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Sound bites

Come to PROMISE ‘09

Value-based SE:
– not even wrong?

Data drought leading to
conclusion uncertainty

– Seek stability over samples

On sampling some systems, we see
1. Value does not take more time
2. Value takes more effort
3. Value (is , isn’t) harder to control
4. More value = more defects

Community challenge:
– when does 1,2,3,4 hold?
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PROMISE ‘09

www.promisedata.org/2009
Reproducible SE results
Papers:
– and the data used to

generate those papers
– www.promisedata.org/data

Keynote speaker:
– Barry Boehm, USC

Motto:
– Repeatable, refutable, improvable
– Put up or shut up



Value-based
Software Engineering

The future of SE?
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Thesis: value changes everything!

Q: what is SE
– A: The application of science

and mathematics by which the
properties of software are made
useful to people

Most SE techniques are
“value-neutral”
– Boehm, ASE 2004
– Euphuism for “useless”?

Value-based SE makes a
difference
– Yeah? Really?
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Risk Exposure RE
= Prob (Loss) * Size (Loss)

Time to Ship (amount of testing)

Few rivals: low P(L)
Weak rivals: low S(L)

Many rivals: high P(L)
Strong rivals: high S(L)

Sweet
Spot

Many defects: high P(L)
Critical defects: high S(L)

Few defects: low P(L)
Minor defects: low S(L)

RE =
P(L) 

* S(L)

Unacceptable
quality

Market share
erosion
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The History of Computing Naturally
Leads to Value-based SE



Value-based SE

Not even false?
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Is the value-thesis
not even wrong?
Wolfgang Pauli
The "conscience of physics",
– the critic to whom his colleagues were accountable.

Scathing in his dismissal of poor theories
–  often labeling it ganz falsch, utterly false.

But “ganz falsch”  was not his most severe criticism,
– He hated theories so unclearly presented as to be

• untestable
•  unevaluatable,

– Worse than wrong because they could not be proven
wrong.

– Not properly belonging within the realm of science,
• even though posing as such.

– Famously, he wrote of of such unclear paper:
• ”This paper is right. It is not even wrong."
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So is the value
thesis refutable?

Find a domain general “value”
proposition
– Menzies, Boehm, Madachy

Hihn, et al, [ASE 2007]
– Reduce effort, defects, schedule
– “energy”

Find a local value proposition
– A variant of USC Ph.D. thesis

• [Huang 2006]: Software Quality
Analysis: a Value-Based
Approach

– “value”
Use them in a what-if scenario
Any difference in the
conclusions?

(defun unnormalized-energy ()
  "Calculates unnormalized energy."
  (let* ((effort   (effort))
          (months   (months effort))
          (defects  (defects))
          (threat   (threat))
           (neffort  (normalize 'effort  effort))
          (nmonths  (normalize 'months  months))
          (ndefects (normalize 'defects defects))
          (nthreat  (if (< threat 5) 0 (normalize 'threat threat))))
    (sqrt (+                      (expt (* neffort  (effort-weight)) 2)

     (expt (* nmonths  (months-weight)) 2)
     (expt (* ndefects (defect-weight)) 2)
     (expt (* nthreat  (threat-weight)) 2)))))

(defun effort-weight () 1)
(defun months-weight ()  1)
(defun defect-weight ()  (+ 1 (expt *rely-defect* (- (em-range (! 'rely)) 3))))
(defun threat-weight () 1)

(defun curve-size (attribute)  (expt 0.5 (1- (rating? (! attribute)))))
(defun curve-market (attribute)   (- 1 (curve-size attribute)))
(defun size-coefficient ()  (* (curve-size 'rely)))
(defun market-coefficient ()  (* (curve-market 'rely)))
(defun market-erosion-risk-exposure ()   (* (effort)   (market-coefficient)))
(defun loss-size ()
  (* (expt 3 (/ (- (rating? (! 'cplx)) 3) 2) ) (effort)
     (size-coefficient)))
(defun sofware-quality-risk-exposure () (* (loss-probability)  (loss-size)))
(defun risk-exposure ()   (+ (market-erosion-risk-exposure)
     (sofware-quality-risk-exposure)))
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Aside

Note really [Huang06]
– But some variant Huang06

Had to use some “engineering judgment”
– a.k.a. guesses

Apologies to Dr. Huang
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Tools

Four USC models
– COCOMO effort prediction: staff months
– COCOMO schedule predictor: calendar months
– COQUALMO defect predictor: defects/KLOC
– THREATS: “how many dumb things are you doing right now?”

