

   Here: Monte Carlo over

range of { “x” , “m”, “b” }
–  Learn values for “x” that reduce

effort
–  As a side-effect, reduce variance
–  Not need for tuning data

X

effort

1 2 3 4 5 6

1.3

1.2

1.1

1.0

0.9

0.8

0.7

vl l n h vh xh

 22 of 35

Search for stable conclusions

  Using simulated annealing, Monte
Carlo simulated annealing across
intersection of

–  A particular project type
–  Space of possible tunings

  Rank options by frequency in
good, not bad

  For r options
–  Try setting the 1 ≤ x ≤ R top ranked

options
–  Simulate (100 times) to check the

effect of options 1 .. x

  Smile if

–  Reduced median and variance in
defects/ efforts/ time/ threats

Bad

Good

Sample run
(after 10,000 runs, little improvement)‏

Other search methods

  A-star

  MaxWalkSat

  Isamp

  Etc

 23 of 35

 24 of 35

What works best?

  A little domain knowledge goes a long way

  Standard methods not best

  Best methods very effective

 25 of 35

26

Results

And the winner is…
…. no one in particular

tea

27

aa 1
aexp 1
cplx 1
data 2
docu 1
etat 1
flex 1
pmat 1
Pr 2
pvol 1
ruse 1
rely 2
resl 2
sced 1
site 1

MIA: prec, team,
acap, ltex, pcap,
pcon,stor, time,tool

28

Conclusion

So what?

 29 of 35

Conclusion

   Is value-based SE “ganz falsch”? (not even wrong)
–  Hard to tell, if we have a data drought
–  So seek stability in samples of the possibilities

   On sample, using 4 case studies and 2 value
functions:

–  Many seemingly important factors weren’t (important)
–  The most important ones change from project to project
–  For any project, changes to value changes everything

Conclusions

 30 of 30

  On sampling some systems,
we see
–  Value radically changes the

conclusions we reach
regarding project
organization

   What works best THERE may
not work best HERE
–  Needs better ways to find

local best

   Value-based SE:
–  Not “not even wrong”
–  Value change

everything

   Data drought leading to
conclusion uncertainty

–  Seek stability over
samples

