Value Changes Everything

Tim Menzies (tim@menzies.us) Phillip Green II, Steve Williams Oussama Elwaras

Wednesday, May 19, 2009

Sound bites

- Value-based SE:
 - not even wrong?
 - Does it change anything?
- Data drought leading to conclusion uncertainty
 - Seek stability over samples

On sampling some systems, we see

- Value radically changes the conclusions we reach regarding project organization
- What works best <u>THERE</u> may not work best <u>HERE</u>
 - Needs better ways to find local best

Value-based Software Engineering

The future of SE?

Thesis: value changes everything!

- A: The application of science and mathematics by which the properties of software are made <u>useful to people</u>
- Most SE techniques are "value-neutral"
 - Boehm, ASE 2004
 - Euphuism for "useless"?
- Value-based SE makes a difference
 - Yeah? Really?

The History of Computing Naturally Leads to Value-based SE

Risk Exposure (RE) = Software Quality Investment RE (REq) + Market Share Erosion RE (REm)

6 of 35

Value-based SE

Not even wrong?

Is the value-thesis not even wrong?

Wolfgang Pauli

- The "conscience of physics",
 - the critic to whom his colleagues were accountable.
- Scathing in his dismissal of poor theories
 - often labeling it *ganz falsch*, utterly false.
- But "ganz falsch" was not his most severe criticism,
 - He hated theories so unclearly presented as to be
 - untestable
 - unevaluatable
 - Worse than wrong because they could not be proven wrong.
 - Not properly belonging within the realm of science
 - even though posing as such.
 - Famously, he wrote of a such unclear paper:
 - "That's not right. It's not even wrong."

So is the value thesis refutable?

- Find a domain general "value" proposition
 - Menzies, Boehm, Madachy, Hihn, et al, [ASE 2007]
 - Reduce effort, defects, schedule
 - "energy"

Eind a local value proposition

- A variant of USC Ph.D. thesis
 - [Huang 2006]: Software Quality Analysis: a Value-Based Approach

- "value"

Use them in a what-if scenario
Any difference in the conclusions?

(defun energy () "Calculates energy based on cocomo pm, tdev, cogualmo defects, Madachy's risk." (let* ((npm (calc-normalized-pm))) (ntdev (calc-normalized-tdev)) (ndefects (calc-normalized-defects)) (nrisk (calc-normalized-risk)) (pm-weight 1) (tdev-weight 1) (defects-weight (+ 1 (expt 1.8 (- (xomo-rating? 'rely) 3)))) (risk-weight 1)) (/ (sqrt (+ (expt (* npm pm-weight) 2)) (expt (* ntdev tdev-weight) 2) (expt (* ndefects defects-weight) 2) (expt (* nrisk risk-weight) 2))) (sqrt (+ pm-weight tdev-weight defects-weight risk-weight)))))

market-erosion-re)))

Aside

Not really [Huang06]

But some variant Huang06

Had to use some "engineering judgment"

a.k.a. guesses

Apologies to Dr. Huang

10 of 35

Tools

Four USC models

- COCOMO effort prediction: staff months
- COCOMO schedule predictor: calendar months
- COQUALMO defect predictor: defects/KLOC
- Monte Carlo simulator
- Al search engine
 - Search for the least number of project changes ...
 - ... that most improves the "target"
 - "Target" is either
 - [Ase07]'s "energy" function
 - [Huang06]'s "XPOS" proposition (risk exposure)

"Energy" [Ase07]

Euclidean Distance to lowest everything

Xpos [Huang06]

- Value based evaluation method designed to minimize risk exposure based on 'rely'
- Balances beating everyone to market with more/worse bugs and being last to market with few/minor bugs.
- Based on NASA/USC Inspector SCRover project described in [Huang06]
 - XPOS
 - Risk Exposure (RE)
 - = Software Quality Investment RE (REq)
 - + Market Share Erosion RE (REm)

Software Quality Investment = Pq(L) * Sq(L)

- Pq(L):
 - [Huang06] calculated from COQUALMO estimates of delivered defect density
 - To incorporate COQUALMO model: defects/defects-with-vl-rely
- Sq(L)
 - [Huang06] used based values from a Pareto distribution and modified it with a coefficient based on a factor depending if a project was for early startup (1/3) commercial (1), high finance(3)
 - We used the same values for the distribution but instead of defining 3 different functions, we used a function base don cplx to determine the coefficient 3^{((cplx-3)/2)} (range is [0.3333 .. 5.196]

Market Share Erosion Risk Exposure (REm)

[Huang06]

- used a simple exponential distribution for Rem
- REm was normalized
- We weight it with PM

The details

Using AI to find stable conclusions in a space of options

16

Problem: local tuning

😔 Problem

- Models need calibration
- Calibration needs data
- Usually, data incomplete (the "data drought")

Our thesis :

- Precise tunings not required
- Space of possible tunings is well-defined
- Find and set the collars
 - Reveal policies that reduce effort/ defects months
 - That are stable across the entire space

17 of 35

Experts disagree

- Target application picked
 - A mission critical, real-time system;
 - Built by contractors (not in-house)
 - That has an operational life of 5 to 10 years (since have invested much effort into a mission critical system, an organization is most likely to use it for many years to come).