Monte Carlo simulator
AI search engine
– Search for the least number of project changes …
– … that most improves the “target”
– “Target” is either

•  [Ase07]’s “energy” function
•  [Huang06]’s “value” proposition
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Problem: local tuning

Problem
– Models need calibration
– Calibration needs data
– Usually, data incomplete (the

“data drought”)

Our thesis :
– Precise tunings not required
– Space of possible tunings is

well-defined
– Find and set the collars

• Reveal policies that reduce
effort/ defects months

• That are stable across the
entire space



The details

Using AI to find stable conclusions
in a space of options
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Run Delphi Sessions to Gather
Project Ranges (e.g. ICSE 2008)

Target application picked
– A mission critical,

real-time system;
– Built by contractors

(not in-house)
– That has an operational life of 5

to 10 years (since have invested
much effort into a mission
critical system, an organization
is most likely to use it for many
years to come).

For each COCOMO input
variable

– Boehm defines each variable
– 5 minutes “open comments”
– Vote. Record majority view
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Sampling

E.g. effort = mx + b
Two kinds of unknowns
•  Unknowns in project ranges

– E.g. range of “x”
•  Unknowns in internal ranges

– E.g. range of {“m”, “b”}
Standard practice:
– Use historical data

to constrain {“m”,”b”}
Here: Monte Carlo over
range of { “x” , “m”, “b” }
– Learn values for “x” that reduce

effort
– As a side-effect, reduce variance
– Not need for tuning data

X

effort

1       2        3       4     5     6 

1.3

1.2

1.1

1.0

0.9

0.8

0.7

vl l n h vh xh
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Search for stable conclusions
 

Using simulated annealing, Monte
Carlo simulated annealing across
intersection of
– A particular project type
– Space of possible tunings

Rank options by frequency in
good, not bad
For r options
– Try setting the 1 ≤ x ≤ R top ranked

options
– Simulate (100 times) to check the

effect of options 1 .. x
Smile if
– Reduced median and variance in

defects/ efforts/ time/ threats

Bad

Good 

Sample run
(after 10,000 runs, little improvement)



     18 of 30

JPL flight systems (GNC)
flex  resl  stor
data ruse  docu
tool  sced cplx
aa    ebt    pr
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flex  resl  stor
data ruse  docu
tool  sced cplx
aa    ebt    pr

JPL ground systems (GNC)
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Assessment criteria

Minimal values found for:
– Defects
– Months
– Effort

Number of decisions
required to find those
minimums
– In this case, 10 (ruse

appears twice)



Results

And the winner is…
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Value does not take more time

Months = calendar time
Results from 20 trials
– Normalized min..max = 0 .. 100

Good news

– Tell the world
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Value takes more effort

Effort = staff months
Results from 20 trials
– Normalized min..max = 1..100

Yawn!

– No surprises here
– Better products take more time
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Value (is , isn’t) harder to control

Results from 20 runs
Counts project variables that the AI search has
decided to change

– E.g. acap, pcap, pmat, etc
Ambiguous results

Flight systems
– Same, or fewer  decisions for value

Ground systems
– More decisions for  value
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More value = more defects
Defects per 100/KLOC
Results from 20 trials

– Normalized min..max 0..100
More defects in value-based approach
Whatever

– More to life than defect reduction
Cautionary tale to our colleagues in
automated software engineering

– Where defect removal is king
– And all else is secondary
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Note: we are not the first
to say value ≠ defects

From [Huang06]

Infinitely
increasing
software reliability
is not necessarily
the best plan



Conclusion

So what?
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Conclusion

Is value-based SE “ganz falsch”?  (not even wrong)
– Hard to tell, if we have a data drought
– So seek stability in samples of the possibilities

On sample, using 2 target functions and 2 systems:
1. Value does not take more time (good news!)
2. Value takes more effort (yawn)
3. Value (is , isn’t) harder to control (huh?)
4. More value = more defects (say what?)

Clearly, not true for all value propositions
– But are there classes of systems with repeated patterns

of value propositions?
– For those “value patterns”:

• Under what conditions do 1,2,3,4 apply
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Sound bites

Come to PROMISE ‘09

Value-based SE:
– not even wrong?

Data drought leading to
conclusion uncertainty

– Seek stability over samples

On sampling some systems, we see
1. Value does not take more time
2. Value takes more effort
3. Value (is , isn’t) harder to control
4. More value = more defects

Community challenge:
– when does 1,2,3,4 hold?
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PROMISE ‘09

www.promisedata.org/2009
Reproducible SE results
Papers:
– and the data used to

generate those papers
– www.promisedata.org/data

Keynote speaker:
– Barry Boehm, USC

Motto:
– Repeatable, refutable, improvable
– Put up or shut up