For each COCOMO input variable

- Boehm defines each variable
- 5 minutes "open comments"
- Vote. Record majority view

18 of 35

The tuning instability problem

If some method DOUBLED productivity, you might miss it if tunings randomly jumps 9 to 4.5.

Fig. 5. Results of applying LC numerous times to 90% of the NASA93 data sets (available from http://promisedata.org/data). Left-hand-side shows computed (a, b) values. Right-hand-side shows MRE1s generated over the NASA93 data set for ten case studies (one study per line).

Dodging tuning instability

- Estimate = model(project, tunings)
- Twiddle project
- Let tunings roam free
- Can still control the estimate (if project dominates estimate)
- Project details are the dominate influence on estimate for the USC models.

Search for stable conclusions

- Using simulated annealing, Monte Carlo simulated annealing across intersection of
 - A particular project type
 - Space of possible tunings
- Rank options by frequency in good, not <u>bad</u>
- For r options
 - Try setting the $1 \le x \le R$ top ranked options
 - Simulate (100 times) to check the effect of options 1 .. x
- Smile if
 - Reduced median and variance in defects/ efforts/ time/ threats

Other search methods

A-star
MaxWalkSat
Isamp
Etc

What works best?

A little domain knowledge goes a long way
Standard methods not best
Best methods verv effective

algorithm	Defects	months	time	
SEESAW	4	4	3	
BEAM	0	3	3	
A-star	0	1	1	
SA	0	1	1	
MaxWalkSat	0	0	0	
ISSAMP	0	0	0	_

1	data set	defects	time	effort
	flight	80%	39%	72%
	ground	85%	38%	73%
\neg	osp	65%	4%	42%
	ops2	26%	22%	5%
	median	73%	30%	57%

Figure 6: Percent reductions (1 - final/initial) achieved by SEESAW on the Figure 3 case studies. The *initial* values come from round 0 of the forward select. The *final* values come from the policy point. Note that all the initial and final values ues are statistically different (Mann-Whitney, 95% confidence).

Results

And the winner is... no one in particular

	value			defect			
Data	Range	B=BFC	X=XPOS	$\frac{B}{B+X}$	ren	noval	
				2 1 11	manual	automatic	
ground	rely = 4	70	20	77			
-	aa = 6	70	25	73		hi in B	
	resl = 6	65	40	61			
	etat = 1	35	65	35		lo in X	
	aexp = 5	45	85	34			22 1
	pr = 1	35	80	30	lo in X		
	aa = 1	25	60	29		lo in X	aexp
	data = 2	25	70	26			cplx 1
	rely = 1	15	70	17			data 2
flight	rely = 5	65	25	72			docu 1
	flex = 6	80	50	61			etat 1
	docu = 1	55	85	39			flox 1
	site $= 6$	55	85	39			
	resl = 6	45	70	39			pmat 1
	pr = 1	45	70	39	lo in X		Pr 2
	pvol = 2	45	75	37			pvol 1
	data = 2	35	60	36			ruse 1
	cplx = 3	45	90	33			roly 2
000	rely = 3	15	60	20			
OSP	pmat = 4	85	45	65			resi 2
	resi = 3	45	70	39			sced 1
	ruse = 2	40	65	38			site 1
0000	docu = 2	25	90	21			
USP2	sced = 2	100	0	100			
	sced = 4	0	80	0			
							IMIA. prec, team,
igure 7	: Frequen	cy (in pe	rcents) of	feature	ranges s	een in 20	acap, itex, pcap,
peats	of SEES	AŴ, usin	a two diffe	erent ac	al functi	ons: BFC	pcon,stor, time,tool
nd XP	OS. The	last two	columns	comme	ent on a	ny defect	
ductio	n feature	Not sh	own in th	is figure	e are an	v feature	
indee t	hat occur	loce that	50% of th	no timo		Journe	
inges t	nat occur	iess liidi	1 30 % 01 1	ie unie.			

Conclusion

- Is value-based SE "ganz falsch"? (not even wrong)
 - Hard to tell, if we have a data drought
 - So seek stability in samples of the possibilities
- On sample, using 4 case studies and 2 value functions:
 - Many seemingly important factors weren't (important)
 - The most important ones change from project to project
 - For any project, changes to value changes everything

Conclusions

- Value-based SE:
 - Not "not even wrong"
 - Value change everything
- Data drought leading to conclusion uncertainty
 - Seek stability over samples

- On sampling some systems, we see
 - Value radically changes the conclusions we reach regarding project organization
- What works best <u>THERE</u> may not work best <u>HERE</u>
 - Needs better ways to find local best

30 of 30